lemon/kruskal.h
author deba
Thu, 22 Mar 2007 15:40:50 +0000
changeset 2413 21eb3ccdc3df
parent 2386 81b47fc5c444
child 2424 95cd24940d00
permissions -rw-r--r--
Right dimacs format for min cost flows
Bug fixes in tolerance and min_mean_cycle
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_KRUSKAL_H
    20 #define LEMON_KRUSKAL_H
    21 
    22 #include <algorithm>
    23 #include <vector>
    24 #include <lemon/unionfind.h>
    25 #include <lemon/bits/utility.h>
    26 #include <lemon/bits/traits.h>
    27 
    28 ///\ingroup spantree
    29 ///\file
    30 ///\brief Kruskal's algorithm to compute a minimum cost tree
    31 ///
    32 ///Kruskal's algorithm to compute a minimum cost tree.
    33 ///
    34 
    35 namespace lemon {
    36 
    37   /// \addtogroup spantree
    38   /// @{
    39 
    40   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    41 
    42   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    43   /// Due to hard C++ hacking, it accepts various input and output types.
    44   ///
    45   /// \param g The graph the algorithm runs on.
    46   /// It can be either \ref concepts::Graph "directed" or 
    47   /// \ref concepts::UGraph "undirected".
    48   /// If the graph is directed, the algorithm consider it to be 
    49   /// undirected by disregarding the direction of the edges.
    50   ///
    51   /// \param in This object is used to describe the edge costs. It can be one
    52   /// of the following choices.
    53   /// - An STL compatible 'Forward Container'
    54   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    55   /// where \c X is the type of the costs. The pairs indicates the edges along
    56   /// with the assigned cost. <em>They must be in a
    57   /// cost-ascending order.</em>
    58   /// - Any readable Edge map. The values of the map indicate the edge costs.
    59   ///
    60   /// \retval out Here we also have a choise.
    61   /// - It can be a writable \c bool edge map. 
    62   /// After running the algorithm
    63   /// this will contain the found minimum cost spanning tree: the value of an
    64   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    65   /// be set to \c false. The value of each edge will be set exactly once.
    66   /// - It can also be an iteraror of an STL Container with
    67   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
    68   /// The algorithm copies the elements of the found tree into this sequence.
    69   /// For example, if we know that the spanning tree of the graph \c g has
    70   /// say 53 edges, then
    71   /// we can put its edges into an STL vector \c tree with a code like this.
    72   ///\code
    73   /// std::vector<Edge> tree(53);
    74   /// kruskal(g,cost,tree.begin());
    75   ///\endcode
    76   /// Or if we don't know in advance the size of the tree, we can write this.
    77   ///\code
    78   /// std::vector<Edge> tree;
    79   /// kruskal(g,cost,std::back_inserter(tree));
    80   ///\endcode
    81   ///
    82   /// \return The cost of the found tree.
    83   ///
    84   /// \warning If kruskal runs on an
    85   /// \ref lemon::concepts::UGraph "undirected graph", be sure that the
    86   /// map storing the tree is also undirected
    87   /// (e.g. ListUGraph::UEdgeMap<bool>, otherwise the values of the
    88   /// half of the edges will not be set.
    89   ///
    90 
    91 #ifdef DOXYGEN
    92   template <class GR, class IN, class OUT>
    93   CostType
    94   kruskal(GR const& g, IN const& in, 
    95 	  OUT& out)
    96 #else
    97   template <class GR, class IN, class OUT>
    98   typename IN::value_type::second_type
    99   kruskal(GR const& g, IN const& in, 
   100 	  OUT& out,
   101 // 	  typename IN::value_type::first_type = typename GR::Edge()
   102 // 	  ,typename OUT::Key = OUT::Key()
   103 // 	  //,typename OUT::Key = typename GR::Edge()
   104 	  const typename IN::value_type::first_type * = 
   105 	  reinterpret_cast<const typename IN::value_type::first_type*>(0),
   106 	  const typename OUT::Key * = 
   107           reinterpret_cast<const typename OUT::Key*>(0)
   108 	  )
   109 #endif
   110   {
   111     typedef typename IN::value_type::second_type EdgeCost;
   112     typedef typename GR::template NodeMap<int> NodeIntMap;
   113     typedef typename GR::Node Node;
   114 
   115     NodeIntMap comp(g);
   116     UnionFind<NodeIntMap> uf(comp);
   117     for (typename GR::NodeIt it(g); it != INVALID; ++it) {
   118       uf.insert(it);
   119     }
   120       
   121     EdgeCost tot_cost = 0;
   122     for (typename IN::const_iterator p = in.begin(); 
   123 	 p!=in.end(); ++p ) {
   124       if ( uf.join(g.target((*p).first),
   125 		   g.source((*p).first)) ) {
   126 	out.set((*p).first, true);
   127 	tot_cost += (*p).second;
   128       }
   129       else {
   130 	out.set((*p).first, false);
   131       }
   132     }
   133     return tot_cost;
   134   }
   135 
   136  
   137   /// @}
   138 
   139   
   140   /* A work-around for running Kruskal with const-reference bool maps... */
   141 
   142   /// Helper class for calling kruskal with "constant" output map.
   143 
   144   /// Helper class for calling kruskal with output maps constructed
   145   /// on-the-fly.
   146   ///
   147   /// A typical examle is the following call:
   148   /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
   149   /// Here, the third argument is a temporary object (which wraps around an
   150   /// iterator with a writable bool map interface), and thus by rules of C++
   151   /// is a \c const object. To enable call like this exist this class and
   152   /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
   153   /// third argument.
   154   template<class Map>
   155   class NonConstMapWr {
   156     const Map &m;
   157   public:
   158     typedef typename Map::Key Key;
   159     typedef typename Map::Value Value;
   160 
   161     NonConstMapWr(const Map &_m) : m(_m) {}
   162 
   163     template<class Key>
   164     void set(Key const& k, Value const &v) const { m.set(k,v); }
   165   };
   166 
   167   template <class GR, class IN, class OUT>
   168   inline
   169   typename IN::value_type::second_type
   170   kruskal(GR const& g, IN const& edges, OUT const& out_map,
   171 // 	  typename IN::value_type::first_type = typename GR::Edge(),
   172 // 	  typename OUT::Key = GR::Edge()
   173 	  const typename IN::value_type::first_type * = 
   174 	  reinterpret_cast<const typename IN::value_type::first_type*>(0),
   175 	  const typename OUT::Key * = 
   176           reinterpret_cast<const typename OUT::Key*>(0)
   177 	  )
   178   {
   179     NonConstMapWr<OUT> map_wr(out_map);
   180     return kruskal(g, edges, map_wr);
   181   }  
   182 
   183   /* ** ** Input-objects ** ** */
   184 
   185   /// Kruskal's input source.
   186  
   187   /// Kruskal's input source.
   188   ///
   189   /// In most cases you possibly want to use the \ref kruskal() instead.
   190   ///
   191   /// \sa makeKruskalMapInput()
   192   ///
   193   ///\param GR The type of the graph the algorithm runs on.
   194   ///\param Map An edge map containing the cost of the edges.
   195   ///\par
   196   ///The cost type can be any type satisfying
   197   ///the STL 'LessThan comparable'
   198   ///concept if it also has an operator+() implemented. (It is necessary for
   199   ///computing the total cost of the tree).
   200   ///
   201   template<class GR, class Map>
   202   class KruskalMapInput
   203     : public std::vector< std::pair<typename GR::Edge,
   204 				    typename Map::Value> > {
   205     
   206   public:
   207     typedef std::vector< std::pair<typename GR::Edge,
   208 				   typename Map::Value> > Parent;
   209     typedef typename Parent::value_type value_type;
   210 
   211   private:
   212     class comparePair {
   213     public:
   214       bool operator()(const value_type& a,
   215 		      const value_type& b) {
   216 	return a.second < b.second;
   217       }
   218     };
   219 
   220     template<class _GR>
   221     typename enable_if<UndirectedTagIndicator<_GR>,void>::type
   222     fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0) 
   223     {
   224       for(typename GR::UEdgeIt e(g);e!=INVALID;++e) 
   225 	push_back(value_type(g.direct(e, true), m[e]));
   226     }
   227 
   228     template<class _GR>
   229     typename disable_if<UndirectedTagIndicator<_GR>,void>::type
   230     fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1) 
   231     {
   232       for(typename GR::EdgeIt e(g);e!=INVALID;++e) 
   233 	push_back(value_type(e, m[e]));
   234     }
   235     
   236     
   237   public:
   238 
   239     void sort() {
   240       std::sort(this->begin(), this->end(), comparePair());
   241     }
   242 
   243     KruskalMapInput(GR const& g, Map const& m) {
   244       fillWithEdges(g,m); 
   245       sort();
   246     }
   247   };
   248 
   249   /// Creates a KruskalMapInput object for \ref kruskal()
   250 
   251   /// It makes easier to use 
   252   /// \ref KruskalMapInput by making it unnecessary 
   253   /// to explicitly give the type of the parameters.
   254   ///
   255   /// In most cases you possibly
   256   /// want to use \ref kruskal() instead.
   257   ///
   258   ///\param g The type of the graph the algorithm runs on.
   259   ///\param m An edge map containing the cost of the edges.
   260   ///\par
   261   ///The cost type can be any type satisfying the
   262   ///STL 'LessThan Comparable'
   263   ///concept if it also has an operator+() implemented. (It is necessary for
   264   ///computing the total cost of the tree).
   265   ///
   266   ///\return An appropriate input source for \ref kruskal().
   267   ///
   268   template<class GR, class Map>
   269   inline
   270   KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
   271   {
   272     return KruskalMapInput<GR,Map>(g,m);
   273   }
   274   
   275   
   276 
   277   /* ** ** Output-objects: simple writable bool maps ** ** */
   278   
   279 
   280 
   281   /// A writable bool-map that makes a sequence of "true" keys
   282 
   283   /// A writable bool-map that creates a sequence out of keys that receives
   284   /// the value "true".
   285   ///
   286   /// \sa makeKruskalSequenceOutput()
   287   ///
   288   /// Very often, when looking for a min cost spanning tree, we want as
   289   /// output a container containing the edges of the found tree. For this
   290   /// purpose exist this class that wraps around an STL iterator with a
   291   /// writable bool map interface. When a key gets value "true" this key
   292   /// is added to sequence pointed by the iterator.
   293   ///
   294   /// A typical usage:
   295   ///\code
   296   /// std::vector<Graph::Edge> v;
   297   /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
   298   ///\endcode
   299   /// 
   300   /// For the most common case, when the input is given by a simple edge
   301   /// map and the output is a sequence of the tree edges, a special
   302   /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
   303   ///
   304   /// \warning Not a regular property map, as it doesn't know its Key
   305 
   306   template<class Iterator>
   307   class KruskalSequenceOutput {
   308     mutable Iterator it;
   309 
   310   public:
   311     typedef typename std::iterator_traits<Iterator>::value_type Key;
   312     typedef bool Value;
   313 
   314     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   315 
   316     template<typename Key>
   317     void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
   318   };
   319 
   320   template<class Iterator>
   321   inline
   322   KruskalSequenceOutput<Iterator>
   323   makeKruskalSequenceOutput(Iterator it) {
   324     return KruskalSequenceOutput<Iterator>(it);
   325   }
   326 
   327 
   328 
   329   /* ** ** Wrapper funtions ** ** */
   330 
   331 //   \brief Wrapper function to kruskal().
   332 //   Input is from an edge map, output is a plain bool map.
   333 //  
   334 //   Wrapper function to kruskal().
   335 //   Input is from an edge map, output is a plain bool map.
   336 //  
   337 //   \param g The type of the graph the algorithm runs on.
   338 //   \param in An edge map containing the cost of the edges.
   339 //   \par
   340 //   The cost type can be any type satisfying the
   341 //   STL 'LessThan Comparable'
   342 //   concept if it also has an operator+() implemented. (It is necessary for
   343 //   computing the total cost of the tree).
   344 //  
   345 //   \retval out This must be a writable \c bool edge map.
   346 //   After running the algorithm
   347 //   this will contain the found minimum cost spanning tree: the value of an
   348 //   edge will be set to \c true if it belongs to the tree, otherwise it will
   349 //   be set to \c false. The value of each edge will be set exactly once.
   350 //  
   351 //   \return The cost of the found tree.
   352 
   353   template <class GR, class IN, class RET>
   354   inline
   355   typename IN::Value
   356   kruskal(GR const& g,
   357 	  IN const& in,
   358 	  RET &out,
   359 	  //	  typename IN::Key = typename GR::Edge(),
   360 	  //typename IN::Key = typename IN::Key (),
   361 	  //	  typename RET::Key = typename GR::Edge()
   362 	  const typename IN::Key * = 
   363           reinterpret_cast<const typename IN::Key*>(0),
   364 	  const typename RET::Key * = 
   365           reinterpret_cast<const typename RET::Key*>(0)
   366 	  )
   367   {
   368     return kruskal(g,
   369 		   KruskalMapInput<GR,IN>(g,in),
   370 		   out);
   371   }
   372 
   373 //   \brief Wrapper function to kruskal().
   374 //   Input is from an edge map, output is an STL Sequence.
   375 //  
   376 //   Wrapper function to kruskal().
   377 //   Input is from an edge map, output is an STL Sequence.
   378 //  
   379 //   \param g The type of the graph the algorithm runs on.
   380 //   \param in An edge map containing the cost of the edges.
   381 //   \par
   382 //   The cost type can be any type satisfying the
   383 //   STL 'LessThan Comparable'
   384 //   concept if it also has an operator+() implemented. (It is necessary for
   385 //   computing the total cost of the tree).
   386 //  
   387 //   \retval out This must be an iteraror of an STL Container with
   388 //   <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   389 //   The algorithm copies the elements of the found tree into this sequence.
   390 //   For example, if we know that the spanning tree of the graph \c g has
   391 //   say 53 edges, then
   392 //   we can put its edges into an STL vector \c tree with a code like this.
   393 //\code
   394 //   std::vector<Edge> tree(53);
   395 //   kruskal(g,cost,tree.begin());
   396 //\endcode
   397 //   Or if we don't know in advance the size of the tree, we can write this.
   398 //\code
   399 //   std::vector<Edge> tree;
   400 //   kruskal(g,cost,std::back_inserter(tree));
   401 //\endcode
   402 //  
   403 //   \return The cost of the found tree.
   404 //  
   405 //   \bug its name does not follow the coding style.
   406 
   407   template <class GR, class IN, class RET>
   408   inline
   409   typename IN::Value
   410   kruskal(const GR& g,
   411 	  const IN& in,
   412 	  RET out,
   413 	  const typename RET::value_type * = 
   414 	  reinterpret_cast<const typename RET::value_type*>(0)
   415 	  )
   416   {
   417     KruskalSequenceOutput<RET> _out(out);
   418     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   419   }
   420  
   421   template <class GR, class IN, class RET>
   422   inline
   423   typename IN::Value
   424   kruskal(const GR& g,
   425 	  const IN& in,
   426 	  RET *out
   427 	  )
   428   {
   429     KruskalSequenceOutput<RET*> _out(out);
   430     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   431   }
   432  
   433   /// @}
   434 
   435 } //namespace lemon
   436 
   437 #endif //LEMON_KRUSKAL_H