lemon/euler.h
author alpar
Mon, 06 Feb 2006 09:10:43 +0000
changeset 1959 264811b995f3
parent 1909 2d806130e700
child 1970 bd88ea06ab69
permissions -rw-r--r--
Spellcheck
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #include<lemon/invalid.h>
    20 #include<lemon/topology.h>
    21 #include <list>
    22 
    23 /// \ingroup topology
    24 /// \file
    25 /// \brief Euler tour
    26 ///
    27 ///This file provides an Euler tour iterator and ways to check
    28 ///if a graph is euler.
    29 
    30 
    31 namespace lemon {
    32 
    33   ///Euler iterator for directed graphs.
    34 
    35   /// \ingroup topology
    36   ///This iterator converts to the \c Edge type of the graph and using
    37   ///operator ++ it provides an Euler tour of the graph (if there exists).
    38   ///
    39   ///For example
    40   ///if the given graph if Euler (i.e it has only one nontrivial component
    41   ///and the in-degree is equal to the out-degree for all nodes),
    42   ///the following code will print the edge IDs according to an
    43   ///Euler tour of \c g.
    44   ///\code
    45   ///  for(EulerIt<ListGraph> e(g),e!=INVALID;++e) {
    46   ///    std::cout << g.id(e) << std::eol;
    47   ///  }
    48   ///\endcode
    49   ///If \c g is not Euler then the resulted tour will not be full or closed.
    50   ///\todo Test required
    51   template<class Graph>
    52   class EulerIt 
    53   {
    54     typedef typename Graph::Node Node;
    55     typedef typename Graph::NodeIt NodeIt;
    56     typedef typename Graph::Edge Edge;
    57     typedef typename Graph::EdgeIt EdgeIt;
    58     typedef typename Graph::OutEdgeIt OutEdgeIt;
    59     typedef typename Graph::InEdgeIt InEdgeIt;
    60     
    61     const Graph &g;
    62     typename Graph::NodeMap<OutEdgeIt> nedge;
    63     std::list<Edge> euler;
    64 
    65   public:
    66     
    67     ///Constructor
    68 
    69     ///\param _g A directed graph.
    70     ///\param start The starting point of the tour. If it is not given
    71     ///       the tour will start from the first node.
    72     EulerIt(const Graph &_g,typename Graph::Node start=INVALID)
    73       : g(_g), nedge(g)
    74     {
    75       if(start==INVALID) start=NodeIt(g);
    76       for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutEdgeIt(g,n);
    77       while(nedge[start]!=INVALID) {
    78 	euler.push_back(nedge[start]);
    79 	Node next=g.target(nedge[start]);
    80 	++nedge[start];
    81 	start=next;
    82       }
    83     }
    84     
    85     ///Edge Conversion
    86     operator Edge() { return euler.empty()?INVALID:euler.front(); }
    87     bool operator==(Invalid) { return euler.empty(); }
    88     bool operator!=(Invalid) { return !euler.empty(); }
    89     
    90     ///Next edge of the tour
    91     EulerIt &operator++() {
    92       Node s=g.target(euler.front());
    93       euler.pop_front();
    94       //This produces a warning.Strange.
    95       //std::list<Edge>::iterator next=euler.begin();
    96       typename std::list<Edge>::iterator next=euler.begin();
    97       while(nedge[s]!=INVALID) {
    98 	euler.insert(next,nedge[s]);
    99 	Node n=g.target(nedge[s]);
   100 	++nedge[s];
   101 	s=n;
   102       }
   103       return *this;
   104     }
   105     ///Postfix incrementation
   106     
   107     ///\warning This incrementation
   108     ///returns an \c Edge, not an \ref EulerIt, as one may
   109     ///expect.
   110     Edge operator++(int) 
   111     {
   112       Edge e=*this;
   113       ++(*this);
   114       return e;
   115     }
   116   };
   117 
   118   ///Euler iterator for undirected graphs.
   119 
   120   /// \ingroup topology
   121   ///This iterator converts to the \c Edge type of the graph and using
   122   ///operator ++ it provides an Euler tour of the graph (if there exists).
   123   ///
   124   ///For example
   125   ///if the given graph if Euler (i.e it has only one nontrivial component
   126   ///and the degree of each node is even),
   127   ///the following code will print the edge IDs according to an
   128   ///Euler tour of \c g.
   129   ///\code
   130   ///  for(UEulerIt<ListUGraph> e(g),e!=INVALID;++e) {
   131   ///    std::cout << g.id(UEdge(e)) << std::eol;
   132   ///  }
   133   ///\endcode
   134   ///Although the iterator provides an Euler tour of an undirected graph,
   135   ///in order to indicate the direction of the tour, UEulerIt
   136   ///returns directed edges (that convert to the undirected ones, of course).
   137   ///
   138   ///If \c g is not Euler then the resulted tour will not be full or closed.
   139   ///\todo Test required
   140   template<class Graph>
   141   class UEulerIt
   142   {
   143     typedef typename Graph::Node Node;
   144     typedef typename Graph::NodeIt NodeIt;
   145     typedef typename Graph::Edge Edge;
   146     typedef typename Graph::EdgeIt EdgeIt;
   147     typedef typename Graph::OutEdgeIt OutEdgeIt;
   148     typedef typename Graph::InEdgeIt InEdgeIt;
   149     
   150     const Graph &g;
   151     typename Graph::NodeMap<OutEdgeIt> nedge;
   152     typename Graph::UEdgeMap<bool> visited;
   153     std::list<Edge> euler;
   154 
   155   public:
   156     
   157     ///Constructor
   158 
   159     ///\param _g An undirected graph.
   160     ///\param start The starting point of the tour. If it is not given
   161     ///       the tour will start from the first node.
   162     UEulerIt(const Graph &_g,typename Graph::Node start=INVALID)
   163       : g(_g), nedge(g), visited(g,false)
   164     {
   165       if(start==INVALID) start=NodeIt(g);
   166       for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutEdgeIt(g,n);
   167       while(nedge[start]!=INVALID) {
   168 	euler.push_back(nedge[start]);
   169 	Node next=g.target(nedge[start]);
   170 	++nedge[start];
   171 	start=next;	while(nedge[start]!=INVALID && visited[nedge[start]]) ++nedge[start];
   172       }
   173     }
   174     
   175     ///Edge Conversion
   176     operator Edge() { return euler.empty()?INVALID:euler.front(); }
   177     bool operator==(Invalid) { return euler.empty(); }
   178     bool operator!=(Invalid) { return !euler.empty(); }
   179     
   180     ///Next edge of the tour
   181     UEulerIt &operator++() {
   182       Node s=g.target(euler.front());
   183       euler.pop_front();
   184       typename std::list<Edge>::iterator next=euler.begin();
   185 
   186       while(nedge[s]!=INVALID) {
   187 	while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s];
   188 	if(nedge[s]==INVALID) break;
   189 	else {
   190 	  euler.insert(next,nedge[s]);
   191 	  Node n=g.target(nedge[s]);
   192 	  ++nedge[s];
   193 	  s=n;
   194 	}
   195       }
   196       return *this;
   197     }
   198     
   199     ///Postfix incrementation
   200     
   201     ///\warning This incrementation
   202     ///returns an \c Edge, not an \ref UEulerIt, as one may
   203     ///expect.
   204     Edge operator++(int) 
   205     {
   206       Edge e=*this;
   207       ++(*this);
   208       return e;
   209     }
   210   };
   211 
   212 
   213   ///Checks if the graph is Euler
   214 
   215   /// \ingroup topology
   216   ///Checks if the graph is Euler. It works for both directed and
   217   ///undirected graphs.
   218   ///\note By definition, a directed graph is called \e Euler if
   219   ///and only if connected and the number of it is incoming and outgoing edges
   220   ///are the same for each node.
   221   ///Similarly, an undirected graph is called \e Euler if
   222   ///and only if it is connected and the number of incident edges is even
   223   ///for each node. <em>Therefore, there are graphs which are not Euler, but
   224   ///still have an Euler tour</em>.
   225   ///\todo Test required
   226   template<class Graph>
   227 #ifdef DOXYGEN
   228   bool
   229 #else
   230   typename enable_if<typename Graph::UTag,bool>::type
   231   euler(const Graph &g) 
   232   {
   233     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
   234       if(countIncEdges(g,n)%2) return false;
   235     return connected(g);
   236   }
   237   template<class Graph>
   238   typename disable_if<typename Graph::UTag,bool>::type
   239 #endif
   240   euler(const Graph &g) 
   241   {
   242     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
   243       if(countInEdges(g,n)!=countOutEdges(g,n)) return false;
   244     return connected(g);
   245   }
   246   
   247 }