lemon/max_matching.h
author deba
Wed, 14 Nov 2007 17:53:08 +0000
changeset 2513 26983135fd6d
parent 2391 14a343be7a5a
child 2548 a3ba22ebccc6
permissions -rwxr-xr-x
Query the result value of an expression
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MAX_MATCHING_H
    20 #define LEMON_MAX_MATCHING_H
    21 
    22 #include <queue>
    23 #include <lemon/bits/invalid.h>
    24 #include <lemon/unionfind.h>
    25 #include <lemon/graph_utils.h>
    26 
    27 ///\ingroup matching
    28 ///\file
    29 ///\brief Maximum matching algorithm in undirected graph.
    30 
    31 namespace lemon {
    32 
    33   ///\ingroup matching
    34 
    35   ///\brief Edmonds' alternating forest maximum matching algorithm.
    36   ///
    37   ///This class provides Edmonds' alternating forest matching
    38   ///algorithm. The starting matching (if any) can be passed to the
    39   ///algorithm using some of init functions.
    40   ///
    41   ///The dual side of a matching is a map of the nodes to
    42   ///MaxMatching::DecompType, having values \c D, \c A and \c C
    43   ///showing the Gallai-Edmonds decomposition of the graph. The nodes
    44   ///in \c D induce a graph with factor-critical components, the nodes
    45   ///in \c A form the barrier, and the nodes in \c C induce a graph
    46   ///having a perfect matching. This decomposition can be attained by
    47   ///calling \c decomposition() after running the algorithm.
    48   ///
    49   ///\param Graph The undirected graph type the algorithm runs on.
    50   ///
    51   ///\author Jacint Szabo  
    52   template <typename Graph>
    53   class MaxMatching {
    54 
    55   protected:
    56 
    57     typedef typename Graph::Node Node;
    58     typedef typename Graph::Edge Edge;
    59     typedef typename Graph::UEdge UEdge;
    60     typedef typename Graph::UEdgeIt UEdgeIt;
    61     typedef typename Graph::NodeIt NodeIt;
    62     typedef typename Graph::IncEdgeIt IncEdgeIt;
    63 
    64     typedef typename Graph::template NodeMap<int> UFECrossRef;
    65     typedef UnionFindEnum<UFECrossRef> UFE;
    66     typedef std::vector<Node> NV;
    67 
    68     typedef typename Graph::template NodeMap<int> EFECrossRef;
    69     typedef ExtendFindEnum<EFECrossRef> EFE;
    70 
    71   public:
    72     
    73     ///\brief Indicates the Gallai-Edmonds decomposition of the graph.
    74     ///
    75     ///Indicates the Gallai-Edmonds decomposition of the graph, which
    76     ///shows an upper bound on the size of a maximum matching. The
    77     ///nodes with DecompType \c D induce a graph with factor-critical
    78     ///components, the nodes in \c A form the canonical barrier, and the
    79     ///nodes in \c C induce a graph having a perfect matching. 
    80     enum DecompType {
    81       D=0,
    82       A=1,
    83       C=2
    84     }; 
    85 
    86   protected:
    87 
    88     static const int HEUR_density=2;
    89     const Graph& g;
    90     typename Graph::template NodeMap<Node> _mate;
    91     typename Graph::template NodeMap<DecompType> position;
    92      
    93   public:
    94     
    95     MaxMatching(const Graph& _g) 
    96       : g(_g), _mate(_g), position(_g) {}
    97 
    98     ///\brief Sets the actual matching to the empty matching.
    99     ///
   100     ///Sets the actual matching to the empty matching.  
   101     ///
   102     void init() {
   103       for(NodeIt v(g); v!=INVALID; ++v) {
   104 	_mate.set(v,INVALID);      
   105 	position.set(v,C);
   106       }
   107     }
   108 
   109     ///\brief Finds a greedy matching for initial matching.
   110     ///
   111     ///For initial matchig it finds a maximal greedy matching.
   112     void greedyInit() {
   113       for(NodeIt v(g); v!=INVALID; ++v) {
   114 	_mate.set(v,INVALID);      
   115 	position.set(v,C);
   116       }
   117       for(NodeIt v(g); v!=INVALID; ++v)
   118 	if ( _mate[v]==INVALID ) {
   119 	  for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
   120 	    Node y=g.runningNode(e);
   121 	    if ( _mate[y]==INVALID && y!=v ) {
   122 	      _mate.set(v,y);
   123 	      _mate.set(y,v);
   124 	      break;
   125 	    }
   126 	  }
   127 	} 
   128     }
   129 
   130     ///\brief Initialize the matching from each nodes' mate.
   131     ///
   132     ///Initialize the matching from a \c Node valued \c Node map. This
   133     ///map must be \e symmetric, i.e. if \c map[u]==v then \c
   134     ///map[v]==u must hold, and \c uv will be an edge of the initial
   135     ///matching.
   136     template <typename MateMap>
   137     void mateMapInit(MateMap& map) {
   138       for(NodeIt v(g); v!=INVALID; ++v) {
   139 	_mate.set(v,map[v]);
   140 	position.set(v,C);
   141       } 
   142     }
   143 
   144     ///\brief Initialize the matching from a node map with the
   145     ///incident matching edges.
   146     ///
   147     ///Initialize the matching from an \c UEdge valued \c Node map. \c
   148     ///map[v] must be an \c UEdge incident to \c v. This map must have
   149     ///the property that if \c g.oppositeNode(u,map[u])==v then \c \c
   150     ///g.oppositeNode(v,map[v])==u holds, and now some edge joining \c
   151     ///u to \c v will be an edge of the matching.
   152     template<typename MatchingMap>
   153     void matchingMapInit(MatchingMap& map) {
   154       for(NodeIt v(g); v!=INVALID; ++v) {
   155 	position.set(v,C);
   156 	UEdge e=map[v];
   157 	if ( e!=INVALID )
   158 	  _mate.set(v,g.oppositeNode(v,e));
   159 	else 
   160 	  _mate.set(v,INVALID);
   161       } 
   162     } 
   163 
   164     ///\brief Initialize the matching from the map containing the
   165     ///undirected matching edges.
   166     ///
   167     ///Initialize the matching from a \c bool valued \c UEdge map. This
   168     ///map must have the property that there are no two incident edges
   169     ///\c e, \c f with \c map[e]==map[f]==true. The edges \c e with \c
   170     ///map[e]==true form the matching.
   171     template <typename MatchingMap>
   172     void matchingInit(MatchingMap& map) {
   173       for(NodeIt v(g); v!=INVALID; ++v) {
   174 	_mate.set(v,INVALID);      
   175 	position.set(v,C);
   176       }
   177       for(UEdgeIt e(g); e!=INVALID; ++e) {
   178 	if ( map[e] ) {
   179 	  Node u=g.source(e);	  
   180 	  Node v=g.target(e);
   181 	  _mate.set(u,v);
   182 	  _mate.set(v,u);
   183 	} 
   184       } 
   185     }
   186 
   187 
   188     ///\brief Runs Edmonds' algorithm.
   189     ///
   190     ///Runs Edmonds' algorithm for sparse graphs (number of edges <
   191     ///2*number of nodes), and a heuristical Edmonds' algorithm with a
   192     ///heuristic of postponing shrinks for dense graphs. 
   193     void run() {
   194       if (countUEdges(g) < HEUR_density * countNodes(g)) {
   195 	greedyInit();
   196 	startSparse();
   197       } else {
   198 	init();
   199 	startDense();
   200       }
   201     }
   202 
   203 
   204     ///\brief Starts Edmonds' algorithm.
   205     /// 
   206     ///If runs the original Edmonds' algorithm.  
   207     void startSparse() {
   208             
   209       typename Graph::template NodeMap<Node> ear(g,INVALID); 
   210       //undefined for the base nodes of the blossoms (i.e. for the
   211       //representative elements of UFE blossom) and for the nodes in C 
   212       
   213       UFECrossRef blossom_base(g);
   214       UFE blossom(blossom_base);
   215       NV rep(countNodes(g));
   216 
   217       EFECrossRef tree_base(g);
   218       EFE tree(tree_base);
   219 
   220       //If these UFE's would be members of the class then also
   221       //blossom_base and tree_base should be a member.
   222       
   223       //We build only one tree and the other vertices uncovered by the
   224       //matching belong to C. (They can be considered as singleton
   225       //trees.) If this tree can be augmented or no more
   226       //grow/augmentation/shrink is possible then we return to this
   227       //"for" cycle.
   228       for(NodeIt v(g); v!=INVALID; ++v) {
   229 	if (position[v]==C && _mate[v]==INVALID) {
   230 	  rep[blossom.insert(v)] = v;
   231 	  tree.insert(v); 
   232 	  position.set(v,D);
   233 	  normShrink(v, ear, blossom, rep, tree);
   234 	}
   235       }
   236     }
   237 
   238     ///\brief Starts Edmonds' algorithm.
   239     /// 
   240     ///It runs Edmonds' algorithm with a heuristic of postponing
   241     ///shrinks, giving a faster algorithm for dense graphs.
   242     void startDense() {
   243             
   244       typename Graph::template NodeMap<Node> ear(g,INVALID); 
   245       //undefined for the base nodes of the blossoms (i.e. for the
   246       //representative elements of UFE blossom) and for the nodes in C 
   247       
   248       UFECrossRef blossom_base(g);
   249       UFE blossom(blossom_base);
   250       NV rep(countNodes(g));
   251 
   252       EFECrossRef tree_base(g);
   253       EFE tree(tree_base);
   254 
   255       //If these UFE's would be members of the class then also
   256       //blossom_base and tree_base should be a member.
   257       
   258       //We build only one tree and the other vertices uncovered by the
   259       //matching belong to C. (They can be considered as singleton
   260       //trees.) If this tree can be augmented or no more
   261       //grow/augmentation/shrink is possible then we return to this
   262       //"for" cycle.
   263       for(NodeIt v(g); v!=INVALID; ++v) {
   264 	if ( position[v]==C && _mate[v]==INVALID ) {
   265 	  rep[blossom.insert(v)] = v;
   266 	  tree.insert(v); 
   267 	  position.set(v,D);
   268 	  lateShrink(v, ear, blossom, rep, tree);
   269 	}
   270       }
   271     }
   272 
   273 
   274 
   275     ///\brief Returns the size of the actual matching stored.
   276     ///
   277     ///Returns the size of the actual matching stored. After \ref
   278     ///run() it returns the size of a maximum matching in the graph.
   279     int size() const {
   280       int s=0;
   281       for(NodeIt v(g); v!=INVALID; ++v) {
   282 	if ( _mate[v]!=INVALID ) {
   283 	  ++s;
   284 	}
   285       }
   286       return s/2;
   287     }
   288 
   289 
   290     ///\brief Returns the mate of a node in the actual matching.
   291     ///
   292     ///Returns the mate of a \c node in the actual matching. 
   293     ///Returns INVALID if the \c node is not covered by the actual matching. 
   294     Node mate(const Node& node) const {
   295       return _mate[node];
   296     } 
   297 
   298     ///\brief Returns the matching edge incident to the given node.
   299     ///
   300     ///Returns the matching edge of a \c node in the actual matching. 
   301     ///Returns INVALID if the \c node is not covered by the actual matching. 
   302     UEdge matchingEdge(const Node& node) const {
   303       if (_mate[node] == INVALID) return INVALID;
   304       Node n = node < _mate[node] ? node : _mate[node];
   305       for (IncEdgeIt e(g, n); e != INVALID; ++e) {
   306 	if (g.oppositeNode(n, e) == _mate[n]) {
   307 	  return e;
   308 	}
   309       }
   310       return INVALID;
   311     } 
   312 
   313     /// \brief Returns the class of the node in the Edmonds-Gallai
   314     /// decomposition.
   315     ///
   316     /// Returns the class of the node in the Edmonds-Gallai
   317     /// decomposition.
   318     DecompType decomposition(const Node& n) {
   319       return position[n] == A;
   320     }
   321 
   322     /// \brief Returns true when the node is in the barrier.
   323     ///
   324     /// Returns true when the node is in the barrier.
   325     bool barrier(const Node& n) {
   326       return position[n] == A;
   327     }
   328     
   329     ///\brief Gives back the matching in a \c Node of mates.
   330     ///
   331     ///Writes the stored matching to a \c Node valued \c Node map. The
   332     ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
   333     ///map[v]==u will hold, and now \c uv is an edge of the matching.
   334     template <typename MateMap>
   335     void mateMap(MateMap& map) const {
   336       for(NodeIt v(g); v!=INVALID; ++v) {
   337 	map.set(v,_mate[v]);   
   338       } 
   339     } 
   340     
   341     ///\brief Gives back the matching in an \c UEdge valued \c Node
   342     ///map.
   343     ///
   344     ///Writes the stored matching to an \c UEdge valued \c Node
   345     ///map. \c map[v] will be an \c UEdge incident to \c v. This
   346     ///map will have the property that if \c g.oppositeNode(u,map[u])
   347     ///== v then \c map[u]==map[v] holds, and now this edge is an edge
   348     ///of the matching.
   349     template <typename MatchingMap>
   350     void matchingMap(MatchingMap& map)  const {
   351       typename Graph::template NodeMap<bool> todo(g,true); 
   352       for(NodeIt v(g); v!=INVALID; ++v) {
   353 	if (_mate[v]!=INVALID && v < _mate[v]) {
   354 	  Node u=_mate[v];
   355 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   356 	    if ( g.runningNode(e) == u ) {
   357 	      map.set(u,e);
   358 	      map.set(v,e);
   359 	      todo.set(u,false);
   360 	      todo.set(v,false);
   361 	      break;
   362 	    }
   363 	  }
   364 	}
   365       } 
   366     }
   367 
   368 
   369     ///\brief Gives back the matching in a \c bool valued \c UEdge
   370     ///map.
   371     ///
   372     ///Writes the matching stored to a \c bool valued \c Edge
   373     ///map. This map will have the property that there are no two
   374     ///incident edges \c e, \c f with \c map[e]==map[f]==true. The
   375     ///edges \c e with \c map[e]==true form the matching.
   376     template<typename MatchingMap>
   377     void matching(MatchingMap& map) const {
   378       for(UEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
   379 
   380       typename Graph::template NodeMap<bool> todo(g,true); 
   381       for(NodeIt v(g); v!=INVALID; ++v) {
   382 	if ( todo[v] && _mate[v]!=INVALID ) {
   383 	  Node u=_mate[v];
   384 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   385 	    if ( g.runningNode(e) == u ) {
   386 	      map.set(e,true);
   387 	      todo.set(u,false);
   388 	      todo.set(v,false);
   389 	      break;
   390 	    }
   391 	  }
   392 	}
   393       } 
   394     }
   395 
   396 
   397     ///\brief Returns the canonical decomposition of the graph after running
   398     ///the algorithm.
   399     ///
   400     ///After calling any run methods of the class, it writes the
   401     ///Gallai-Edmonds canonical decomposition of the graph. \c map
   402     ///must be a node map of \ref DecompType 's.
   403     template <typename DecompositionMap>
   404     void decomposition(DecompositionMap& map) const {
   405       for(NodeIt v(g); v!=INVALID; ++v) map.set(v,position[v]);
   406     }
   407 
   408     ///\brief Returns a barrier on the nodes.
   409     ///
   410     ///After calling any run methods of the class, it writes a
   411     ///canonical barrier on the nodes. The odd component number of the
   412     ///remaining graph minus the barrier size is a lower bound for the
   413     ///uncovered nodes in the graph. The \c map must be a node map of
   414     ///bools.
   415     template <typename BarrierMap>
   416     void barrier(BarrierMap& barrier) {
   417       for(NodeIt v(g); v!=INVALID; ++v) barrier.set(v,position[v] == A);    
   418     }
   419 
   420   private: 
   421 
   422  
   423     void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   424 		    UFE& blossom, NV& rep, EFE& tree) {
   425       //We have one tree which we grow, and also shrink but only if it
   426       //cannot be postponed. If we augment then we return to the "for"
   427       //cycle of runEdmonds().
   428 
   429       std::queue<Node> Q;   //queue of the totally unscanned nodes
   430       Q.push(v);  
   431       std::queue<Node> R;   
   432       //queue of the nodes which must be scanned for a possible shrink
   433       
   434       while ( !Q.empty() ) {
   435 	Node x=Q.front();
   436 	Q.pop();
   437 	for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
   438 	  Node y=g.runningNode(e);
   439 	  //growOrAugment grows if y is covered by the matching and
   440 	  //augments if not. In this latter case it returns 1.
   441 	  if (position[y]==C && 
   442 	      growOrAugment(y, x, ear, blossom, rep, tree, Q)) return;
   443 	}
   444 	R.push(x);
   445       }
   446       
   447       while ( !R.empty() ) {
   448 	Node x=R.front();
   449 	R.pop();
   450 	
   451 	for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
   452 	  Node y=g.runningNode(e);
   453 
   454 	  if ( position[y] == D && blossom.find(x) != blossom.find(y) )  
   455 	    //Recall that we have only one tree.
   456 	    shrink( x, y, ear, blossom, rep, tree, Q);	
   457 	
   458 	  while ( !Q.empty() ) {
   459 	    Node z=Q.front();
   460 	    Q.pop();
   461 	    for( IncEdgeIt f(g,z); f!= INVALID; ++f ) {
   462 	      Node w=g.runningNode(f);
   463 	      //growOrAugment grows if y is covered by the matching and
   464 	      //augments if not. In this latter case it returns 1.
   465 	      if (position[w]==C && 
   466 		  growOrAugment(w, z, ear, blossom, rep, tree, Q)) return;
   467 	    }
   468 	    R.push(z);
   469 	  }
   470 	} //for e
   471       } // while ( !R.empty() )
   472     }
   473 
   474     void normShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   475 		    UFE& blossom, NV& rep, EFE& tree) {
   476       //We have one tree, which we grow and shrink. If we augment then we
   477       //return to the "for" cycle of runEdmonds().
   478     
   479       std::queue<Node> Q;   //queue of the unscanned nodes
   480       Q.push(v);  
   481       while ( !Q.empty() ) {
   482 
   483 	Node x=Q.front();
   484 	Q.pop();
   485 	
   486 	for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
   487 	  Node y=g.runningNode(e);
   488 	      
   489 	  switch ( position[y] ) {
   490 	  case D:          //x and y must be in the same tree
   491 	    if ( blossom.find(x) != blossom.find(y))
   492 	      //x and y are in the same tree
   493 	      shrink(x, y, ear, blossom, rep, tree, Q);
   494 	    break;
   495 	  case C:
   496 	    //growOrAugment grows if y is covered by the matching and
   497 	    //augments if not. In this latter case it returns 1.
   498 	    if (growOrAugment(y, x, ear, blossom, rep, tree, Q)) return;
   499 	    break;
   500 	  default: break;
   501 	  }
   502 	}
   503       }
   504     }
   505 
   506     void shrink(Node x,Node y, typename Graph::template NodeMap<Node>& ear,  
   507 		UFE& blossom, NV& rep, EFE& tree,std::queue<Node>& Q) {
   508       //x and y are the two adjacent vertices in two blossoms.
   509    
   510       typename Graph::template NodeMap<bool> path(g,false);
   511     
   512       Node b=rep[blossom.find(x)];
   513       path.set(b,true);
   514       b=_mate[b];
   515       while ( b!=INVALID ) { 
   516 	b=rep[blossom.find(ear[b])];
   517 	path.set(b,true);
   518 	b=_mate[b];
   519       } //we go until the root through bases of blossoms and odd vertices
   520     
   521       Node top=y;
   522       Node middle=rep[blossom.find(top)];
   523       Node bottom=x;
   524       while ( !path[middle] )
   525 	shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q);
   526       //Until we arrive to a node on the path, we update blossom, tree
   527       //and the positions of the odd nodes.
   528     
   529       Node base=middle;
   530       top=x;
   531       middle=rep[blossom.find(top)];
   532       bottom=y;
   533       Node blossom_base=rep[blossom.find(base)];
   534       while ( middle!=blossom_base )
   535 	shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q);
   536       //Until we arrive to a node on the path, we update blossom, tree
   537       //and the positions of the odd nodes.
   538     
   539       rep[blossom.find(base)] = base;
   540     }
   541 
   542     void shrinkStep(Node& top, Node& middle, Node& bottom,
   543 		    typename Graph::template NodeMap<Node>& ear,  
   544 		    UFE& blossom, NV& rep, EFE& tree, std::queue<Node>& Q) {
   545       //We traverse a blossom and update everything.
   546     
   547       ear.set(top,bottom);
   548       Node t=top;
   549       while ( t!=middle ) {
   550 	Node u=_mate[t];
   551 	t=ear[u];
   552 	ear.set(t,u);
   553       } 
   554       bottom=_mate[middle];
   555       position.set(bottom,D);
   556       Q.push(bottom);
   557       top=ear[bottom];		
   558       Node oldmiddle=middle;
   559       middle=rep[blossom.find(top)];
   560       tree.erase(bottom);
   561       tree.erase(oldmiddle);
   562       blossom.insert(bottom);
   563       blossom.join(bottom, oldmiddle);
   564       blossom.join(top, oldmiddle);
   565     }
   566 
   567 
   568 
   569     bool growOrAugment(Node& y, Node& x, typename Graph::template 
   570 		       NodeMap<Node>& ear, UFE& blossom, NV& rep, EFE& tree, 
   571 		       std::queue<Node>& Q) {
   572       //x is in a blossom in the tree, y is outside. If y is covered by
   573       //the matching we grow, otherwise we augment. In this case we
   574       //return 1.
   575     
   576       if ( _mate[y]!=INVALID ) {       //grow
   577 	ear.set(y,x);
   578 	Node w=_mate[y];
   579 	rep[blossom.insert(w)] = w;
   580 	position.set(y,A);
   581 	position.set(w,D);
   582 	int t = tree.find(rep[blossom.find(x)]);
   583 	tree.insert(y,t);  
   584 	tree.insert(w,t);  
   585 	Q.push(w);
   586       } else {                      //augment 
   587 	augment(x, ear, blossom, rep, tree);
   588 	_mate.set(x,y);
   589 	_mate.set(y,x);
   590 	return true;
   591       }
   592       return false;
   593     }
   594 
   595     void augment(Node x, typename Graph::template NodeMap<Node>& ear,  
   596 		 UFE& blossom, NV& rep, EFE& tree) {
   597       Node v=_mate[x];
   598       while ( v!=INVALID ) {
   599 	
   600 	Node u=ear[v];
   601 	_mate.set(v,u);
   602 	Node tmp=v;
   603 	v=_mate[u];
   604 	_mate.set(u,tmp);
   605       }
   606       int y = tree.find(rep[blossom.find(x)]);
   607       for (typename EFE::ItemIt tit(tree, y); tit != INVALID; ++tit) {   
   608 	if ( position[tit] == D ) {
   609 	  int b = blossom.find(tit);
   610 	  for (typename UFE::ItemIt bit(blossom, b); bit != INVALID; ++bit) { 
   611 	    position.set(bit, C);
   612 	  }
   613 	  blossom.eraseClass(b);
   614 	} else position.set(tit, C);
   615       }
   616       tree.eraseClass(y);
   617 
   618     }
   619 
   620   };
   621   
   622 } //END OF NAMESPACE LEMON
   623 
   624 #endif //LEMON_MAX_MATCHING_H