src/lemon/max_matching.h
author marci
Thu, 24 Feb 2005 17:42:11 +0000
changeset 1176 1ba2b4c0c970
parent 1166 db3d437560f3
child 1177 e41c2907fb49
permissions -rwxr-xr-x
glpk is able to search 5x5 magic square, let's celebrate the free software
     1 /* -*- C++ -*-
     2  * src/lemon/max_matching.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_MAX_MATCHING_H
    18 #define LEMON_MAX_MATCHING_H
    19 
    20 #include <queue>
    21 #include <lemon/invalid.h>
    22 #include <lemon/unionfind.h>
    23 #include <lemon/graph_utils.h>
    24 
    25 ///\ingroup galgs
    26 ///\file
    27 ///\brief Maximum matching algorithm.
    28 
    29 namespace lemon {
    30 
    31   /// \addtogroup galgs
    32   /// @{
    33 
    34   ///Edmonds' alternating forest maximum matching algorithm.
    35 
    36   ///This class provides Edmonds' alternating forest matching
    37   ///algorithm. The starting matching (if any) can be passed to the
    38   ///algorithm using read-in functions \ref readNMapNode, \ref
    39   ///readNMapEdge or \ref readEMapBool depending on the container. The
    40   ///resulting maximum matching can be attained by write-out functions
    41   ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
    42   ///depending on the preferred container. 
    43   ///
    44   ///The dual side of a matching is a map of the nodes to
    45   ///MaxMatching::pos_enum, having values D, A and C showing the
    46   ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
    47   ///a graph with factor-critical components, the nodes in A form the
    48   ///barrier, and the nodes in C induce a graph having a perfect
    49   ///matching. This decomposition can be attained by calling \ref
    50   ///writePos after running the algorithm. 
    51   ///
    52   ///\param Graph The undirected graph type the algorithm runs on.
    53   ///
    54   ///\author Jacint Szabo  
    55   template <typename Graph>
    56   class MaxMatching {
    57 
    58   protected:
    59 
    60     typedef typename Graph::Node Node;
    61     typedef typename Graph::Edge Edge;
    62     typedef typename Graph::UndirEdgeIt UndirEdgeIt;
    63     typedef typename Graph::NodeIt NodeIt;
    64     typedef typename Graph::IncEdgeIt IncEdgeIt;
    65 
    66     typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
    67 
    68   public:
    69     
    70     ///Indicates the Gallai-Edmonds decomposition of the graph.
    71 
    72     ///Indicates the Gallai-Edmonds decomposition of the graph, which
    73     ///shows an upper bound on the size of a maximum matching. The
    74     ///nodes with pos_enum \c D induce a graph with factor-critical
    75     ///components, the nodes in \c A form the canonical barrier, and the
    76     ///nodes in \c C induce a graph having a perfect matching. 
    77     enum pos_enum {
    78       D=0,
    79       A=1,
    80       C=2
    81     }; 
    82 
    83   protected:
    84 
    85     static const int HEUR_density=2;
    86     const Graph& g;
    87     typename Graph::template NodeMap<Node> _mate;
    88     typename Graph::template NodeMap<pos_enum> position;
    89      
    90   public:
    91     
    92     MaxMatching(const Graph& _g) : g(_g), _mate(_g,INVALID), position(_g) {}
    93 
    94     ///Runs Edmonds' algorithm.
    95 
    96     ///Runs Edmonds' algorithm for sparse graphs (number of edges <
    97     ///2*number of nodes), and a heuristical Edmonds' algorithm with a
    98     ///heuristic of postponing shrinks for dense graphs. 
    99     inline void run();
   100 
   101     ///Runs Edmonds' algorithm.
   102     
   103     ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
   104     ///Edmonds' algorithm with a heuristic of postponing shrinks,
   105     ///giving a faster algorithm for dense graphs.  
   106     void runEdmonds( int heur );
   107 
   108     ///Finds a greedy matching starting from the actual matching.
   109     
   110     ///Starting form the actual matching stored, it finds a maximal
   111     ///greedy matching.
   112     void greedyMatching();
   113 
   114     ///Returns the size of the actual matching stored.
   115 
   116     ///Returns the size of the actual matching stored. After \ref
   117     ///run() it returns the size of a maximum matching in the graph.
   118     int size() const;
   119 
   120     ///Resets the actual matching to the empty matching.
   121 
   122     ///Resets the actual matching to the empty matching.  
   123     ///
   124     void resetMatching();
   125 
   126     ///Returns the mate of a node in the actual matching.
   127 
   128     ///Returns the mate of a \c node in the actual matching. 
   129     ///Returns INVALID if the \c node is not covered by the actual matching. 
   130     Node mate(Node& node) const {
   131       return _mate[node];
   132     } 
   133 
   134     ///Reads a matching from a \c Node valued \c Node map.
   135 
   136     ///Reads a matching from a \c Node valued \c Node map. This map
   137     ///must be \e symmetric, i.e. if \c map[u]==v then \c map[v]==u
   138     ///must hold, and \c uv will be an edge of the matching.
   139     template<typename NMapN>
   140     void readNMapNode(NMapN& map) {
   141       for(NodeIt v(g); v!=INVALID; ++v) {
   142 	_mate.set(v,map[v]);   
   143       } 
   144     } 
   145     
   146     ///Writes the stored matching to a \c Node valued \c Node map.
   147 
   148     ///Writes the stored matching to a \c Node valued \c Node map. The
   149     ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
   150     ///map[v]==u will hold, and now \c uv is an edge of the matching.
   151     template<typename NMapN>
   152     void writeNMapNode (NMapN& map) const {
   153       for(NodeIt v(g); v!=INVALID; ++v) {
   154 	map.set(v,_mate[v]);   
   155       } 
   156     } 
   157 
   158     ///Reads a matching from an \c UndirEdge valued \c Node map.
   159 
   160     ///Reads a matching from an \c UndirEdge valued \c Node map. \c
   161     ///map[v] must be an \c UndirEdge incident to \c v. This map must
   162     ///have the property that if \c g.oppositeNode(u,map[u])==v then
   163     ///\c \c g.oppositeNode(v,map[v])==u holds, and now some edge
   164     ///joining \c u to \c v will be an edge of the matching.
   165     template<typename NMapE>
   166     void readNMapEdge(NMapE& map) {
   167      for(NodeIt v(g); v!=INVALID; ++v) {
   168 	UndirEdge e=map[v];
   169 	if ( e!=INVALID )
   170 	  _mate.set(v,g.oppositeNode(v,e));
   171       } 
   172     } 
   173     
   174     ///Writes the matching stored to an \c UndirEdge valued \c Node map.
   175 
   176     ///Writes the stored matching to an \c UndirEdge valued \c Node
   177     ///map. \c map[v] will be an \c UndirEdge incident to \c v. This
   178     ///map will have the property that if \c g.oppositeNode(u,map[u])
   179     ///== v then \c map[u]==map[v] holds, and now this edge is an edge
   180     ///of the matching.
   181     template<typename NMapE>
   182     void writeNMapEdge (NMapE& map)  const {
   183       typename Graph::template NodeMap<bool> todo(g,true); 
   184       for(NodeIt v(g); v!=INVALID; ++v) {
   185 	if ( todo[v] && _mate[v]!=INVALID ) {
   186 	  Node u=_mate[v];
   187 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   188 	    if ( g.runningNode(e) == u ) {
   189 	      map.set(u,e);
   190 	      map.set(v,e);
   191 	      todo.set(u,false);
   192 	      todo.set(v,false);
   193 	      break;
   194 	    }
   195 	  }
   196 	}
   197       } 
   198     }
   199 
   200 
   201     ///Reads a matching from a \c bool valued \c Edge map.
   202     
   203     ///Reads a matching from a \c bool valued \c Edge map. This map
   204     ///must have the property that there are no two incident edges \c
   205     ///e, \c f with \c map[e]==map[f]==true. The edges \c e with \c
   206     ///map[e]==true form the matching.
   207     template<typename EMapB>
   208     void readEMapBool(EMapB& map) {
   209       for(UndirEdgeIt e(g); e!=INVALID; ++e) {
   210 	if ( map[e] ) {
   211 	  Node u=g.source(e);	  
   212 	  Node v=g.target(e);
   213 	  _mate.set(u,v);
   214 	  _mate.set(v,u);
   215 	} 
   216       } 
   217     }
   218 
   219 
   220     ///Writes the matching stored to a \c bool valued \c Edge map.
   221 
   222     ///Writes the matching stored to a \c bool valued \c Edge
   223     ///map. This map will have the property that there are no two
   224     ///incident edges \c e, \c f with \c map[e]==map[f]==true. The
   225     ///edges \c e with \c map[e]==true form the matching.
   226     template<typename EMapB>
   227     void writeEMapBool (EMapB& map) const {
   228       for(UndirEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
   229 
   230       typename Graph::template NodeMap<bool> todo(g,true); 
   231       for(NodeIt v(g); v!=INVALID; ++v) {
   232 	if ( todo[v] && _mate[v]!=INVALID ) {
   233 	  Node u=_mate[v];
   234 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   235 	    if ( g.runningNode(e) == u ) {
   236 	      map.set(e,true);
   237 	      todo.set(u,false);
   238 	      todo.set(v,false);
   239 	      break;
   240 	    }
   241 	  }
   242 	}
   243       } 
   244     }
   245 
   246 
   247     ///Writes the canonical decomposition of the graph after running
   248     ///the algorithm.
   249 
   250     ///After calling any run methods of the class, it writes the
   251     ///Gallai-Edmonds canonical decomposition of the graph. \c map
   252     ///must be a node map of \ref pos_enum 's.
   253     template<typename NMapEnum>
   254     void writePos (NMapEnum& map) const {
   255       for(NodeIt v(g); v!=INVALID; ++v)  map.set(v,position[v]);
   256     }
   257 
   258   private: 
   259 
   260  
   261     void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   262 		    UFE& blossom, UFE& tree);
   263 
   264     void normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
   265 		    UFE& blossom, UFE& tree);
   266 
   267     bool noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
   268 		      UFE& blossom, UFE& tree, std::queue<Node>& Q);
   269 
   270     void shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
   271 		    UFE& blossom, UFE& tree, std::queue<Node>& Q);
   272 
   273     void augment(Node x, typename Graph::NodeMap<Node>& ear,  
   274 		 UFE& blossom, UFE& tree);
   275 
   276   };
   277 
   278 
   279   // **********************************************************************
   280   //  IMPLEMENTATIONS
   281   // **********************************************************************
   282 
   283 
   284   template <typename Graph>
   285   void MaxMatching<Graph>::run() {
   286     if ( countUndirEdges(g) < HEUR_density*countNodes(g) ) {
   287       greedyMatching();
   288       runEdmonds(0);
   289     } else runEdmonds(1);
   290   }
   291 
   292 
   293   template <typename Graph>
   294   void MaxMatching<Graph>::runEdmonds( int heur=1 ) {
   295 
   296     for(NodeIt v(g); v!=INVALID; ++v)
   297       position.set(v,C);      
   298 
   299     typename Graph::template NodeMap<Node> ear(g,INVALID); 
   300     //undefined for the base nodes of the blossoms (i.e. for the
   301     //representative elements of UFE blossom) and for the nodes in C 
   302 
   303     typename UFE::MapType blossom_base(g);
   304     UFE blossom(blossom_base);
   305     typename UFE::MapType tree_base(g);
   306     UFE tree(tree_base);
   307     //If these UFE's would be members of the class then also
   308     //blossom_base and tree_base should be a member.
   309 
   310     for(NodeIt v(g); v!=INVALID; ++v) {
   311       if ( position[v]==C && _mate[v]==INVALID ) {
   312 	blossom.insert(v);
   313 	tree.insert(v); 
   314 	position.set(v,D);
   315 	if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
   316 	else normShrink( v, ear, blossom, tree );
   317       }
   318     }
   319   }
   320 
   321     
   322   template <typename Graph>
   323   void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   324 				      UFE& blossom, UFE& tree) {
   325 
   326     std::queue<Node> Q;   //queue of the totally unscanned nodes
   327     Q.push(v);  
   328     std::queue<Node> R;   
   329     //queue of the nodes which must be scanned for a possible shrink
   330       
   331     while ( !Q.empty() ) {
   332       Node x=Q.front();
   333       Q.pop();
   334       if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return;
   335       else R.push(x);
   336     }
   337       
   338     while ( !R.empty() ) {
   339       Node x=R.front();
   340       R.pop();
   341 	
   342       for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
   343 	Node y=g.runningNode(e);
   344 
   345 	if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { 
   346 	  //x and y must be in the same tree
   347 	
   348 	  typename Graph::template NodeMap<bool> path(g,false);
   349 
   350 	  Node b=blossom.find(x);
   351 	  path.set(b,true);
   352 	  b=_mate[b];
   353 	  while ( b!=INVALID ) { 
   354 	    b=blossom.find(ear[b]);
   355 	    path.set(b,true);
   356 	    b=_mate[b];
   357 	  } //going till the root
   358 	
   359 	  Node top=y;
   360 	  Node middle=blossom.find(top);
   361 	  Node bottom=x;
   362 	  while ( !path[middle] )
   363 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   364 		  
   365 	  Node base=middle;
   366 	  top=x;
   367 	  middle=blossom.find(top);
   368 	  bottom=y;
   369 	  Node blossom_base=blossom.find(base);
   370 	  while ( middle!=blossom_base )
   371 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   372 		  
   373 	  blossom.makeRep(base);
   374 	} // if shrink is needed
   375 
   376 	while ( !Q.empty() ) {
   377 	  Node x=Q.front();
   378 	  Q.pop();
   379 	  if ( noShrinkStep(x, ear, blossom, tree, Q) ) return;
   380 	  else R.push(x);
   381 	}
   382       } //for e
   383     } // while ( !R.empty() )
   384   }
   385 
   386 
   387   template <typename Graph>
   388   void MaxMatching<Graph>::normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
   389 				      UFE& blossom, UFE& tree) {
   390 
   391     std::queue<Node> Q;   //queue of the unscanned nodes
   392     Q.push(v);  
   393     while ( !Q.empty() ) {
   394 
   395       Node x=Q.front();
   396       Q.pop();
   397 	
   398       for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
   399 	Node y=g.runningNode(e);
   400 	      
   401 	switch ( position[y] ) {
   402 	case D:          //x and y must be in the same tree
   403 
   404 	  if ( blossom.find(x) != blossom.find(y) ) { //shrink
   405 	    typename Graph::template NodeMap<bool> path(g,false);
   406 	      
   407 	    Node b=blossom.find(x);
   408 	    path.set(b,true);
   409 	    b=_mate[b];
   410 	    while ( b!=INVALID ) { 
   411 	      b=blossom.find(ear[b]);
   412 	      path.set(b,true);
   413 	      b=_mate[b];
   414 	    } //going till the root
   415 	
   416 	    Node top=y;
   417 	    Node middle=blossom.find(top);
   418 	    Node bottom=x;
   419 	    while ( !path[middle] )
   420 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   421 		
   422 	    Node base=middle;
   423 	    top=x;
   424 	    middle=blossom.find(top);
   425 	    bottom=y;
   426 	    Node blossom_base=blossom.find(base);
   427 	    while ( middle!=blossom_base )
   428 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   429 		
   430 	    blossom.makeRep(base);
   431 	  }
   432 	  break;
   433 	case C:
   434 	  if ( _mate[y]!=INVALID ) {   //grow
   435 
   436 	    ear.set(y,x);
   437 	    Node w=_mate[y];
   438 	    blossom.insert(w);
   439 	    position.set(y,A); 
   440 	    position.set(w,D); 
   441 	    tree.insert(y);
   442 	    tree.insert(w);
   443 	    tree.join(y,blossom.find(x));  
   444 	    tree.join(w,y);  
   445 	    Q.push(w);
   446 	  } else {                 //augment  
   447 	    augment(x, ear, blossom, tree);
   448 	    _mate.set(x,y);
   449 	    _mate.set(y,x);
   450 	    return;
   451 	  } //if 
   452 	  break;
   453 	default: break;
   454 	}
   455       }
   456     }
   457   }
   458 
   459   template <typename Graph>
   460   void MaxMatching<Graph>::greedyMatching() {
   461     for(NodeIt v(g); v!=INVALID; ++v)
   462       if ( _mate[v]==INVALID ) {
   463 	for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
   464 	  Node y=g.runningNode(e);
   465 	  if ( _mate[y]==INVALID && y!=v ) {
   466 	    _mate.set(v,y);
   467 	    _mate.set(y,v);
   468 	    break;
   469 	  }
   470 	}
   471       } 
   472   }
   473    
   474   template <typename Graph>
   475   int MaxMatching<Graph>::size() const {
   476     int s=0;
   477     for(NodeIt v(g); v!=INVALID; ++v) {
   478       if ( _mate[v]!=INVALID ) {
   479 	++s;
   480       }
   481     }
   482     return s/2;
   483   }
   484 
   485   template <typename Graph>
   486   void MaxMatching<Graph>::resetMatching() {
   487     for(NodeIt v(g); v!=INVALID; ++v)
   488       _mate.set(v,INVALID);      
   489   }
   490 
   491   template <typename Graph>
   492   bool MaxMatching<Graph>::noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
   493 					UFE& blossom, UFE& tree, std::queue<Node>& Q) {
   494     for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
   495       Node y=g.runningNode(e);
   496 	
   497       if ( position[y]==C ) {
   498 	if ( _mate[y]!=INVALID ) {       //grow
   499 	  ear.set(y,x);
   500 	  Node w=_mate[y];
   501 	  blossom.insert(w);
   502 	  position.set(y,A);
   503 	  position.set(w,D);
   504 	  tree.insert(y);
   505 	  tree.insert(w);
   506 	  tree.join(y,blossom.find(x));  
   507 	  tree.join(w,y);  
   508 	  Q.push(w);
   509 	} else {                      //augment 
   510 	  augment(x, ear, blossom, tree);
   511 	  _mate.set(x,y);
   512 	  _mate.set(y,x);
   513 	  return true;
   514 	}
   515       }
   516     }
   517     return false;
   518   }
   519 
   520   template <typename Graph>
   521   void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
   522 				      UFE& blossom, UFE& tree, std::queue<Node>& Q) {
   523     ear.set(top,bottom);
   524     Node t=top;
   525     while ( t!=middle ) {
   526       Node u=_mate[t];
   527       t=ear[u];
   528       ear.set(t,u);
   529     } 
   530     bottom=_mate[middle];
   531     position.set(bottom,D);
   532     Q.push(bottom);
   533     top=ear[bottom];		
   534     Node oldmiddle=middle;
   535     middle=blossom.find(top);
   536     tree.erase(bottom);
   537     tree.erase(oldmiddle);
   538     blossom.insert(bottom);
   539     blossom.join(bottom, oldmiddle);
   540     blossom.join(top, oldmiddle);
   541   }
   542 
   543   template <typename Graph>
   544   void MaxMatching<Graph>::augment(Node x, typename Graph::NodeMap<Node>& ear,  
   545 				   UFE& blossom, UFE& tree) { 
   546     Node v=_mate[x];
   547     while ( v!=INVALID ) {
   548 	
   549       Node u=ear[v];
   550       _mate.set(v,u);
   551       Node tmp=v;
   552       v=_mate[u];
   553       _mate.set(u,tmp);
   554     }
   555     typename UFE::ItemIt it;
   556     for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) {   
   557       if ( position[it] == D ) {
   558 	typename UFE::ItemIt b_it;
   559 	for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) {  
   560 	  position.set( b_it ,C);
   561 	}
   562 	blossom.eraseClass(it);
   563       } else position.set( it ,C);
   564     }
   565     tree.eraseClass(x);
   566 
   567   }
   568 
   569   /// @}
   570   
   571 } //END OF NAMESPACE LEMON
   572 
   573 #endif //LEMON_MAX_MATCHING_H