3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2007
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #include <lemon/list_graph.h>
20 #include <lemon/graph_utils.h>
21 #include <lemon/random.h>
22 #include <lemon/dim2.h>
23 #include <lemon/bfs.h>
24 #include <lemon/counter.h>
25 #include <lemon/suurballe.h>
26 #include <lemon/graph_to_eps.h>
27 #include <lemon/graph_writer.h>
28 #include <lemon/arg_parser.h>
29 #include <lemon/euler.h>
32 #include <lemon/kruskal.h>
33 #include <lemon/time_measure.h>
35 using namespace lemon;
37 typedef dim2::Point<double> Point;
39 UGRAPH_TYPEDEFS(ListUGraph);
48 std::vector<Node> nodes;
49 ListUGraph::NodeMap<Point> coords(g);
54 for(UEdgeIt e(g);e!=INVALID;++e)
55 tlen+=sqrt((coords[g.source(e)]-coords[g.target(e)]).normSquare());
61 const double EPSILON=1e-8;
62 bool tsp_improve(Node u, Node v)
64 double luv=std::sqrt((coords[v]-coords[u]).normSquare());
69 for(IncEdgeIt e(g,v2);(n=g.runningNode(e))==u2;++e);
72 if(luv+std::sqrt((coords[v2]-coords[u2]).normSquare())-EPSILON>
73 std::sqrt((coords[u]-coords[u2]).normSquare())+
74 std::sqrt((coords[v]-coords[v2]).normSquare()))
76 g.erase(findUEdge(g,u,v));
77 g.erase(findUEdge(g,u2,v2));
87 bool tsp_improve(Node u)
89 for(IncEdgeIt e(g,u);e!=INVALID;++e)
90 if(tsp_improve(u,g.runningNode(e))) return true;
99 for(NodeIt n(g);n!=INVALID;++n)
100 if(tsp_improve(n)) b=true;
106 for(int i=0;i<N;i++) g.addEdge(nodes[i],nodes[(i+1)%N]);
115 Line(Point _a,Point _b) :a(_a),b(_b) {}
116 Line(Node _a,Node _b) : a(coords[_a]),b(coords[_b]) {}
117 Line(const Edge &e) : a(coords[g.source(e)]),b(coords[g.target(e)]) {}
118 Line(const UEdge &e) : a(coords[g.source(e)]),b(coords[g.target(e)]) {}
121 inline std::ostream& operator<<(std::ostream &os, const Line &l)
123 os << l.a << "->" << l.b;
127 bool cross(Line a, Line b)
129 Point ao=rot90(a.b-a.a);
130 Point bo=rot90(b.b-b.a);
131 return (ao*(b.a-a.a))*(ao*(b.b-a.a))<0 &&
132 (bo*(a.a-b.a))*(bo*(a.b-b.a))<0;
142 bool pedgeLess(Pedge a,Pedge b)
147 std::vector<UEdge> edges;
149 namespace _delaunay_bits {
152 int prev, curr, next;
154 Part(int p, int c, int n) : prev(p), curr(c), next(n) {}
157 inline std::ostream& operator<<(std::ostream& os, const Part& part) {
158 os << '(' << part.prev << ',' << part.curr << ',' << part.next << ')';
162 inline double circle_point(const Point& p, const Point& q, const Point& r) {
163 double a = p.x * (q.y - r.y) + q.x * (r.y - p.y) + r.x * (p.y - q.y);
164 if (a == 0) return std::numeric_limits<double>::quiet_NaN();
166 double d = (p.x * p.x + p.y * p.y) * (q.y - r.y) +
167 (q.x * q.x + q.y * q.y) * (r.y - p.y) +
168 (r.x * r.x + r.y * r.y) * (p.y - q.y);
170 double e = (p.x * p.x + p.y * p.y) * (q.x - r.x) +
171 (q.x * q.x + q.y * q.y) * (r.x - p.x) +
172 (r.x * r.x + r.y * r.y) * (p.x - q.x);
174 double f = (p.x * p.x + p.y * p.y) * (q.x * r.y - r.x * q.y) +
175 (q.x * q.x + q.y * q.y) * (r.x * p.y - p.x * r.y) +
176 (r.x * r.x + r.y * r.y) * (p.x * q.y - q.x * p.y);
178 return d / (2 * a) + sqrt((d * d + e * e) / (4 * a * a) + f / a);
181 inline bool circle_form(const Point& p, const Point& q, const Point& r) {
182 return rot90(q - p) * (r - q) < 0.0;
185 inline double intersection(const Point& p, const Point& q, double sx) {
186 const double epsilon = 1e-8;
188 if (p.x == q.x) return (p.y + q.y) / 2.0;
190 if (sx < p.x + epsilon) return p.y;
191 if (sx < q.x + epsilon) return q.y;
193 double a = q.x - p.x;
194 double b = (q.x - sx) * p.y - (p.x - sx) * q.y;
195 double d = (q.x - sx) * (p.x - sx) * (p - q).normSquare();
196 return (b - sqrt(d)) / a;
202 YLess(const std::vector<Point>& points, double& sweep)
203 : _points(points), _sweep(sweep) {}
205 bool operator()(const Part& l, const Part& r) const {
206 const double epsilon = 1e-8;
208 // std::cerr << l << " vs " << r << std::endl;
209 double lbx = l.prev != -1 ?
210 intersection(_points[l.prev], _points[l.curr], _sweep) :
211 - std::numeric_limits<double>::infinity();
212 double rbx = r.prev != -1 ?
213 intersection(_points[r.prev], _points[r.curr], _sweep) :
214 - std::numeric_limits<double>::infinity();
215 double lex = l.next != -1 ?
216 intersection(_points[l.curr], _points[l.next], _sweep) :
217 std::numeric_limits<double>::infinity();
218 double rex = r.next != -1 ?
219 intersection(_points[r.curr], _points[r.next], _sweep) :
220 std::numeric_limits<double>::infinity();
222 if (lbx > lex) std::swap(lbx, lex);
223 if (rbx > rex) std::swap(rbx, rex);
225 if (lex < epsilon + rex && lbx + epsilon < rex) return true;
226 if (rex < epsilon + lex && rbx + epsilon < lex) return false;
230 const std::vector<Point>& _points;
236 typedef std::multimap<double, BeachIt> SpikeHeap;
238 typedef std::multimap<Part, SpikeHeap::iterator, YLess> Beach;
243 BeachIt(Beach::iterator iter) : it(iter) {}
248 inline void delaunay() {
249 Counter cnt("Number of edges added: ");
251 using namespace _delaunay_bits;
253 typedef _delaunay_bits::Part Part;
254 typedef std::vector<std::pair<double, int> > SiteHeap;
257 std::vector<Point> points;
258 std::vector<Node> nodes;
260 for (NodeIt it(g); it != INVALID; ++it) {
262 points.push_back(coords[it]);
265 SiteHeap siteheap(points.size());
270 for (int i = 0; i < int(siteheap.size()); ++i) {
271 siteheap[i] = std::make_pair(points[i].x, i);
274 std::sort(siteheap.begin(), siteheap.end());
275 sweep = siteheap.front().first;
277 YLess yless(points, sweep);
282 std::set<std::pair<int, int> > edges;
284 beach.insert(std::make_pair(Part(-1, siteheap[0].second, -1),
288 while (siteindex < int(points.size()) || !spikeheap.empty()) {
290 SpikeHeap::iterator spit = spikeheap.begin();
292 if (siteindex < int(points.size()) &&
293 (spit == spikeheap.end() || siteheap[siteindex].first < spit->first)) {
294 int site = siteheap[siteindex].second;
295 sweep = siteheap[siteindex].first;
297 Beach::iterator bit = beach.upper_bound(Part(site, site, site));
299 if (bit->second != spikeheap.end()) {
300 spikeheap.erase(bit->second);
303 int prev = bit->first.prev;
304 int curr = bit->first.curr;
305 int next = bit->first.next;
309 SpikeHeap::iterator pit = spikeheap.end();
311 circle_form(points[prev], points[curr], points[site])) {
312 double x = circle_point(points[prev], points[curr], points[site]);
313 pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
315 beach.insert(std::make_pair(Part(prev, curr, site), pit));
317 beach.insert(std::make_pair(Part(prev, curr, site), pit));
320 beach.insert(std::make_pair(Part(curr, site, curr), spikeheap.end()));
322 SpikeHeap::iterator nit = spikeheap.end();
324 circle_form(points[site], points[curr],points[next])) {
325 double x = circle_point(points[site], points[curr], points[next]);
326 nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
328 beach.insert(std::make_pair(Part(site, curr, next), nit));
330 beach.insert(std::make_pair(Part(site, curr, next), nit));
337 Beach::iterator bit = spit->second.it;
339 int prev = bit->first.prev;
340 int curr = bit->first.curr;
341 int next = bit->first.next;
344 std::pair<int, int> edge;
347 std::make_pair(prev, curr) : std::make_pair(curr, prev);
349 if (edges.find(edge) == edges.end()) {
351 g.addEdge(nodes[prev], nodes[curr]);
356 std::make_pair(curr, next) : std::make_pair(next, curr);
358 if (edges.find(edge) == edges.end()) {
360 g.addEdge(nodes[curr], nodes[next]);
365 Beach::iterator pbit = bit; --pbit;
366 int ppv = pbit->first.prev;
367 Beach::iterator nbit = bit; ++nbit;
368 int nnt = nbit->first.next;
370 if (bit->second != spikeheap.end()) spikeheap.erase(bit->second);
371 if (pbit->second != spikeheap.end()) spikeheap.erase(pbit->second);
372 if (nbit->second != spikeheap.end()) spikeheap.erase(nbit->second);
378 SpikeHeap::iterator pit = spikeheap.end();
379 if (ppv != -1 && ppv != next &&
380 circle_form(points[ppv], points[prev], points[next])) {
381 double x = circle_point(points[ppv], points[prev], points[next]);
382 if (x < sweep) x = sweep;
383 pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
385 beach.insert(std::make_pair(Part(ppv, prev, next), pit));
387 beach.insert(std::make_pair(Part(ppv, prev, next), pit));
390 SpikeHeap::iterator nit = spikeheap.end();
391 if (nnt != -1 && prev != nnt &&
392 circle_form(points[prev], points[next], points[nnt])) {
393 double x = circle_point(points[prev], points[next], points[nnt]);
394 if (x < sweep) x = sweep;
395 nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
397 beach.insert(std::make_pair(Part(prev, next, nnt), nit));
399 beach.insert(std::make_pair(Part(prev, next, nnt), nit));
405 for (Beach::iterator it = beach.begin(); it != beach.end(); ++it) {
406 int curr = it->first.curr;
407 int next = it->first.next;
409 if (next == -1) continue;
411 std::pair<int, int> edge;
414 std::make_pair(curr, next) : std::make_pair(next, curr);
416 if (edges.find(edge) == edges.end()) {
418 g.addEdge(nodes[curr], nodes[next]);
426 Counter cnt("Number of edges removed: ");
427 Bfs<ListUGraph> bfs(g);
428 for(std::vector<UEdge>::reverse_iterator ei=edges.rbegin();
429 ei!=edges.rend();++ei)
431 Node a=g.source(*ei);
432 Node b=g.target(*ei);
435 if(bfs.predEdge(b)==INVALID || bfs.dist(b)>d)
443 Counter cnt("Number of edges removed: ");
444 for(std::vector<UEdge>::reverse_iterator ei=edges.rbegin();
445 ei!=edges.rend();++ei)
447 Node a=g.source(*ei);
448 Node b=g.target(*ei);
450 ConstMap<Edge,int> cegy(1);
451 Suurballe<ListUGraph,ConstMap<Edge,int> > sur(g,cegy,a,b);
453 if(k<2 || sur.totalLength()>d)
456 // else std::cout << "Remove edge " << g.id(a) << "-" << g.id(b) << '\n';
460 void sparseTriangle(int d)
462 Counter cnt("Number of edges added: ");
463 std::vector<Pedge> pedges;
464 for(NodeIt n(g);n!=INVALID;++n)
465 for(NodeIt m=++(NodeIt(n));m!=INVALID;++m)
470 p.len=(coords[m]-coords[n]).normSquare();
473 std::sort(pedges.begin(),pedges.end(),pedgeLess);
474 for(std::vector<Pedge>::iterator pi=pedges.begin();pi!=pedges.end();++pi)
476 Line li(pi->a,pi->b);
478 for(;e!=INVALID && !cross(e,li);++e) ;
481 ConstMap<Edge,int> cegy(1);
482 Suurballe<ListUGraph,ConstMap<Edge,int> >
483 sur(g,cegy,pi->a,pi->b);
485 if(k<2 || sur.totalLength()>d)
487 ne=g.addEdge(pi->a,pi->b);
495 template <typename UGraph, typename CoordMap>
496 class LengthSquareMap {
498 typedef typename UGraph::UEdge Key;
499 typedef typename CoordMap::Value::Value Value;
501 LengthSquareMap(const UGraph& ugraph, const CoordMap& coords)
502 : _ugraph(ugraph), _coords(coords) {}
504 Value operator[](const Key& key) const {
505 return (_coords[_ugraph.target(key)] -
506 _coords[_ugraph.source(key)]).normSquare();
511 const UGraph& _ugraph;
512 const CoordMap& _coords;
516 std::vector<Pedge> pedges;
518 std::cout << T.realTime() << "s: Creating delaunay triangulation...\n";
520 std::cout << T.realTime() << "s: Calculating spanning tree...\n";
521 LengthSquareMap<ListUGraph, ListUGraph::NodeMap<Point> > ls(g, coords);
522 ListUGraph::UEdgeMap<bool> tree(g);
523 kruskal(g, ls, tree);
524 std::cout << T.realTime() << "s: Removing non tree edges...\n";
525 std::vector<UEdge> remove;
526 for (UEdgeIt e(g); e != INVALID; ++e) {
527 if (!tree[e]) remove.push_back(e);
529 for(int i = 0; i < int(remove.size()); ++i) {
532 std::cout << T.realTime() << "s: Done\n";
537 std::cout << "Find a tree..." << std::endl;
541 std::cout << "Total edge length (tree) : " << totalLen() << std::endl;
543 std::cout << "Make it Euler..." << std::endl;
546 std::vector<Node> leafs;
547 for(NodeIt n(g);n!=INVALID;++n)
548 if(countIncEdges(g,n)%2==1) leafs.push_back(n);
550 // for(unsigned int i=0;i<leafs.size();i+=2)
551 // g.addEdge(leafs[i],leafs[i+1]);
553 std::vector<Pedge> pedges;
554 for(unsigned int i=0;i<leafs.size()-1;i++)
555 for(unsigned int j=i+1;j<leafs.size();j++)
562 p.len=(coords[m]-coords[n]).normSquare();
565 std::sort(pedges.begin(),pedges.end(),pedgeLess);
566 for(unsigned int i=0;i<pedges.size();i++)
567 if(countIncEdges(g,pedges[i].a)%2 &&
568 countIncEdges(g,pedges[i].b)%2)
569 g.addEdge(pedges[i].a,pedges[i].b);
572 for(NodeIt n(g);n!=INVALID;++n)
573 if(countIncEdges(g,n)%2 || countIncEdges(g,n)==0 )
574 std::cout << "GEBASZ!!!" << std::endl;
576 for(UEdgeIt e(g);e!=INVALID;++e)
577 if(g.source(e)==g.target(e))
578 std::cout << "LOOP GEBASZ!!!" << std::endl;
580 std::cout << "Number of edges : " << countUEdges(g) << std::endl;
582 std::cout << "Total edge length (euler) : " << totalLen() << std::endl;
584 ListUGraph::UEdgeMap<Edge> enext(g);
586 UEulerIt<ListUGraph> e(g);
589 // std::cout << "Tour edge: " << g.id(UEdge(e)) << std::endl;
590 for(++e;e!=INVALID;++e)
592 // std::cout << "Tour edge: " << g.id(UEdge(e)) << std::endl;
599 std::cout << "Creating a tour from that..." << std::endl;
601 int nnum = countNodes(g);
602 int ednum = countUEdges(g);
604 for(Edge p=enext[UEdgeIt(g)];ednum>nnum;p=enext[p])
606 // std::cout << "Checking edge " << g.id(p) << std::endl;
610 Node n1=g.oppositeNode(n2,e);
611 Node n3=g.oppositeNode(n2,f);
612 if(countIncEdges(g,n2)>2)
614 // std::cout << "Remove an Edge" << std::endl;
620 Edge ne=g.direct(g.addEdge(n1,n3),n1);
632 std::cout << "Total edge length (tour) : " << totalLen() << std::endl;
634 std::cout << "2-opt the tour..." << std::endl;
638 std::cout << "Total edge length (2-opt tour) : " << totalLen() << std::endl;
642 int main(int argc,const char **argv)
644 ArgParser ap(argc,argv);
647 bool disc_d, square_d, gauss_d;
648 // bool tsp_a,two_a,tree_a;
653 std::string ndist("disc");
654 ap.refOption("n", "Number of nodes (default is 100)", N)
655 .intOption("g", "Girth parameter (default is 10)", 10)
656 .refOption("cities", "Number of cities (default is 1)", num_of_cities)
657 .refOption("area", "Full relative area of the cities (default is 1)", area)
658 .refOption("disc", "Nodes are evenly distributed on a unit disc (default)",disc_d)
659 .optionGroup("dist", "disc")
660 .refOption("square", "Nodes are evenly distributed on a unit square", square_d)
661 .optionGroup("dist", "square")
663 "Nodes are located according to a two-dim gauss distribution",
665 .optionGroup("dist", "gauss")
666 // .mandatoryGroup("dist")
667 .onlyOneGroup("dist")
668 .boolOption("eps", "Also generate .eps output (prefix.eps)")
669 .boolOption("dir", "Directed graph is generated (each edges are replaced by two directed ones)")
670 .boolOption("2con", "Create a two connected planar graph")
671 .optionGroup("alg","2con")
672 .boolOption("tree", "Create a min. cost spanning tree")
673 .optionGroup("alg","tree")
674 .boolOption("tsp", "Create a TSP tour")
675 .optionGroup("alg","tsp")
676 .boolOption("tsp2", "Create a TSP tour (tree based)")
677 .optionGroup("alg","tsp2")
678 .boolOption("dela", "Delaunay triangulation graph")
679 .optionGroup("alg","dela")
681 .boolOption("rand", "Use time seed for random number generator")
682 .optionGroup("rand", "rand")
683 .intOption("seed", "Random seed", -1)
684 .optionGroup("rand", "seed")
685 .onlyOneGroup("rand")
686 .other("[prefix]","Prefix of the output files. Default is 'lgf-gen-out'")
691 std::cout << "Random number seed: " << seed << std::endl;
694 if (ap.given("seed")) {
695 int seed = ap["seed"];
696 std::cout << "Random number seed: " << seed << std::endl;
701 switch(ap.files().size())
704 prefix="lgf-gen-out";
707 prefix=ap.files()[0];
710 std::cerr << "\nAt most one prefix can be given\n\n";
715 std::vector<double> sizes;
716 std::vector<double> cum_sizes;
717 for(int s=0;s<num_of_cities;s++)
719 // sum_sizes+=rnd.exponential();
723 cum_sizes.push_back(sum_sizes);
726 for(int s=0;s<num_of_cities;s++)
728 Point center=(num_of_cities==1?Point(0,0):rnd.disc());
730 for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
733 coords[n]=center+rnd.gauss2()*area*
734 std::sqrt(sizes[s]/sum_sizes);
737 for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
740 coords[n]=center+Point(rnd()*2-1,rnd()*2-1)*area*
741 std::sqrt(sizes[s]/sum_sizes);
743 else if(disc_d || true)
744 for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
747 coords[n]=center+rnd.disc()*area*
748 std::sqrt(sizes[s]/sum_sizes);
752 // for (ListUGraph::NodeIt n(g); n != INVALID; ++n) {
753 // std::cerr << coords[n] << std::endl;
758 std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl;
762 std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl;
764 else if(ap["2con"]) {
765 std::cout << "Make triangles\n";
767 sparseTriangle(ap["g"]);
768 std::cout << "Make it sparser\n";
771 else if(ap["tree"]) {
774 else if(ap["dela"]) {
779 std::cout << "Number of nodes : " << countNodes(g) << std::endl;
780 std::cout << "Number of edges : " << countUEdges(g) << std::endl;
782 for(UEdgeIt e(g);e!=INVALID;++e)
783 tlen+=sqrt((coords[g.source(e)]-coords[g.target(e)]).normSquare());
784 std::cout << "Total edge length : " << tlen << std::endl;
787 graphToEps(g,prefix+".eps").
788 scale(600).nodeScale(.2).edgeWidthScale(.001).preScale(false).
789 coords(coords).run();
792 GraphWriter<ListUGraph>(prefix+".lgf",g).
793 writeNodeMap("coordinates_x",scaleMap(xMap(coords),600)).
794 writeNodeMap("coordinates_y",scaleMap(yMap(coords),600)).
796 else UGraphWriter<ListUGraph>(prefix+".lgf",g).
797 writeNodeMap("coordinates_x",scaleMap(xMap(coords),600)).
798 writeNodeMap("coordinates_y",scaleMap(yMap(coords),600)).