src/hugo/fib_heap.h
author marci
Mon, 10 May 2004 16:32:21 +0000
changeset 598 1faa5bec1717
parent 491 4804c967543d
child 857 4e948fd205f7
permissions -rw-r--r--
complete graphs
     1 // -*- C++ -*-
     2 
     3 #ifndef HUGO_FIB_HEAP_H
     4 #define HUGO_FIB_HEAP_H
     5 
     6 ///\ingroup auxdat
     7 ///\file
     8 ///\brief Fibonacci Heap implementation.
     9 
    10 #include <vector>
    11 #include <functional>
    12 #include <math.h>
    13 
    14 namespace hugo {
    15   
    16   /// \addtogroup auxdat
    17   /// @{
    18 
    19   /// An implementation of the Fibonacci Heap.
    20 
    21   /**
    22      This class implements the \e Fibonacci \e heap data structure. A \e heap
    23      is a data structure for storing items with specified values called \e
    24      priorities, such that finding the item with minimum priority with respect
    25      to \e Compare is efficient. In a heap one can change the priority of an
    26      item, add or erase an item, etc.
    27 
    28      The methods \ref increase and \ref erase are not efficient in a Fibonacci
    29      heap. In case of many calls to these operations, it is better to use a
    30      \e binary \e heap.
    31      
    32      \param Item The type of the items to be stored.  
    33      \param Prio The type of the priority of the items.
    34      \param ItemIntMap A read and writable Item int map, for the usage of
    35      the heap.
    36      \param Compare A class for the comparison of the priorities. The
    37      default is \c std::less<Prio>.
    38 
    39   */
    40 
    41 #ifdef DOXYGEN
    42   template <typename Item, 
    43 	    typename Prio, 
    44 	    typename ItemIntMap, 
    45 	    typename Compare>
    46 #else
    47   template <typename Item, 
    48 	    typename Prio, 
    49 	    typename ItemIntMap, 
    50 	    typename Compare = std::less<Prio> >
    51 #endif
    52   class FibHeap {
    53   public:     
    54     typedef Prio PrioType;
    55     
    56   private:
    57     class store;
    58     
    59     std::vector<store> container;
    60     int minimum;
    61     ItemIntMap &iimap;
    62     Compare comp;
    63     int num_items;
    64     
    65   public:
    66     enum state_enum {
    67       IN_HEAP = 0,
    68       PRE_HEAP = -1,
    69       POST_HEAP = -2
    70     };
    71     
    72     FibHeap(ItemIntMap &_iimap) : minimum(0), iimap(_iimap), num_items() {} 
    73     FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(0), 
    74       iimap(_iimap), comp(_comp), num_items() {}
    75     
    76     ///The number of items stored in the heap.
    77 
    78     /**
    79        Returns the number of items stored in the heap.
    80     */
    81     int size() const { return num_items; }
    82 
    83     ///Checks if the heap stores no items.
    84     
    85     /**
    86        Returns \c true iff the heap stores no items.
    87     */
    88     bool empty() const { return num_items==0; }
    89 
    90     ///\c item gets to the heap with priority \c value independently if \c item was already there.
    91 
    92     /**
    93        This method calls \ref push(\c item, \c value) if \c item is not
    94        stored in the heap and it calls \ref decrease(\c item, \c value) or
    95        \ref increase(\c item, \c value) otherwise.
    96     */
    97     void set (Item const item, PrioType const value); 
    98     
    99     ///Adds \c item to the heap with priority \c value. 
   100     
   101     /**
   102        Adds \c item to the heap with priority \c value. 
   103        \pre \c item must not be stored in the heap. 
   104     */
   105     void push (Item const item, PrioType const value);
   106     
   107     
   108     ///Returns the item having the minimum priority w.r.t.  Compare.
   109     
   110     /**
   111        This method returns the item having the minimum priority w.r.t.  Compare. 
   112        \pre The heap must be nonempty.
   113     */
   114     Item top() const { return container[minimum].name; }
   115     
   116 
   117     ///Returns the minimum priority w.r.t.  Compare.
   118 
   119     /**
   120        It returns the minimum priority w.r.t.  Compare.
   121        \pre The heap must be nonempty.
   122     */
   123     PrioType prio() const { return container[minimum].prio; }
   124     
   125 
   126     ///Returns the priority of \c item.
   127 
   128     /**
   129        It returns the priority of \c item.
   130        \pre \c item must be in the heap.
   131     */
   132     PrioType& operator[](const Item& item) { 
   133       return container[iimap[item]].prio; 
   134     }
   135     
   136     ///Returns the priority of \c item.
   137     
   138     /**
   139        It returns the priority of \c item.
   140        \pre \c item must be in the heap.
   141     */
   142     const PrioType& operator[](const Item& item) const { 
   143       return container[iimap[item]].prio; 
   144     }
   145 
   146 
   147     ///Deletes the item with minimum priority w.r.t.  Compare.
   148 
   149     /**
   150     This method deletes the item with minimum priority w.r.t. 
   151     Compare from the heap.
   152     \pre The heap must be non-empty.
   153     */
   154     void pop();
   155 
   156     ///Deletes \c item from the heap.
   157 
   158     /**
   159        This method deletes \c item from the heap, if \c item was already
   160        stored in the heap. It is quite inefficient in Fibonacci heaps.
   161     */
   162     void erase (const Item& item); 
   163 
   164     ///Decreases the priority of \c item to \c value.
   165 
   166     /**
   167        This method decreases the priority of \c item to \c value.
   168        \pre \c item must be stored in the heap with priority at least \c
   169        value w.r.t.  Compare.
   170     */
   171     void decrease (Item item, PrioType const value); 
   172 
   173 
   174     ///Increases the priority of \c item to \c value.
   175 
   176     /**
   177        This method sets the priority of \c item to \c value. Though
   178        there is no precondition on the priority of \c item, this
   179        method should be used only if there is a need to really \e increase
   180        (w.r.t.  Compare) the priority of \c item, because this
   181        method is inefficient.
   182     */
   183     void increase (Item item, PrioType const value) {
   184       erase(item);
   185       push(item, value);
   186     }
   187 
   188 
   189     ///Tells if \c item is in, was already in, or has never been in the heap.
   190 
   191     /**
   192        This method returns PRE_HEAP if \c item has never been in the
   193        heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   194        otherwise. In the latter case it is possible that \c item will
   195        get back to the heap again.
   196     */
   197     state_enum state(const Item &item) const {
   198       int i=iimap[item];
   199       if( i>=0 ) {
   200 	if ( container[i].in ) i=0;
   201 	else i=-2; 
   202       }
   203       return state_enum(i);
   204     }    
   205     
   206   private:
   207     
   208     void balance();
   209     void makeroot(int c);
   210     void cut(int a, int b);
   211     void cascade(int a);
   212     void fuse(int a, int b);
   213     void unlace(int a);
   214 
   215 
   216     class store {
   217       friend class FibHeap;
   218       
   219       Item name;
   220       int parent;
   221       int left_neighbor;
   222       int right_neighbor;
   223       int child;
   224       int degree;  
   225       bool marked;
   226       bool in;
   227       PrioType prio;
   228       
   229       store() : parent(-1), child(-1), degree(), marked(false), in(true) {} 
   230     };
   231   };    
   232  
   233 
   234 
   235     // **********************************************************************
   236     //  IMPLEMENTATIONS
   237     // **********************************************************************
   238     
   239   template <typename Item, typename Prio, typename ItemIntMap, 
   240     typename Compare>
   241   void FibHeap<Item, Prio, ItemIntMap, Compare>::set 
   242   (Item const item, PrioType const value) 
   243   {
   244     int i=iimap[item];
   245     if ( i >= 0 && container[i].in ) {
   246       if ( comp(value, container[i].prio) ) decrease(item, value); 
   247       if ( comp(container[i].prio, value) ) increase(item, value); 
   248     } else push(item, value);
   249   }
   250     
   251   template <typename Item, typename Prio, typename ItemIntMap, 
   252     typename Compare>
   253   void FibHeap<Item, Prio, ItemIntMap, Compare>::push 
   254   (Item const item, PrioType const value) {
   255       int i=iimap[item];      
   256       if ( i < 0 ) {
   257 	int s=container.size();
   258 	iimap.set( item, s );	
   259 	store st;
   260 	st.name=item;
   261 	container.push_back(st);
   262 	i=s;
   263       } else {
   264 	container[i].parent=container[i].child=-1;
   265 	container[i].degree=0;
   266 	container[i].in=true;
   267 	container[i].marked=false;
   268       }
   269 
   270       if ( num_items ) {
   271 	container[container[minimum].right_neighbor].left_neighbor=i;
   272 	container[i].right_neighbor=container[minimum].right_neighbor;
   273 	container[minimum].right_neighbor=i;
   274 	container[i].left_neighbor=minimum;
   275 	if ( comp( value, container[minimum].prio) ) minimum=i; 
   276       } else {
   277 	container[i].right_neighbor=container[i].left_neighbor=i;
   278 	minimum=i;	
   279       }
   280       container[i].prio=value;
   281       ++num_items;
   282     }
   283     
   284   template <typename Item, typename Prio, typename ItemIntMap, 
   285     typename Compare>
   286   void FibHeap<Item, Prio, ItemIntMap, Compare>::pop() {
   287       /*The first case is that there are only one root.*/
   288       if ( container[minimum].left_neighbor==minimum ) {
   289 	container[minimum].in=false;
   290 	if ( container[minimum].degree!=0 ) { 
   291 	  makeroot(container[minimum].child);
   292 	  minimum=container[minimum].child;
   293 	  balance();
   294 	}
   295       } else {
   296 	int right=container[minimum].right_neighbor;
   297 	unlace(minimum);
   298 	container[minimum].in=false;
   299 	if ( container[minimum].degree > 0 ) {
   300 	  int left=container[minimum].left_neighbor;
   301 	  int child=container[minimum].child;
   302 	  int last_child=container[child].left_neighbor;
   303 	
   304 	  makeroot(child);
   305 	  
   306 	  container[left].right_neighbor=child;
   307 	  container[child].left_neighbor=left;
   308 	  container[right].left_neighbor=last_child;
   309 	  container[last_child].right_neighbor=right;
   310 	}
   311 	minimum=right;
   312 	balance();
   313       } // the case where there are more roots
   314       --num_items;   
   315     }
   316 
   317 
   318   template <typename Item, typename Prio, typename ItemIntMap, 
   319     typename Compare>
   320   void FibHeap<Item, Prio, ItemIntMap, Compare>::erase 
   321   (const Item& item) {
   322       int i=iimap[item];
   323       
   324       if ( i >= 0 && container[i].in ) { 	
   325 	if ( container[i].parent!=-1 ) {
   326 	  int p=container[i].parent;
   327 	  cut(i,p);	    
   328 	  cascade(p);
   329 	}
   330 	minimum=i;     //As if its prio would be -infinity
   331 	pop();
   332       }
   333   }
   334     
   335   template <typename Item, typename Prio, typename ItemIntMap, 
   336     typename Compare>
   337   void FibHeap<Item, Prio, ItemIntMap, Compare>::decrease 
   338   (Item item, PrioType const value) {
   339       int i=iimap[item];
   340       container[i].prio=value;
   341       int p=container[i].parent;
   342       
   343       if ( p!=-1 && comp(value, container[p].prio) ) {
   344 	cut(i,p);	    
   345 	cascade(p);
   346       }      
   347       if ( comp(value, container[minimum].prio) ) minimum=i; 
   348   }
   349  
   350 
   351   template <typename Item, typename Prio, typename ItemIntMap, 
   352     typename Compare>
   353   void FibHeap<Item, Prio, ItemIntMap, Compare>::balance() {      
   354 
   355     int maxdeg=int( floor( 2.08*log(double(container.size()))))+1;
   356   
   357     std::vector<int> A(maxdeg,-1); 
   358     
   359     /*
   360      *Recall that now minimum does not point to the minimum prio element.
   361      *We set minimum to this during balance().
   362      */
   363     int anchor=container[minimum].left_neighbor; 
   364     int next=minimum; 
   365     bool end=false; 
   366     	
   367        do {
   368 	int active=next;
   369 	if ( anchor==active ) end=true;
   370 	int d=container[active].degree;
   371 	next=container[active].right_neighbor;
   372 
   373 	while (A[d]!=-1) {	  
   374 	  if( comp(container[active].prio, container[A[d]].prio) ) {
   375 	    fuse(active,A[d]); 
   376 	  } else { 
   377 	    fuse(A[d],active);
   378 	    active=A[d];
   379 	  } 
   380 	  A[d]=-1;
   381 	  ++d;
   382 	}	
   383 	A[d]=active;
   384        } while ( !end );
   385 
   386 
   387        while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
   388        int s=minimum;
   389        int m=minimum;
   390        do {  
   391 	 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
   392 	 s=container[s].right_neighbor;
   393        } while ( s != m );
   394     }
   395 
   396   template <typename Item, typename Prio, typename ItemIntMap, 
   397     typename Compare>
   398   void FibHeap<Item, Prio, ItemIntMap, Compare>::makeroot 
   399   (int c) {
   400       int s=c;
   401       do {  
   402 	container[s].parent=-1;
   403 	s=container[s].right_neighbor;
   404       } while ( s != c );
   405     }
   406   
   407   
   408   template <typename Item, typename Prio, typename ItemIntMap, 
   409     typename Compare>
   410   void FibHeap<Item, Prio, ItemIntMap, Compare>::cut 
   411   (int a, int b) {    
   412     /*
   413      *Replacing a from the children of b.
   414      */
   415     --container[b].degree;
   416     
   417     if ( container[b].degree !=0 ) {
   418       int child=container[b].child;
   419       if ( child==a ) 
   420 	container[b].child=container[child].right_neighbor;
   421       unlace(a);
   422     }
   423     
   424     
   425     /*Lacing a to the roots.*/
   426     int right=container[minimum].right_neighbor;
   427     container[minimum].right_neighbor=a;
   428     container[a].left_neighbor=minimum;
   429     container[a].right_neighbor=right;
   430     container[right].left_neighbor=a;
   431     
   432     container[a].parent=-1;
   433     container[a].marked=false;
   434   }
   435   
   436 
   437   template <typename Item, typename Prio, typename ItemIntMap, 
   438     typename Compare>
   439   void FibHeap<Item, Prio, ItemIntMap, Compare>::cascade 
   440   (int a) 
   441     {
   442       if ( container[a].parent!=-1 ) {
   443 	int p=container[a].parent;
   444 	
   445 	if ( container[a].marked==false ) container[a].marked=true;
   446 	else {
   447 	  cut(a,p);
   448 	  cascade(p);
   449 	}
   450       }
   451     }
   452 
   453 
   454   template <typename Item, typename Prio, typename ItemIntMap, 
   455     typename Compare>
   456   void FibHeap<Item, Prio, ItemIntMap, Compare>::fuse 
   457   (int a, int b) {
   458       unlace(b);
   459       
   460       /*Lacing b under a.*/
   461       container[b].parent=a;
   462 
   463       if (container[a].degree==0) {
   464 	container[b].left_neighbor=b;
   465 	container[b].right_neighbor=b;
   466 	container[a].child=b;	
   467       } else {
   468 	int child=container[a].child;
   469 	int last_child=container[child].left_neighbor;
   470 	container[child].left_neighbor=b;
   471 	container[b].right_neighbor=child;
   472 	container[last_child].right_neighbor=b;
   473 	container[b].left_neighbor=last_child;
   474       }
   475 
   476       ++container[a].degree;
   477       
   478       container[b].marked=false;
   479     }
   480 
   481   
   482   /*
   483    *It is invoked only if a has siblings.
   484    */
   485   template <typename Item, typename Prio, typename ItemIntMap, 
   486     typename Compare>
   487   void FibHeap<Item, Prio, ItemIntMap, Compare>::unlace 
   488   (int a) {      
   489       int leftn=container[a].left_neighbor;
   490       int rightn=container[a].right_neighbor;
   491       container[leftn].right_neighbor=rightn;
   492       container[rightn].left_neighbor=leftn;
   493   }
   494   
   495   ///@}
   496 
   497 } //namespace hugo
   498 
   499 #endif //HUGO_FIB_HEAP_H
   500