lemon/suurballe.h
author hegyi
Tue, 08 Apr 2008 11:39:40 +0000
changeset 2602 1c7790d9e025
parent 2553 bfced05fa852
permissions -rw-r--r--
Rel.07 NEWS - 3. round
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_SUURBALLE_H
    20 #define LEMON_SUURBALLE_H
    21 
    22 ///\ingroup shortest_path
    23 ///\file
    24 ///\brief An algorithm for finding edge-disjoint paths between two
    25 /// nodes having minimum total length.
    26 
    27 #include <vector>
    28 #include <lemon/bin_heap.h>
    29 #include <lemon/path.h>
    30 
    31 namespace lemon {
    32 
    33   /// \addtogroup shortest_path
    34   /// @{
    35 
    36   /// \brief Implementation of an algorithm for finding edge-disjoint
    37   /// paths between two nodes having minimum total length.
    38   ///
    39   /// \ref lemon::Suurballe "Suurballe" implements an algorithm for
    40   /// finding edge-disjoint paths having minimum total length (cost)
    41   /// from a given source node to a given target node in a directed
    42   /// graph.
    43   ///
    44   /// In fact, this implementation is the specialization of the
    45   /// \ref CapacityScaling "successive shortest path" algorithm.
    46   ///
    47   /// \tparam Graph The directed graph type the algorithm runs on.
    48   /// \tparam LengthMap The type of the length (cost) map.
    49   ///
    50   /// \warning Length values should be \e non-negative \e integers.
    51   ///
    52   /// \note For finding node-disjoint paths this algorithm can be used
    53   /// with \ref SplitGraphAdaptor.
    54   ///
    55   /// \author Attila Bernath and Peter Kovacs
    56   
    57   template < typename Graph, 
    58              typename LengthMap = typename Graph::template EdgeMap<int> >
    59   class Suurballe
    60   {
    61     GRAPH_TYPEDEFS(typename Graph);
    62 
    63     typedef typename LengthMap::Value Length;
    64     typedef ConstMap<Edge, int> ConstEdgeMap;
    65     typedef typename Graph::template NodeMap<Edge> PredMap;
    66 
    67   public:
    68 
    69     /// The type of the flow map.
    70     typedef typename Graph::template EdgeMap<int> FlowMap;
    71     /// The type of the potential map.
    72     typedef typename Graph::template NodeMap<Length> PotentialMap;
    73     /// The type of the path structures.
    74     typedef SimplePath<Graph> Path;
    75 
    76   private:
    77   
    78     /// \brief Special implementation of the \ref Dijkstra algorithm
    79     /// for finding shortest paths in the residual network.
    80     ///
    81     /// \ref ResidualDijkstra is a special implementation of the
    82     /// \ref Dijkstra algorithm for finding shortest paths in the
    83     /// residual network of the graph with respect to the reduced edge
    84     /// lengths and modifying the node potentials according to the
    85     /// distance of the nodes.
    86     class ResidualDijkstra
    87     {
    88       typedef typename Graph::template NodeMap<int> HeapCrossRef;
    89       typedef BinHeap<Length, HeapCrossRef> Heap;
    90 
    91     private:
    92 
    93       // The directed graph the algorithm runs on
    94       const Graph &_graph;
    95 
    96       // The main maps
    97       const FlowMap &_flow;
    98       const LengthMap &_length;
    99       PotentialMap &_potential;
   100 
   101       // The distance map
   102       PotentialMap _dist;
   103       // The pred edge map
   104       PredMap &_pred;
   105       // The processed (i.e. permanently labeled) nodes
   106       std::vector<Node> _proc_nodes;
   107       
   108       Node _s;
   109       Node _t;
   110 
   111     public:
   112 
   113       /// Constructor.
   114       ResidualDijkstra( const Graph &graph,
   115                         const FlowMap &flow,
   116                         const LengthMap &length,
   117                         PotentialMap &potential,
   118                         PredMap &pred,
   119                         Node s, Node t ) :
   120         _graph(graph), _flow(flow), _length(length), _potential(potential),
   121         _dist(graph), _pred(pred), _s(s), _t(t) {}
   122 
   123       /// \brief Runs the algorithm. Returns \c true if a path is found
   124       /// from the source node to the target node.
   125       bool run() {
   126         HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
   127         Heap heap(heap_cross_ref);
   128         heap.push(_s, 0);
   129         _pred[_s] = INVALID;
   130         _proc_nodes.clear();
   131 
   132         // Processing nodes
   133         while (!heap.empty() && heap.top() != _t) {
   134           Node u = heap.top(), v;
   135           Length d = heap.prio() + _potential[u], nd;
   136           _dist[u] = heap.prio();
   137           heap.pop();
   138           _proc_nodes.push_back(u);
   139 
   140           // Traversing outgoing edges
   141           for (OutEdgeIt e(_graph, u); e != INVALID; ++e) {
   142             if (_flow[e] == 0) {
   143               v = _graph.target(e);
   144               switch(heap.state(v)) {
   145               case Heap::PRE_HEAP:
   146                 heap.push(v, d + _length[e] - _potential[v]);
   147                 _pred[v] = e;
   148                 break;
   149               case Heap::IN_HEAP:
   150                 nd = d + _length[e] - _potential[v];
   151                 if (nd < heap[v]) {
   152                   heap.decrease(v, nd);
   153                   _pred[v] = e;
   154                 }
   155                 break;
   156               case Heap::POST_HEAP:
   157                 break;
   158               }
   159             }
   160           }
   161 
   162           // Traversing incoming edges
   163           for (InEdgeIt e(_graph, u); e != INVALID; ++e) {
   164             if (_flow[e] == 1) {
   165               v = _graph.source(e);
   166               switch(heap.state(v)) {
   167               case Heap::PRE_HEAP:
   168                 heap.push(v, d - _length[e] - _potential[v]);
   169                 _pred[v] = e;
   170                 break;
   171               case Heap::IN_HEAP:
   172                 nd = d - _length[e] - _potential[v];
   173                 if (nd < heap[v]) {
   174                   heap.decrease(v, nd);
   175                   _pred[v] = e;
   176                 }
   177                 break;
   178               case Heap::POST_HEAP:
   179                 break;
   180               }
   181             }
   182           }
   183         }
   184         if (heap.empty()) return false;
   185 
   186         // Updating potentials of processed nodes
   187         Length t_dist = heap.prio();
   188         for (int i = 0; i < int(_proc_nodes.size()); ++i)
   189           _potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
   190         return true;
   191       }
   192 
   193     }; //class ResidualDijkstra
   194 
   195   private:
   196 
   197     // The directed graph the algorithm runs on
   198     const Graph &_graph;
   199     // The length map
   200     const LengthMap &_length;
   201     
   202     // Edge map of the current flow
   203     FlowMap *_flow;
   204     bool _local_flow;
   205     // Node map of the current potentials
   206     PotentialMap *_potential;
   207     bool _local_potential;
   208 
   209     // The source node
   210     Node _source;
   211     // The target node
   212     Node _target;
   213 
   214     // Container to store the found paths
   215     std::vector< SimplePath<Graph> > paths;
   216     int _path_num;
   217 
   218     // The pred edge map
   219     PredMap _pred;
   220     // Implementation of the Dijkstra algorithm for finding augmenting
   221     // shortest paths in the residual network
   222     ResidualDijkstra *_dijkstra;
   223 
   224   public:
   225 
   226     /// \brief Constructor.
   227     ///
   228     /// Constructor.
   229     ///
   230     /// \param graph The directed graph the algorithm runs on.
   231     /// \param length The length (cost) values of the edges.
   232     /// \param s The source node.
   233     /// \param t The target node.
   234     Suurballe( const Graph &graph,
   235                const LengthMap &length,
   236                Node s, Node t ) :
   237       _graph(graph), _length(length), _flow(0), _local_flow(false),
   238       _potential(0), _local_potential(false), _source(s), _target(t),
   239       _pred(graph) {}
   240 
   241     /// Destructor.
   242     ~Suurballe() {
   243       if (_local_flow) delete _flow;
   244       if (_local_potential) delete _potential;
   245       delete _dijkstra;
   246     }
   247 
   248     /// \brief Sets the flow map.
   249     ///
   250     /// Sets the flow map.
   251     ///
   252     /// The found flow contains only 0 and 1 values. It is the union of
   253     /// the found edge-disjoint paths.
   254     ///
   255     /// \return \c (*this)
   256     Suurballe& flowMap(FlowMap &map) {
   257       if (_local_flow) {
   258         delete _flow;
   259         _local_flow = false;
   260       }
   261       _flow = &map;
   262       return *this;
   263     }
   264 
   265     /// \brief Sets the potential map.
   266     ///
   267     /// Sets the potential map.
   268     ///
   269     /// The potentials provide the dual solution of the underlying 
   270     /// minimum cost flow problem.
   271     ///
   272     /// \return \c (*this)
   273     Suurballe& potentialMap(PotentialMap &map) {
   274       if (_local_potential) {
   275         delete _potential;
   276         _local_potential = false;
   277       }
   278       _potential = &map;
   279       return *this;
   280     }
   281 
   282     /// \name Execution control
   283     /// The simplest way to execute the algorithm is to call the run()
   284     /// function.
   285     /// \n
   286     /// If you only need the flow that is the union of the found
   287     /// edge-disjoint paths, you may call init() and findFlow().
   288 
   289     /// @{
   290 
   291     /// \brief Runs the algorithm.
   292     ///
   293     /// Runs the algorithm.
   294     ///
   295     /// \param k The number of paths to be found.
   296     ///
   297     /// \return \c k if there are at least \c k edge-disjoint paths
   298     /// from \c s to \c t. Otherwise it returns the number of
   299     /// edge-disjoint paths found.
   300     ///
   301     /// \note Apart from the return value, <tt>s.run(k)</tt> is just a
   302     /// shortcut of the following code.
   303     /// \code
   304     ///   s.init();
   305     ///   s.findFlow(k);
   306     ///   s.findPaths();
   307     /// \endcode
   308     int run(int k = 2) {
   309       init();
   310       findFlow(k);
   311       findPaths();
   312       return _path_num;
   313     }
   314 
   315     /// \brief Initializes the algorithm.
   316     ///
   317     /// Initializes the algorithm.
   318     void init() {
   319       // Initializing maps
   320       if (!_flow) {
   321         _flow = new FlowMap(_graph);
   322         _local_flow = true;
   323       }
   324       if (!_potential) {
   325         _potential = new PotentialMap(_graph);
   326         _local_potential = true;
   327       }
   328       for (EdgeIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0;
   329       for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0;
   330 
   331       _dijkstra = new ResidualDijkstra( _graph, *_flow, _length, 
   332                                         *_potential, _pred,
   333                                         _source, _target );
   334     }
   335 
   336     /// \brief Executes the successive shortest path algorithm to find
   337     /// an optimal flow.
   338     ///
   339     /// Executes the successive shortest path algorithm to find a
   340     /// minimum cost flow, which is the union of \c k or less
   341     /// edge-disjoint paths.
   342     ///
   343     /// \return \c k if there are at least \c k edge-disjoint paths
   344     /// from \c s to \c t. Otherwise it returns the number of
   345     /// edge-disjoint paths found.
   346     ///
   347     /// \pre \ref init() must be called before using this function.
   348     int findFlow(int k = 2) {
   349       // Finding shortest paths
   350       _path_num = 0;
   351       while (_path_num < k) {
   352         // Running Dijkstra
   353         if (!_dijkstra->run()) break;
   354         ++_path_num;
   355 
   356         // Setting the flow along the found shortest path
   357         Node u = _target;
   358         Edge e;
   359         while ((e = _pred[u]) != INVALID) {
   360           if (u == _graph.target(e)) {
   361             (*_flow)[e] = 1;
   362             u = _graph.source(e);
   363           } else {
   364             (*_flow)[e] = 0;
   365             u = _graph.target(e);
   366           }
   367         }
   368       }
   369       return _path_num;
   370     }
   371     
   372     /// \brief Computes the paths from the flow.
   373     ///
   374     /// Computes the paths from the flow.
   375     ///
   376     /// \pre \ref init() and \ref findFlow() must be called before using
   377     /// this function.
   378     void findPaths() {
   379       // Creating the residual flow map (the union of the paths not
   380       // found so far)
   381       FlowMap res_flow(*_flow);
   382 
   383       paths.clear();
   384       paths.resize(_path_num);
   385       for (int i = 0; i < _path_num; ++i) {
   386         Node n = _source;
   387         while (n != _target) {
   388           OutEdgeIt e(_graph, n);
   389           for ( ; res_flow[e] == 0; ++e) ;
   390           n = _graph.target(e);
   391           paths[i].addBack(e);
   392           res_flow[e] = 0;
   393         }
   394       }
   395     }
   396 
   397     /// @}
   398 
   399     /// \name Query Functions
   400     /// The result of the algorithm can be obtained using these
   401     /// functions.
   402     /// \n The algorithm should be executed before using them.
   403 
   404     /// @{
   405 
   406     /// \brief Returns a const reference to the edge map storing the
   407     /// found flow.
   408     ///
   409     /// Returns a const reference to the edge map storing the flow that
   410     /// is the union of the found edge-disjoint paths.
   411     ///
   412     /// \pre \ref run() or findFlow() must be called before using this
   413     /// function.
   414     const FlowMap& flowMap() const {
   415       return *_flow;
   416     }
   417 
   418     /// \brief Returns a const reference to the node map storing the
   419     /// found potentials (the dual solution).
   420     ///
   421     /// Returns a const reference to the node map storing the found
   422     /// potentials that provide the dual solution of the underlying 
   423     /// minimum cost flow problem.
   424     ///
   425     /// \pre \ref run() or findFlow() must be called before using this
   426     /// function.
   427     const PotentialMap& potentialMap() const {
   428       return *_potential;
   429     }
   430 
   431     /// \brief Returns the flow on the given edge.
   432     ///
   433     /// Returns the flow on the given edge.
   434     /// It is \c 1 if the edge is involved in one of the found paths,
   435     /// otherwise it is \c 0.
   436     ///
   437     /// \pre \ref run() or findFlow() must be called before using this
   438     /// function.
   439     int flow(const Edge& edge) const {
   440       return (*_flow)[edge];
   441     }
   442 
   443     /// \brief Returns the potential of the given node.
   444     ///
   445     /// Returns the potential of the given node.
   446     ///
   447     /// \pre \ref run() or findFlow() must be called before using this
   448     /// function.
   449     Length potential(const Node& node) const {
   450       return (*_potential)[node];
   451     }
   452 
   453     /// \brief Returns the total length (cost) of the found paths (flow).
   454     ///
   455     /// Returns the total length (cost) of the found paths (flow).
   456     /// The complexity of the function is \f$ O(e) \f$.
   457     ///
   458     /// \pre \ref run() or findFlow() must be called before using this
   459     /// function.
   460     Length totalLength() const {
   461       Length c = 0;
   462       for (EdgeIt e(_graph); e != INVALID; ++e)
   463         c += (*_flow)[e] * _length[e];
   464       return c;
   465     }
   466 
   467     /// \brief Returns the number of the found paths.
   468     ///
   469     /// Returns the number of the found paths.
   470     ///
   471     /// \pre \ref run() or findFlow() must be called before using this
   472     /// function.
   473     int pathNum() const {
   474       return _path_num;
   475     }
   476 
   477     /// \brief Returns a const reference to the specified path.
   478     ///
   479     /// Returns a const reference to the specified path.
   480     ///
   481     /// \param i The function returns the \c i-th path.
   482     /// \c i must be between \c 0 and <tt>%pathNum()-1</tt>.
   483     ///
   484     /// \pre \ref run() or findPaths() must be called before using this
   485     /// function.
   486     Path path(int i) const {
   487       return paths[i];
   488     }
   489 
   490     /// @}
   491 
   492   }; //class Suurballe
   493 
   494   ///@}
   495 
   496 } //namespace lemon
   497 
   498 #endif //LEMON_SUURBALLE_H