lemon/johnson.h
author deba
Fri, 14 Oct 2005 11:00:40 +0000
changeset 1725 22752dd6c693
parent 1710 f531c16dd923
child 1741 7a98fe2ed989
permissions -rw-r--r--
Using proper return type
     1 /* -*- C++ -*-
     2  * lemon/johnson.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_JOHNSON_H
    18 #define LEMON_JOHNSON_H
    19 
    20 ///\ingroup flowalgs
    21 /// \file
    22 /// \brief Johnson algorithm.
    23 ///
    24 
    25 #include <lemon/list_graph.h>
    26 #include <lemon/graph_utils.h>
    27 #include <lemon/dijkstra.h>
    28 #include <lemon/belmann_ford.h>
    29 #include <lemon/invalid.h>
    30 #include <lemon/error.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/matrix_maps.h>
    33 
    34 #include <limits>
    35 
    36 namespace lemon {
    37 
    38   /// \brief Default OperationTraits for the Johnson algorithm class.
    39   ///  
    40   /// It defines all computational operations and constants which are
    41   /// used in the Floyd-Warshall algorithm. The default implementation
    42   /// is based on the numeric_limits class. If the numeric type does not
    43   /// have infinity value then the maximum value is used as extremal
    44   /// infinity value.
    45   template <
    46     typename Value, 
    47     bool has_infinity = std::numeric_limits<Value>::has_infinity>
    48   struct JohnsonDefaultOperationTraits {
    49     /// \brief Gives back the zero value of the type.
    50     static Value zero() {
    51       return static_cast<Value>(0);
    52     }
    53     /// \brief Gives back the positive infinity value of the type.
    54     static Value infinity() {
    55       return std::numeric_limits<Value>::infinity();
    56     }
    57     /// \brief Gives back the sum of the given two elements.
    58     static Value plus(const Value& left, const Value& right) {
    59       return left + right;
    60     }
    61     /// \brief Gives back true only if the first value less than the second.
    62     static bool less(const Value& left, const Value& right) {
    63       return left < right;
    64     }
    65   };
    66 
    67   template <typename Value>
    68   struct JohnsonDefaultOperationTraits<Value, false> {
    69     static Value zero() {
    70       return static_cast<Value>(0);
    71     }
    72     static Value infinity() {
    73       return std::numeric_limits<Value>::max();
    74     }
    75     static Value plus(const Value& left, const Value& right) {
    76       if (left == infinity() || right == infinity()) return infinity();
    77       return left + right;
    78     }
    79     static bool less(const Value& left, const Value& right) {
    80       return left < right;
    81     }
    82   };
    83   
    84   /// \brief Default traits class of Johnson class.
    85   ///
    86   /// Default traits class of Johnson class.
    87   /// \param _Graph Graph type.
    88   /// \param _LegthMap Type of length map.
    89   template<class _Graph, class _LengthMap>
    90   struct JohnsonDefaultTraits {
    91     /// The graph type the algorithm runs on. 
    92     typedef _Graph Graph;
    93 
    94     /// \brief The type of the map that stores the edge lengths.
    95     ///
    96     /// The type of the map that stores the edge lengths.
    97     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    98     typedef _LengthMap LengthMap;
    99 
   100     // The type of the length of the edges.
   101     typedef typename _LengthMap::Value Value;
   102 
   103     /// \brief Operation traits for belmann-ford algorithm.
   104     ///
   105     /// It defines the infinity type on the given Value type
   106     /// and the used operation.
   107     /// \see JohnsonDefaultOperationTraits
   108     typedef JohnsonDefaultOperationTraits<Value> OperationTraits;
   109  
   110     /// \brief The type of the matrix map that stores the last edges of the 
   111     /// shortest paths.
   112     /// 
   113     /// The type of the map that stores the last edges of the shortest paths.
   114     /// It must be a matrix map with \c Graph::Edge value type.
   115     ///
   116     typedef DynamicMatrixMap<Graph, typename Graph::Node, 
   117 			     typename Graph::Edge> PredMap;
   118 
   119     /// \brief Instantiates a PredMap.
   120     /// 
   121     /// This function instantiates a \ref PredMap. 
   122     /// \param G is the graph, to which we would like to define the PredMap.
   123     /// \todo The graph alone may be insufficient for the initialization
   124     static PredMap *createPredMap(const _Graph& graph) {
   125       return new PredMap(graph);
   126     }
   127 
   128     /// \brief The type of the matrix map that stores the dists of the nodes.
   129     ///
   130     /// The type of the matrix map that stores the dists of the nodes.
   131     /// It must meet the \ref concept::WriteMatrixMap "WriteMatrixMap" concept.
   132     ///
   133     typedef DynamicMatrixMap<Graph, typename Graph::Node, Value> DistMap;
   134     
   135     /// \brief Instantiates a DistMap.
   136     ///
   137     /// This function instantiates a \ref DistMap. 
   138     /// \param G is the graph, to which we would like to define the 
   139     /// \ref DistMap
   140     static DistMap *createDistMap(const _Graph& graph) {
   141       return new DistMap(graph);
   142     }
   143 
   144   };
   145 
   146   /// \brief Johnson algorithm class.
   147   ///
   148   /// \ingroup flowalgs
   149   /// This class provides an efficient implementation of \c Johnson 
   150   /// algorithm. The edge lengths are passed to the algorithm using a
   151   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   152   /// kind of length.
   153   ///
   154   /// The algorithm solves the shortest path problem for each pairs
   155   /// of node when the edges can have negative length but the graph should
   156   /// not contain circle with negative sum of length. If we can assume
   157   /// that all edge is non-negative in the graph then the dijkstra algorithm
   158   /// should be used from each node.
   159   ///
   160   /// The complexity of this algorithm is $O(n^2 * log(n) + n * log(n) * e)$ or
   161   /// with fibonacci heap O(n^2 * log(n) + n * e).
   162   ///
   163   /// The type of the length is determined by the
   164   /// \ref concept::ReadMap::Value "Value" of the length map.
   165   ///
   166   /// \param _Graph The graph type the algorithm runs on. The default value
   167   /// is \ref ListGraph. The value of _Graph is not used directly by
   168   /// Johnson, it is only passed to \ref JohnsonDefaultTraits.
   169   /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   170   /// edges. It is read once for each edge, so the map may involve in
   171   /// relatively time consuming process to compute the edge length if
   172   /// it is necessary. The default map type is \ref
   173   /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   174   /// of _LengthMap is not used directly by Johnson, it is only passed 
   175   /// to \ref JohnsonDefaultTraits.  \param _Traits Traits class to set
   176   /// various data types used by the algorithm.  The default traits
   177   /// class is \ref JohnsonDefaultTraits
   178   /// "JohnsonDefaultTraits<_Graph,_LengthMap>".  See \ref
   179   /// JohnsonDefaultTraits for the documentation of a Johnson traits
   180   /// class.
   181   ///
   182   /// \author Balazs Dezso
   183 
   184 #ifdef DOXYGEN
   185   template <typename _Graph, typename _LengthMap, typename _Traits>
   186 #else
   187   template <typename _Graph=ListGraph,
   188 	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   189 	    typename _Traits=JohnsonDefaultTraits<_Graph,_LengthMap> >
   190 #endif
   191   class Johnson {
   192   public:
   193     
   194     /// \brief \ref Exception for uninitialized parameters.
   195     ///
   196     /// This error represents problems in the initialization
   197     /// of the parameters of the algorithms.
   198 
   199     class UninitializedParameter : public lemon::UninitializedParameter {
   200     public:
   201       virtual const char* exceptionName() const {
   202 	return "lemon::Johnson::UninitializedParameter";
   203       }
   204     };
   205 
   206     typedef _Traits Traits;
   207     ///The type of the underlying graph.
   208     typedef typename _Traits::Graph Graph;
   209 
   210     typedef typename Graph::Node Node;
   211     typedef typename Graph::NodeIt NodeIt;
   212     typedef typename Graph::Edge Edge;
   213     typedef typename Graph::EdgeIt EdgeIt;
   214     
   215     /// \brief The type of the length of the edges.
   216     typedef typename _Traits::LengthMap::Value Value;
   217     /// \brief The type of the map that stores the edge lengths.
   218     typedef typename _Traits::LengthMap LengthMap;
   219     /// \brief The type of the map that stores the last
   220     /// edges of the shortest paths. The type of the PredMap
   221     /// is a matrix map for Edges
   222     typedef typename _Traits::PredMap PredMap;
   223     /// \brief The type of the map that stores the dists of the nodes.
   224     /// The type of the DistMap is a matrix map for Values
   225     typedef typename _Traits::DistMap DistMap;
   226     /// \brief The operation traits.
   227     typedef typename _Traits::OperationTraits OperationTraits;
   228   private:
   229     /// Pointer to the underlying graph.
   230     const Graph *graph;
   231     /// Pointer to the length map
   232     const LengthMap *length;
   233     ///Pointer to the map of predecessors edges.
   234     PredMap *_pred;
   235     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   236     bool local_pred;
   237     ///Pointer to the map of distances.
   238     DistMap *_dist;
   239     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   240     bool local_dist;
   241 
   242     /// Creates the maps if necessary.
   243     void create_maps() {
   244       if(!_pred) {
   245 	local_pred = true;
   246 	_pred = Traits::createPredMap(*graph);
   247       }
   248       if(!_dist) {
   249 	local_dist = true;
   250 	_dist = Traits::createDistMap(*graph);
   251       }
   252     }
   253     
   254   public :
   255  
   256     /// \name Named template parameters
   257 
   258     ///@{
   259 
   260     template <class T>
   261     struct DefPredMapTraits : public Traits {
   262       typedef T PredMap;
   263       static PredMap *createPredMap(const Graph& graph) {
   264 	throw UninitializedParameter();
   265       }
   266     };
   267 
   268     /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   269     /// type
   270     /// \ref named-templ-param "Named parameter" for setting PredMap type
   271     ///
   272     template <class T>
   273     struct DefPredMap 
   274       : public Johnson< Graph, LengthMap, DefPredMapTraits<T> > {
   275       typedef Johnson< Graph, LengthMap, DefPredMapTraits<T> > Create;
   276     };
   277     
   278     template <class T>
   279     struct DefDistMapTraits : public Traits {
   280       typedef T DistMap;
   281       static DistMap *createDistMap(const Graph& graph) {
   282 	throw UninitializedParameter();
   283       }
   284     };
   285     /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   286     /// type
   287     ///
   288     /// \ref named-templ-param "Named parameter" for setting DistMap type
   289     ///
   290     template <class T>
   291     struct DefDistMap 
   292       : public Johnson< Graph, LengthMap, DefDistMapTraits<T> > {
   293       typedef Johnson< Graph, LengthMap, DefDistMapTraits<T> > Create;
   294     };
   295     
   296     template <class T>
   297     struct DefOperationTraitsTraits : public Traits {
   298       typedef T OperationTraits;
   299     };
   300     
   301     /// \brief \ref named-templ-param "Named parameter" for setting 
   302     /// OperationTraits type
   303     ///
   304     /// \ref named-templ-param "Named parameter" for setting 
   305     /// OperationTraits type
   306     template <class T>
   307     struct DefOperationTraits
   308       : public Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   309       typedef Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > Create;
   310     };
   311     
   312     ///@}
   313 
   314   protected:
   315 
   316     Johnson() {}
   317 
   318   public:      
   319     
   320     /// \brief Constructor.
   321     ///
   322     /// \param _graph the graph the algorithm will run on.
   323     /// \param _length the length map used by the algorithm.
   324     Johnson(const Graph& _graph, const LengthMap& _length) :
   325       graph(&_graph), length(&_length),
   326       _pred(0), local_pred(false),
   327       _dist(0), local_dist(false) {}
   328     
   329     ///Destructor.
   330     ~Johnson() {
   331       if(local_pred) delete _pred;
   332       if(local_dist) delete _dist;
   333     }
   334 
   335     /// \brief Sets the length map.
   336     ///
   337     /// Sets the length map.
   338     /// \return \c (*this)
   339     Johnson &lengthMap(const LengthMap &m) {
   340       length = &m;
   341       return *this;
   342     }
   343 
   344     /// \brief Sets the map storing the predecessor edges.
   345     ///
   346     /// Sets the map storing the predecessor edges.
   347     /// If you don't use this function before calling \ref run(),
   348     /// it will allocate one. The destuctor deallocates this
   349     /// automatically allocated map, of course.
   350     /// \return \c (*this)
   351     Johnson &predMap(PredMap &m) {
   352       if(local_pred) {
   353 	delete _pred;
   354 	local_pred=false;
   355       }
   356       _pred = &m;
   357       return *this;
   358     }
   359 
   360     /// \brief Sets the map storing the distances calculated by the algorithm.
   361     ///
   362     /// Sets the map storing the distances calculated by the algorithm.
   363     /// If you don't use this function before calling \ref run(),
   364     /// it will allocate one. The destuctor deallocates this
   365     /// automatically allocated map, of course.
   366     /// \return \c (*this)
   367     Johnson &distMap(DistMap &m) {
   368       if(local_dist) {
   369 	delete _dist;
   370 	local_dist=false;
   371       }
   372       _dist = &m;
   373       return *this;
   374     }
   375 
   376     ///\name Execution control
   377     /// The simplest way to execute the algorithm is to use
   378     /// one of the member functions called \c run(...).
   379     /// \n
   380     /// If you need more control on the execution,
   381     /// Finally \ref start() will perform the actual path
   382     /// computation.
   383 
   384     ///@{
   385 
   386     /// \brief Initializes the internal data structures.
   387     /// 
   388     /// Initializes the internal data structures.
   389     void init() {
   390       create_maps();
   391     }
   392     
   393     /// \brief Executes the algorithm.
   394     ///
   395     /// This method runs the %Johnson algorithm in order to compute 
   396     /// the shortest path to each node pairs. The algorithm 
   397     /// computes 
   398     /// - The shortest path tree for each node.
   399     /// - The distance between each node pairs.
   400     void start() {
   401       typedef typename BelmannFord<Graph, LengthMap>::
   402       template DefOperationTraits<OperationTraits>::
   403       template DefPredMap<NullMap<Node, Edge> >::
   404       Create BelmannFordType;
   405 
   406       BelmannFordType belmannford(*graph, *length);
   407 
   408       NullMap<Node, Edge> predMap;
   409 
   410       belmannford.predMap(predMap);
   411       
   412       belmannford.init(OperationTraits::zero());
   413       belmannford.start();
   414 
   415       for (NodeIt it(*graph); it != INVALID; ++it) {
   416 	typedef PotentialDifferenceMap<Graph, 
   417 	  typename BelmannFordType::DistMap> PotDiffMap;
   418 	PotDiffMap potdiff(*graph, belmannford.distMap());
   419 	typedef SubMap<LengthMap, PotDiffMap> ShiftLengthMap;
   420 	ShiftLengthMap shiftlen(*length, potdiff);
   421 	Dijkstra<Graph, ShiftLengthMap> dijkstra(*graph, shiftlen); 
   422 	dijkstra.run(it);
   423 	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   424 	  if (dijkstra.reached(jt)) {
   425 	    _dist->set(it, jt, dijkstra.dist(jt) + 
   426 		       belmannford.dist(jt) - belmannford.dist(it));
   427 	    _pred->set(it, jt, dijkstra.pred(jt));
   428 	  } else {
   429 	    _dist->set(it, jt, OperationTraits::infinity());
   430 	    _pred->set(it, jt, INVALID);
   431 	  }
   432 	}
   433       }
   434     }
   435     
   436     /// \brief Runs %Johnson algorithm.
   437     ///    
   438     /// This method runs the %Johnson algorithm from a each node
   439     /// in order to compute the shortest path to each node pairs. 
   440     /// The algorithm computes
   441     /// - The shortest path tree for each node.
   442     /// - The distance between each node pairs.
   443     ///
   444     /// \note d.run(s) is just a shortcut of the following code.
   445     /// \code
   446     ///  d.init();
   447     ///  d.start();
   448     /// \endcode
   449     void run() {
   450       init();
   451       start();
   452     }
   453     
   454     ///@}
   455 
   456     /// \name Query Functions
   457     /// The result of the %Johnson algorithm can be obtained using these
   458     /// functions.\n
   459     /// Before the use of these functions,
   460     /// either run() or start() must be called.
   461     
   462     ///@{
   463 
   464     /// \brief Copies the shortest path to \c t into \c p
   465     ///    
   466     /// This function copies the shortest path to \c t into \c p.
   467     /// If it \c t is a source itself or unreachable, then it does not
   468     /// alter \c p.
   469     /// \todo Is it the right way to handle unreachable nodes?
   470     /// \return Returns \c true if a path to \c t was actually copied to \c p,
   471     /// \c false otherwise.
   472     /// \sa DirPath
   473     template <typename Path>
   474     bool getPath(Path &p, Node source, Node target) {
   475       if (connected(source, target)) {
   476 	p.clear();
   477 	typename Path::Builder b(target);
   478 	for(b.setStartNode(target); pred(source, target) != INVALID;
   479 	    target = predNode(target)) {
   480 	  b.pushFront(pred(source, target));
   481 	}
   482 	b.commit();
   483 	return true;
   484       }
   485       return false;
   486     }
   487 	  
   488     /// \brief The distance between two nodes.
   489     ///
   490     /// Returns the distance between two nodes.
   491     /// \pre \ref run() must be called before using this function.
   492     /// \warning If node \c v in unreachable from the root the return value
   493     /// of this funcion is undefined.
   494     Value dist(Node source, Node target) const { 
   495       return (*_dist)(source, target); 
   496     }
   497 
   498     /// \brief Returns the 'previous edge' of the shortest path tree.
   499     ///
   500     /// For the node \c node it returns the 'previous edge' of the shortest 
   501     /// path tree to direction of the node \c root 
   502     /// i.e. it returns the last edge of a shortest path from the node \c root 
   503     /// to \c node. It is \ref INVALID if \c node is unreachable from the root
   504     /// or if \c node=root. The shortest path tree used here is equal to the 
   505     /// shortest path tree used in \ref predNode(). 
   506     /// \pre \ref run() must be called before using this function.
   507     /// \todo predEdge could be a better name.
   508     Edge pred(Node root, Node node) const { 
   509       return (*_pred)(root, node); 
   510     }
   511 
   512     /// \brief Returns the 'previous node' of the shortest path tree.
   513     ///
   514     /// For a node \c node it returns the 'previous node' of the shortest path 
   515     /// tree to direction of the node \c root, i.e. it returns the last but 
   516     /// one node from a shortest path from the \c root to \c node. It is 
   517     /// INVALID if \c node is unreachable from the root or if \c node=root. 
   518     /// The shortest path tree used here is equal to the 
   519     /// shortest path tree used in \ref pred().  
   520     /// \pre \ref run() must be called before using this function.
   521     Node predNode(Node root, Node node) const { 
   522       return (*_pred)(root, node) == INVALID ? 
   523       INVALID : graph->source((*_pred)(root, node)); 
   524     }
   525     
   526     /// \brief Returns a reference to the matrix node map of distances.
   527     ///
   528     /// Returns a reference to the matrix node map of distances. 
   529     ///
   530     /// \pre \ref run() must be called before using this function.
   531     const DistMap &distMap() const { return *_dist;}
   532  
   533     /// \brief Returns a reference to the shortest path tree map.
   534     ///
   535     /// Returns a reference to the matrix node map of the edges of the
   536     /// shortest path tree.
   537     /// \pre \ref run() must be called before using this function.
   538     const PredMap &predMap() const { return *_pred;}
   539  
   540     /// \brief Checks if a node is reachable from the root.
   541     ///
   542     /// Returns \c true if \c v is reachable from the root.
   543     /// \pre \ref run() must be called before using this function.
   544     ///
   545     bool connected(Node source, Node target) { 
   546       return (*_dist)(source, target) != OperationTraits::infinity(); 
   547     }
   548     
   549     ///@}
   550   };
   551  
   552 } //END OF NAMESPACE LEMON
   553 
   554 #endif