lemon/topology.h
author deba
Wed, 14 Nov 2007 17:53:08 +0000
changeset 2513 26983135fd6d
parent 2421 160ebfb944a9
child 2529 93de38566e6c
permissions -rw-r--r--
Query the result value of an expression
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_TOPOLOGY_H
    20 #define LEMON_TOPOLOGY_H
    21 
    22 #include <lemon/dfs.h>
    23 #include <lemon/bfs.h>
    24 #include <lemon/graph_utils.h>
    25 #include <lemon/graph_adaptor.h>
    26 #include <lemon/maps.h>
    27 
    28 #include <lemon/concepts/graph.h>
    29 #include <lemon/concepts/ugraph.h>
    30 #include <lemon/concept_check.h>
    31 
    32 #include <lemon/bin_heap.h>
    33 #include <lemon/bucket_heap.h>
    34 
    35 #include <stack>
    36 #include <functional>
    37 
    38 /// \ingroup graph_prop
    39 /// \file
    40 /// \brief Topology related algorithms
    41 ///
    42 /// Topology related algorithms
    43 
    44 namespace lemon {
    45 
    46   /// \ingroup graph_prop
    47   ///
    48   /// \brief Check that the given undirected graph is connected.
    49   ///
    50   /// Check that the given undirected graph connected.
    51   /// \param graph The undirected graph.
    52   /// \return %True when there is path between any two nodes in the graph.
    53   /// \note By definition, the empty graph is connected.
    54   template <typename UGraph>
    55   bool connected(const UGraph& graph) {
    56     checkConcept<concepts::UGraph, UGraph>();
    57     typedef typename UGraph::NodeIt NodeIt;
    58     if (NodeIt(graph) == INVALID) return true;
    59     Dfs<UGraph> dfs(graph);
    60     dfs.run(NodeIt(graph));
    61     for (NodeIt it(graph); it != INVALID; ++it) {
    62       if (!dfs.reached(it)) {
    63 	return false;
    64       }
    65     }
    66     return true;
    67   }
    68 
    69   /// \ingroup graph_prop
    70   ///
    71   /// \brief Count the number of connected components of an undirected graph
    72   ///
    73   /// Count the number of connected components of an undirected graph
    74   ///
    75   /// \param graph The graph. It should be undirected.
    76   /// \return The number of components
    77   /// \note By definition, the empty graph consists
    78   /// of zero connected components.
    79   template <typename UGraph>
    80   int countConnectedComponents(const UGraph &graph) {
    81     checkConcept<concepts::UGraph, UGraph>();
    82     typedef typename UGraph::Node Node;
    83     typedef typename UGraph::Edge Edge;
    84 
    85     typedef NullMap<Node, Edge> PredMap;
    86     typedef NullMap<Node, int> DistMap;
    87 
    88     int compNum = 0;
    89     typename Bfs<UGraph>::
    90       template DefPredMap<PredMap>::
    91       template DefDistMap<DistMap>::
    92       Create bfs(graph);
    93 
    94     PredMap predMap;
    95     bfs.predMap(predMap);
    96 
    97     DistMap distMap;
    98     bfs.distMap(distMap);
    99 
   100     bfs.init();
   101     for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) {
   102       if (!bfs.reached(n)) {
   103 	bfs.addSource(n);
   104 	bfs.start();
   105 	++compNum;
   106       }
   107     }
   108     return compNum;
   109   }
   110 
   111   /// \ingroup graph_prop
   112   ///
   113   /// \brief Find the connected components of an undirected graph
   114   ///
   115   /// Find the connected components of an undirected graph.
   116   ///
   117   /// \image html connected_components.png
   118   /// \image latex connected_components.eps "Connected components" width=\textwidth
   119   ///
   120   /// \param graph The graph. It should be undirected.
   121   /// \retval compMap A writable node map. The values will be set from 0 to
   122   /// the number of the connected components minus one. Each values of the map
   123   /// will be set exactly once, the values of a certain component will be
   124   /// set continuously.
   125   /// \return The number of components
   126   ///
   127   template <class UGraph, class NodeMap>
   128   int connectedComponents(const UGraph &graph, NodeMap &compMap) {
   129     checkConcept<concepts::UGraph, UGraph>();
   130     typedef typename UGraph::Node Node;
   131     typedef typename UGraph::Edge Edge;
   132     checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
   133 
   134     typedef NullMap<Node, Edge> PredMap;
   135     typedef NullMap<Node, int> DistMap;
   136 
   137     int compNum = 0;
   138     typename Bfs<UGraph>::
   139       template DefPredMap<PredMap>::
   140       template DefDistMap<DistMap>::
   141       Create bfs(graph);
   142 
   143     PredMap predMap;
   144     bfs.predMap(predMap);
   145 
   146     DistMap distMap;
   147     bfs.distMap(distMap);
   148     
   149     bfs.init();
   150     for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) {
   151       if(!bfs.reached(n)) {
   152 	bfs.addSource(n);
   153 	while (!bfs.emptyQueue()) {
   154 	  compMap.set(bfs.nextNode(), compNum);
   155 	  bfs.processNextNode();
   156 	}
   157 	++compNum;
   158       }
   159     }
   160     return compNum;
   161   }
   162 
   163   namespace _topology_bits {
   164 
   165     template <typename Graph, typename Iterator >
   166     struct LeaveOrderVisitor : public DfsVisitor<Graph> {
   167     public:
   168       typedef typename Graph::Node Node;
   169       LeaveOrderVisitor(Iterator it) : _it(it) {}
   170 
   171       void leave(const Node& node) {
   172 	*(_it++) = node;
   173       }
   174 
   175     private:
   176       Iterator _it;
   177     };
   178 
   179     template <typename Graph, typename Map>
   180     struct FillMapVisitor : public DfsVisitor<Graph> {
   181     public:
   182       typedef typename Graph::Node Node;
   183       typedef typename Map::Value Value;
   184 
   185       FillMapVisitor(Map& map, Value& value) 
   186 	: _map(map), _value(value) {}
   187 
   188       void reach(const Node& node) {
   189 	_map.set(node, _value);
   190       }
   191     private:
   192       Map& _map;
   193       Value& _value;
   194     };
   195 
   196     template <typename Graph, typename EdgeMap>
   197     struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Graph> {
   198     public:
   199       typedef typename Graph::Node Node;
   200       typedef typename Graph::Edge Edge;
   201 
   202       StronglyConnectedCutEdgesVisitor(const Graph& graph, EdgeMap& cutMap, 
   203 				       int& cutNum) 
   204 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), 
   205 	  _compMap(graph), _num(0) {
   206       }
   207 
   208       void stop(const Node&) {
   209 	++_num;
   210       }
   211 
   212       void reach(const Node& node) {
   213 	_compMap.set(node, _num);
   214       }
   215 
   216       void examine(const Edge& edge) {
   217  	if (_compMap[_graph.source(edge)] != _compMap[_graph.target(edge)]) {
   218  	  _cutMap.set(edge, true);
   219  	  ++_cutNum;
   220  	}
   221       }
   222     private:
   223       const Graph& _graph;
   224       EdgeMap& _cutMap;
   225       int& _cutNum;
   226 
   227       typename Graph::template NodeMap<int> _compMap;
   228       int _num;
   229     };
   230 
   231   }
   232 
   233 
   234   /// \ingroup graph_prop
   235   ///
   236   /// \brief Check that the given directed graph is strongly connected.
   237   ///
   238   /// Check that the given directed graph is strongly connected. The
   239   /// graph is strongly connected when any two nodes of the graph are
   240   /// connected with directed paths in both direction.
   241   /// \return %False when the graph is not strongly connected.
   242   /// \see connected
   243   ///
   244   /// \note By definition, the empty graph is strongly connected.
   245   template <typename Graph>
   246   bool stronglyConnected(const Graph& graph) {
   247     checkConcept<concepts::Graph, Graph>();
   248 
   249     typedef typename Graph::Node Node;
   250     typedef typename Graph::NodeIt NodeIt;
   251 
   252     if (NodeIt(graph) == INVALID) return true;
   253 
   254     using namespace _topology_bits;
   255 
   256     typedef DfsVisitor<Graph> Visitor;
   257     Visitor visitor;
   258 
   259     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   260     dfs.init();
   261     dfs.addSource(NodeIt(graph));
   262     dfs.start();
   263 
   264     for (NodeIt it(graph); it != INVALID; ++it) {
   265       if (!dfs.reached(it)) {
   266 	return false;
   267       }
   268     }
   269 
   270     typedef RevGraphAdaptor<const Graph> RGraph;
   271     RGraph rgraph(graph);
   272 
   273     typedef DfsVisitor<Graph> RVisitor;
   274     RVisitor rvisitor;
   275 
   276     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   277     rdfs.init();    
   278     rdfs.addSource(NodeIt(graph));
   279     rdfs.start();
   280 
   281     for (NodeIt it(graph); it != INVALID; ++it) {
   282       if (!rdfs.reached(it)) {
   283 	return false;
   284       }
   285     }
   286 
   287     return true;
   288   }
   289 
   290   /// \ingroup graph_prop
   291   ///
   292   /// \brief Count the strongly connected components of a directed graph
   293   ///
   294   /// Count the strongly connected components of a directed graph.
   295   /// The strongly connected components are the classes of an
   296   /// equivalence relation on the nodes of the graph. Two nodes are in
   297   /// the same class if they are connected with directed paths in both
   298   /// direction. 
   299   ///
   300   /// \param graph The graph.
   301   /// \return The number of components
   302   /// \note By definition, the empty graph has zero
   303   /// strongly connected components.
   304   template <typename Graph>
   305   int countStronglyConnectedComponents(const Graph& graph) {
   306     checkConcept<concepts::Graph, Graph>();
   307 
   308     using namespace _topology_bits;
   309 
   310     typedef typename Graph::Node Node;
   311     typedef typename Graph::Edge Edge;
   312     typedef typename Graph::NodeIt NodeIt;
   313     typedef typename Graph::EdgeIt EdgeIt;
   314     
   315     typedef std::vector<Node> Container;
   316     typedef typename Container::iterator Iterator;
   317 
   318     Container nodes(countNodes(graph));
   319     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   320     Visitor visitor(nodes.begin());
   321       
   322     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   323     dfs.init();
   324     for (NodeIt it(graph); it != INVALID; ++it) {
   325       if (!dfs.reached(it)) {
   326 	dfs.addSource(it);
   327 	dfs.start();
   328       }
   329     }
   330 
   331     typedef typename Container::reverse_iterator RIterator;
   332     typedef RevGraphAdaptor<const Graph> RGraph;
   333 
   334     RGraph rgraph(graph);
   335 
   336     typedef DfsVisitor<Graph> RVisitor;
   337     RVisitor rvisitor;
   338 
   339     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   340 
   341     int compNum = 0;
   342 
   343     rdfs.init();
   344     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   345       if (!rdfs.reached(*it)) {
   346 	rdfs.addSource(*it);
   347 	rdfs.start();
   348 	++compNum;
   349       }
   350     }
   351     return compNum;
   352   }
   353 
   354   /// \ingroup graph_prop
   355   ///
   356   /// \brief Find the strongly connected components of a directed graph
   357   ///
   358   /// Find the strongly connected components of a directed graph.  The
   359   /// strongly connected components are the classes of an equivalence
   360   /// relation on the nodes of the graph. Two nodes are in
   361   /// relationship when there are directed paths between them in both
   362   /// direction. In addition, the numbering of components will satisfy
   363   /// that there is no edge going from a higher numbered component to
   364   /// a lower.
   365   ///
   366   /// \image html strongly_connected_components.png
   367   /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
   368   ///
   369   /// \param graph The graph.
   370   /// \retval compMap A writable node map. The values will be set from 0 to
   371   /// the number of the strongly connected components minus one. Each value 
   372   /// of the map will be set exactly once, the values of a certain component 
   373   /// will be set continuously.
   374   /// \return The number of components
   375   ///
   376   template <typename Graph, typename NodeMap>
   377   int stronglyConnectedComponents(const Graph& graph, NodeMap& compMap) {
   378     checkConcept<concepts::Graph, Graph>();
   379     typedef typename Graph::Node Node;
   380     typedef typename Graph::NodeIt NodeIt;
   381     checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
   382 
   383     using namespace _topology_bits;
   384     
   385     typedef std::vector<Node> Container;
   386     typedef typename Container::iterator Iterator;
   387 
   388     Container nodes(countNodes(graph));
   389     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   390     Visitor visitor(nodes.begin());
   391       
   392     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   393     dfs.init();
   394     for (NodeIt it(graph); it != INVALID; ++it) {
   395       if (!dfs.reached(it)) {
   396 	dfs.addSource(it);
   397 	dfs.start();
   398       }
   399     }
   400 
   401     typedef typename Container::reverse_iterator RIterator;
   402     typedef RevGraphAdaptor<const Graph> RGraph;
   403 
   404     RGraph rgraph(graph);
   405 
   406     int compNum = 0;
   407 
   408     typedef FillMapVisitor<RGraph, NodeMap> RVisitor;
   409     RVisitor rvisitor(compMap, compNum);
   410 
   411     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   412 
   413     rdfs.init();
   414     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   415       if (!rdfs.reached(*it)) {
   416 	rdfs.addSource(*it);
   417 	rdfs.start();
   418 	++compNum;
   419       }
   420     }
   421     return compNum;
   422   }
   423 
   424   /// \ingroup graph_prop
   425   ///
   426   /// \brief Find the cut edges of the strongly connected components.
   427   ///
   428   /// Find the cut edges of the strongly connected components.
   429   /// The strongly connected components are the classes of an equivalence
   430   /// relation on the nodes of the graph. Two nodes are in relationship
   431   /// when there are directed paths between them in both direction.
   432   /// The strongly connected components are separated by the cut edges.
   433   ///
   434   /// \param graph The graph.
   435   /// \retval cutMap A writable node map. The values will be set true when the
   436   /// edge is a cut edge.
   437   ///
   438   /// \return The number of cut edges
   439   template <typename Graph, typename EdgeMap>
   440   int stronglyConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
   441     checkConcept<concepts::Graph, Graph>();
   442     typedef typename Graph::Node Node;
   443     typedef typename Graph::Edge Edge;
   444     typedef typename Graph::NodeIt NodeIt;
   445     checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
   446 
   447     using namespace _topology_bits;
   448     
   449     typedef std::vector<Node> Container;
   450     typedef typename Container::iterator Iterator;
   451 
   452     Container nodes(countNodes(graph));
   453     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   454     Visitor visitor(nodes.begin());
   455       
   456     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   457     dfs.init();
   458     for (NodeIt it(graph); it != INVALID; ++it) {
   459       if (!dfs.reached(it)) {
   460 	dfs.addSource(it);
   461 	dfs.start();
   462       }
   463     }
   464 
   465     typedef typename Container::reverse_iterator RIterator;
   466     typedef RevGraphAdaptor<const Graph> RGraph;
   467 
   468     RGraph rgraph(graph);
   469 
   470     int cutNum = 0;
   471 
   472     typedef StronglyConnectedCutEdgesVisitor<RGraph, EdgeMap> RVisitor;
   473     RVisitor rvisitor(rgraph, cutMap, cutNum);
   474 
   475     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   476 
   477     rdfs.init();
   478     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   479       if (!rdfs.reached(*it)) {
   480 	rdfs.addSource(*it);
   481 	rdfs.start();
   482       }
   483     }
   484     return cutNum;
   485   }
   486 
   487   namespace _topology_bits {
   488     
   489     template <typename Graph>
   490     class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   491     public:
   492       typedef typename Graph::Node Node;
   493       typedef typename Graph::Edge Edge;
   494       typedef typename Graph::UEdge UEdge;
   495 
   496       CountBiNodeConnectedComponentsVisitor(const Graph& graph, int &compNum) 
   497 	: _graph(graph), _compNum(compNum), 
   498 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   499 
   500       void start(const Node& node) {
   501 	_predMap.set(node, INVALID);
   502       }
   503       
   504       void reach(const Node& node) {
   505 	_numMap.set(node, _num);
   506 	_retMap.set(node, _num);
   507 	++_num;
   508       }
   509 
   510       void discover(const Edge& edge) {
   511 	_predMap.set(_graph.target(edge), _graph.source(edge));
   512       }
   513 
   514       void examine(const Edge& edge) {
   515 	if (_graph.source(edge) == _graph.target(edge) && 
   516 	    _graph.direction(edge)) {
   517 	  ++_compNum;
   518 	  return;
   519 	}
   520 	if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
   521 	  return;
   522 	}
   523 	if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   524 	  _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   525 	}
   526       }
   527 
   528       void backtrack(const Edge& edge) {
   529 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   530 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   531 	}  
   532 	if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   533 	  ++_compNum;
   534 	}
   535       }
   536       
   537     private:
   538       const Graph& _graph;
   539       int& _compNum; 
   540 
   541       typename Graph::template NodeMap<int> _numMap;
   542       typename Graph::template NodeMap<int> _retMap;
   543       typename Graph::template NodeMap<Node> _predMap;
   544       int _num;
   545     };
   546 
   547     template <typename Graph, typename EdgeMap>
   548     class BiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   549     public:
   550       typedef typename Graph::Node Node;
   551       typedef typename Graph::Edge Edge;
   552       typedef typename Graph::UEdge UEdge;
   553 
   554       BiNodeConnectedComponentsVisitor(const Graph& graph, 
   555 				       EdgeMap& compMap, int &compNum) 
   556 	: _graph(graph), _compMap(compMap), _compNum(compNum), 
   557 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   558 
   559       void start(const Node& node) {
   560 	_predMap.set(node, INVALID);
   561       }
   562       
   563       void reach(const Node& node) {
   564 	_numMap.set(node, _num);
   565 	_retMap.set(node, _num);
   566 	++_num;
   567       }
   568 
   569       void discover(const Edge& edge) {
   570 	Node target = _graph.target(edge);
   571 	_predMap.set(target, edge);
   572 	_edgeStack.push(edge);
   573       }
   574 
   575       void examine(const Edge& edge) {
   576 	Node source = _graph.source(edge);
   577 	Node target = _graph.target(edge);
   578 	if (source == target && _graph.direction(edge)) {
   579 	  _compMap.set(edge, _compNum);
   580 	  ++_compNum;
   581 	  return;
   582 	}
   583 	if (_numMap[target] < _numMap[source]) {
   584 	  if (_predMap[source] != _graph.oppositeEdge(edge)) {
   585 	    _edgeStack.push(edge);
   586 	  }
   587 	}
   588 	if (_predMap[source] != INVALID && 
   589 	    target == _graph.source(_predMap[source])) {
   590 	  return;
   591 	}
   592 	if (_retMap[source] > _numMap[target]) {
   593 	  _retMap.set(source, _numMap[target]);
   594 	}
   595       }
   596 
   597       void backtrack(const Edge& edge) {
   598 	Node source = _graph.source(edge);
   599 	Node target = _graph.target(edge);
   600 	if (_retMap[source] > _retMap[target]) {
   601 	  _retMap.set(source, _retMap[target]);
   602 	}  
   603 	if (_numMap[source] <= _retMap[target]) {
   604 	  while (_edgeStack.top() != edge) {
   605 	    _compMap.set(_edgeStack.top(), _compNum);
   606 	    _edgeStack.pop();
   607 	  }
   608 	  _compMap.set(edge, _compNum);
   609 	  _edgeStack.pop();
   610 	  ++_compNum;
   611 	}
   612       }
   613       
   614     private:
   615       const Graph& _graph;
   616       EdgeMap& _compMap;
   617       int& _compNum; 
   618 
   619       typename Graph::template NodeMap<int> _numMap;
   620       typename Graph::template NodeMap<int> _retMap;
   621       typename Graph::template NodeMap<Edge> _predMap;
   622       std::stack<UEdge> _edgeStack;
   623       int _num;
   624     };
   625 
   626 
   627     template <typename Graph, typename NodeMap>
   628     class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Graph> {
   629     public:
   630       typedef typename Graph::Node Node;
   631       typedef typename Graph::Edge Edge;
   632       typedef typename Graph::UEdge UEdge;
   633 
   634       BiNodeConnectedCutNodesVisitor(const Graph& graph, NodeMap& cutMap,
   635 				     int& cutNum) 
   636 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
   637 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   638 
   639       void start(const Node& node) {
   640 	_predMap.set(node, INVALID);
   641 	rootCut = false;
   642       }
   643       
   644       void reach(const Node& node) {
   645 	_numMap.set(node, _num);
   646 	_retMap.set(node, _num);
   647 	++_num;
   648       }
   649 
   650       void discover(const Edge& edge) {
   651 	_predMap.set(_graph.target(edge), _graph.source(edge));
   652       }
   653 
   654       void examine(const Edge& edge) {
   655 	if (_graph.source(edge) == _graph.target(edge) && 
   656 	    _graph.direction(edge)) {
   657 	  if (!_cutMap[_graph.source(edge)]) {
   658 	    _cutMap.set(_graph.source(edge), true);
   659 	    ++_cutNum;
   660 	  }
   661 	  return;
   662 	}
   663 	if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
   664 	if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   665 	  _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   666 	}
   667       }
   668 
   669       void backtrack(const Edge& edge) {
   670 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   671 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   672 	}  
   673 	if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   674 	  if (_predMap[_graph.source(edge)] != INVALID) {
   675 	    if (!_cutMap[_graph.source(edge)]) {
   676 	      _cutMap.set(_graph.source(edge), true);
   677 	      ++_cutNum;
   678 	    }
   679 	  } else if (rootCut) {
   680 	    if (!_cutMap[_graph.source(edge)]) {
   681 	      _cutMap.set(_graph.source(edge), true);
   682 	      ++_cutNum;
   683 	    }
   684 	  } else {
   685 	    rootCut = true;
   686 	  }
   687 	}
   688       }
   689       
   690     private:
   691       const Graph& _graph;
   692       NodeMap& _cutMap;
   693       int& _cutNum; 
   694 
   695       typename Graph::template NodeMap<int> _numMap;
   696       typename Graph::template NodeMap<int> _retMap;
   697       typename Graph::template NodeMap<Node> _predMap;
   698       std::stack<UEdge> _edgeStack;
   699       int _num;
   700       bool rootCut;
   701     };
   702 
   703   }
   704 
   705   template <typename UGraph>
   706   int countBiNodeConnectedComponents(const UGraph& graph);
   707 
   708   /// \ingroup graph_prop
   709   ///
   710   /// \brief Checks the graph is bi-node-connected.
   711   ///
   712   /// This function checks that the undirected graph is bi-node-connected  
   713   /// graph. The graph is bi-node-connected if any two undirected edge is 
   714   /// on same circle.
   715   ///
   716   /// \param graph The graph.
   717   /// \return %True when the graph bi-node-connected.
   718   /// \todo Make it faster.
   719   template <typename UGraph>
   720   bool biNodeConnected(const UGraph& graph) {
   721     return countBiNodeConnectedComponents(graph) == 1;
   722   }
   723 
   724   /// \ingroup graph_prop
   725   ///
   726   /// \brief Count the biconnected components.
   727   ///
   728   /// This function finds the bi-node-connected components in an undirected 
   729   /// graph. The biconnected components are the classes of an equivalence 
   730   /// relation on the undirected edges. Two undirected edge is in relationship
   731   /// when they are on same circle.
   732   ///
   733   /// \param graph The graph.
   734   /// \return The number of components.
   735   template <typename UGraph>
   736   int countBiNodeConnectedComponents(const UGraph& graph) {
   737     checkConcept<concepts::UGraph, UGraph>();
   738     typedef typename UGraph::NodeIt NodeIt;
   739 
   740     using namespace _topology_bits;
   741 
   742     typedef CountBiNodeConnectedComponentsVisitor<UGraph> Visitor;
   743 
   744     int compNum = 0;
   745     Visitor visitor(graph, compNum);
   746 
   747     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
   748     dfs.init();
   749     
   750     for (NodeIt it(graph); it != INVALID; ++it) {
   751       if (!dfs.reached(it)) {
   752 	dfs.addSource(it);
   753 	dfs.start();
   754       }
   755     }
   756     return compNum;
   757   }
   758 
   759   /// \ingroup graph_prop
   760   ///
   761   /// \brief Find the bi-node-connected components.
   762   ///
   763   /// This function finds the bi-node-connected components in an undirected 
   764   /// graph. The bi-node-connected components are the classes of an equivalence
   765   /// relation on the undirected edges. Two undirected edge are in relationship
   766   /// when they are on same circle.
   767   ///
   768   /// \image html node_biconnected_components.png
   769   /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
   770   ///
   771   /// \param graph The graph.
   772   /// \retval compMap A writable uedge map. The values will be set from 0
   773   /// to the number of the biconnected components minus one. Each values 
   774   /// of the map will be set exactly once, the values of a certain component 
   775   /// will be set continuously.
   776   /// \return The number of components.
   777   ///
   778   template <typename UGraph, typename UEdgeMap>
   779   int biNodeConnectedComponents(const UGraph& graph, 
   780 				UEdgeMap& compMap) {
   781     checkConcept<concepts::UGraph, UGraph>();
   782     typedef typename UGraph::NodeIt NodeIt;
   783     typedef typename UGraph::UEdge UEdge;
   784     checkConcept<concepts::WriteMap<UEdge, int>, UEdgeMap>();
   785 
   786     using namespace _topology_bits;
   787 
   788     typedef BiNodeConnectedComponentsVisitor<UGraph, UEdgeMap> Visitor;
   789     
   790     int compNum = 0;
   791     Visitor visitor(graph, compMap, compNum);
   792 
   793     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
   794     dfs.init();
   795     
   796     for (NodeIt it(graph); it != INVALID; ++it) {
   797       if (!dfs.reached(it)) {
   798 	dfs.addSource(it);
   799 	dfs.start();
   800       }
   801     }
   802     return compNum;
   803   }
   804 
   805   /// \ingroup graph_prop
   806   ///
   807   /// \brief Find the bi-node-connected cut nodes.
   808   ///
   809   /// This function finds the bi-node-connected cut nodes in an undirected 
   810   /// graph. The bi-node-connected components are the classes of an equivalence
   811   /// relation on the undirected edges. Two undirected edges are in 
   812   /// relationship when they are on same circle. The biconnected components 
   813   /// are separted by nodes which are the cut nodes of the components.
   814   ///
   815   /// \param graph The graph.
   816   /// \retval cutMap A writable edge map. The values will be set true when
   817   /// the node separate two or more components.
   818   /// \return The number of the cut nodes.
   819   template <typename UGraph, typename NodeMap>
   820   int biNodeConnectedCutNodes(const UGraph& graph, NodeMap& cutMap) {
   821     checkConcept<concepts::UGraph, UGraph>();
   822     typedef typename UGraph::Node Node;
   823     typedef typename UGraph::NodeIt NodeIt;
   824     checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
   825 
   826     using namespace _topology_bits;
   827 
   828     typedef BiNodeConnectedCutNodesVisitor<UGraph, NodeMap> Visitor;
   829     
   830     int cutNum = 0;
   831     Visitor visitor(graph, cutMap, cutNum);
   832 
   833     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
   834     dfs.init();
   835     
   836     for (NodeIt it(graph); it != INVALID; ++it) {
   837       if (!dfs.reached(it)) {
   838 	dfs.addSource(it);
   839 	dfs.start();
   840       }
   841     }
   842     return cutNum;
   843   }
   844 
   845   namespace _topology_bits {
   846     
   847     template <typename Graph>
   848     class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   849     public:
   850       typedef typename Graph::Node Node;
   851       typedef typename Graph::Edge Edge;
   852       typedef typename Graph::UEdge UEdge;
   853 
   854       CountBiEdgeConnectedComponentsVisitor(const Graph& graph, int &compNum) 
   855 	: _graph(graph), _compNum(compNum), 
   856 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   857 
   858       void start(const Node& node) {
   859 	_predMap.set(node, INVALID);
   860       }
   861       
   862       void reach(const Node& node) {
   863 	_numMap.set(node, _num);
   864 	_retMap.set(node, _num);
   865 	++_num;
   866       }
   867       
   868       void leave(const Node& node) {
   869 	if (_numMap[node] <= _retMap[node]) {
   870 	  ++_compNum;
   871 	}	
   872       }
   873 
   874       void discover(const Edge& edge) {
   875 	_predMap.set(_graph.target(edge), edge);
   876       }
   877 
   878       void examine(const Edge& edge) {
   879 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   880 	  return;
   881 	}
   882 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   883 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   884 	}
   885       }
   886 
   887       void backtrack(const Edge& edge) {
   888 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   889 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   890 	}  
   891       }
   892       
   893     private:
   894       const Graph& _graph;
   895       int& _compNum; 
   896 
   897       typename Graph::template NodeMap<int> _numMap;
   898       typename Graph::template NodeMap<int> _retMap;
   899       typename Graph::template NodeMap<Edge> _predMap;
   900       int _num;
   901     };
   902 
   903     template <typename Graph, typename NodeMap>
   904     class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   905     public:
   906       typedef typename Graph::Node Node;
   907       typedef typename Graph::Edge Edge;
   908       typedef typename Graph::UEdge UEdge;
   909 
   910       BiEdgeConnectedComponentsVisitor(const Graph& graph, 
   911 				       NodeMap& compMap, int &compNum) 
   912 	: _graph(graph), _compMap(compMap), _compNum(compNum), 
   913 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   914 
   915       void start(const Node& node) {
   916 	_predMap.set(node, INVALID);
   917       }
   918       
   919       void reach(const Node& node) {
   920 	_numMap.set(node, _num);
   921 	_retMap.set(node, _num);
   922 	_nodeStack.push(node);
   923 	++_num;
   924       }
   925       
   926       void leave(const Node& node) {
   927 	if (_numMap[node] <= _retMap[node]) {
   928 	  while (_nodeStack.top() != node) {
   929 	    _compMap.set(_nodeStack.top(), _compNum);
   930 	    _nodeStack.pop();
   931 	  }
   932 	  _compMap.set(node, _compNum);
   933 	  _nodeStack.pop();
   934 	  ++_compNum;
   935 	}	
   936       }
   937 
   938       void discover(const Edge& edge) {
   939 	_predMap.set(_graph.target(edge), edge);
   940       }
   941 
   942       void examine(const Edge& edge) {
   943 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   944 	  return;
   945 	}
   946 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   947 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   948 	}
   949       }
   950 
   951       void backtrack(const Edge& edge) {
   952 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   953 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   954 	}  
   955       }
   956       
   957     private:
   958       const Graph& _graph;
   959       NodeMap& _compMap;
   960       int& _compNum; 
   961 
   962       typename Graph::template NodeMap<int> _numMap;
   963       typename Graph::template NodeMap<int> _retMap;
   964       typename Graph::template NodeMap<Edge> _predMap;
   965       std::stack<Node> _nodeStack;
   966       int _num;
   967     };
   968 
   969 
   970     template <typename Graph, typename EdgeMap>
   971     class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Graph> {
   972     public:
   973       typedef typename Graph::Node Node;
   974       typedef typename Graph::Edge Edge;
   975       typedef typename Graph::UEdge UEdge;
   976 
   977       BiEdgeConnectedCutEdgesVisitor(const Graph& graph, 
   978 				     EdgeMap& cutMap, int &cutNum) 
   979 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), 
   980 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   981 
   982       void start(const Node& node) {
   983 	_predMap[node] = INVALID;
   984       }
   985       
   986       void reach(const Node& node) {
   987 	_numMap.set(node, _num);
   988 	_retMap.set(node, _num);
   989 	++_num;
   990       }
   991       
   992       void leave(const Node& node) {
   993 	if (_numMap[node] <= _retMap[node]) {
   994 	  if (_predMap[node] != INVALID) {
   995 	    _cutMap.set(_predMap[node], true);
   996 	    ++_cutNum;
   997 	  }
   998 	}	
   999       }
  1000 
  1001       void discover(const Edge& edge) {
  1002 	_predMap.set(_graph.target(edge), edge);
  1003       }
  1004 
  1005       void examine(const Edge& edge) {
  1006 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
  1007 	  return;
  1008 	}
  1009 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1010 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1011 	}
  1012       }
  1013 
  1014       void backtrack(const Edge& edge) {
  1015 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1016 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1017 	}  
  1018       }
  1019       
  1020     private:
  1021       const Graph& _graph;
  1022       EdgeMap& _cutMap;
  1023       int& _cutNum; 
  1024 
  1025       typename Graph::template NodeMap<int> _numMap;
  1026       typename Graph::template NodeMap<int> _retMap;
  1027       typename Graph::template NodeMap<Edge> _predMap;
  1028       int _num;
  1029     };
  1030   }
  1031 
  1032   template <typename UGraph>
  1033   int countBiEdgeConnectedComponents(const UGraph& graph);
  1034 
  1035   /// \ingroup graph_prop
  1036   ///
  1037   /// \brief Checks that the graph is bi-edge-connected.
  1038   ///
  1039   /// This function checks that the graph is bi-edge-connected. The undirected
  1040   /// graph is bi-edge-connected when any two nodes are connected with two
  1041   /// edge-disjoint paths.
  1042   ///
  1043   /// \param graph The undirected graph.
  1044   /// \return The number of components.
  1045   /// \todo Make it faster.
  1046   template <typename UGraph>
  1047   bool biEdgeConnected(const UGraph& graph) { 
  1048     return countBiEdgeConnectedComponents(graph) == 1;
  1049   }
  1050 
  1051   /// \ingroup graph_prop
  1052   ///
  1053   /// \brief Count the bi-edge-connected components.
  1054   ///
  1055   /// This function count the bi-edge-connected components in an undirected 
  1056   /// graph. The bi-edge-connected components are the classes of an equivalence
  1057   /// relation on the nodes. Two nodes are in relationship when they are  
  1058   /// connected with at least two edge-disjoint paths.
  1059   ///
  1060   /// \param graph The undirected graph.
  1061   /// \return The number of components.
  1062   template <typename UGraph>
  1063   int countBiEdgeConnectedComponents(const UGraph& graph) { 
  1064     checkConcept<concepts::UGraph, UGraph>();
  1065     typedef typename UGraph::NodeIt NodeIt;
  1066 
  1067     using namespace _topology_bits;
  1068 
  1069     typedef CountBiEdgeConnectedComponentsVisitor<UGraph> Visitor;
  1070     
  1071     int compNum = 0;
  1072     Visitor visitor(graph, compNum);
  1073 
  1074     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
  1075     dfs.init();
  1076     
  1077     for (NodeIt it(graph); it != INVALID; ++it) {
  1078       if (!dfs.reached(it)) {
  1079 	dfs.addSource(it);
  1080 	dfs.start();
  1081       }
  1082     }
  1083     return compNum;
  1084   }
  1085 
  1086   /// \ingroup graph_prop
  1087   ///
  1088   /// \brief Find the bi-edge-connected components.
  1089   ///
  1090   /// This function finds the bi-edge-connected components in an undirected 
  1091   /// graph. The bi-edge-connected components are the classes of an equivalence
  1092   /// relation on the nodes. Two nodes are in relationship when they are  
  1093   /// connected at least two edge-disjoint paths.
  1094   ///
  1095   /// \image html edge_biconnected_components.png
  1096   /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
  1097   ///
  1098   /// \param graph The graph.
  1099   /// \retval compMap A writable node map. The values will be set from 0 to
  1100   /// the number of the biconnected components minus one. Each values 
  1101   /// of the map will be set exactly once, the values of a certain component 
  1102   /// will be set continuously.
  1103   /// \return The number of components.
  1104   ///
  1105   template <typename UGraph, typename NodeMap>
  1106   int biEdgeConnectedComponents(const UGraph& graph, NodeMap& compMap) { 
  1107     checkConcept<concepts::UGraph, UGraph>();
  1108     typedef typename UGraph::NodeIt NodeIt;
  1109     typedef typename UGraph::Node Node;
  1110     checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
  1111 
  1112     using namespace _topology_bits;
  1113 
  1114     typedef BiEdgeConnectedComponentsVisitor<UGraph, NodeMap> Visitor;
  1115     
  1116     int compNum = 0;
  1117     Visitor visitor(graph, compMap, compNum);
  1118 
  1119     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
  1120     dfs.init();
  1121     
  1122     for (NodeIt it(graph); it != INVALID; ++it) {
  1123       if (!dfs.reached(it)) {
  1124 	dfs.addSource(it);
  1125 	dfs.start();
  1126       }
  1127     }
  1128     return compNum;
  1129   }
  1130 
  1131   /// \ingroup graph_prop
  1132   ///
  1133   /// \brief Find the bi-edge-connected cut edges.
  1134   ///
  1135   /// This function finds the bi-edge-connected components in an undirected 
  1136   /// graph. The bi-edge-connected components are the classes of an equivalence
  1137   /// relation on the nodes. Two nodes are in relationship when they are 
  1138   /// connected with at least two edge-disjoint paths. The bi-edge-connected 
  1139   /// components are separted by edges which are the cut edges of the 
  1140   /// components.
  1141   ///
  1142   /// \param graph The graph.
  1143   /// \retval cutMap A writable node map. The values will be set true when the
  1144   /// edge is a cut edge.
  1145   /// \return The number of cut edges.
  1146   template <typename UGraph, typename UEdgeMap>
  1147   int biEdgeConnectedCutEdges(const UGraph& graph, UEdgeMap& cutMap) { 
  1148     checkConcept<concepts::UGraph, UGraph>();
  1149     typedef typename UGraph::NodeIt NodeIt;
  1150     typedef typename UGraph::UEdge UEdge;
  1151     checkConcept<concepts::WriteMap<UEdge, bool>, UEdgeMap>();
  1152 
  1153     using namespace _topology_bits;
  1154 
  1155     typedef BiEdgeConnectedCutEdgesVisitor<UGraph, UEdgeMap> Visitor;
  1156     
  1157     int cutNum = 0;
  1158     Visitor visitor(graph, cutMap, cutNum);
  1159 
  1160     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
  1161     dfs.init();
  1162     
  1163     for (NodeIt it(graph); it != INVALID; ++it) {
  1164       if (!dfs.reached(it)) {
  1165 	dfs.addSource(it);
  1166 	dfs.start();
  1167       }
  1168     }
  1169     return cutNum;
  1170   }
  1171 
  1172 
  1173   namespace _topology_bits {
  1174     
  1175     template <typename Graph, typename IntNodeMap>
  1176     class TopologicalSortVisitor : public DfsVisitor<Graph> {
  1177     public:
  1178       typedef typename Graph::Node Node;
  1179       typedef typename Graph::Edge edge;
  1180 
  1181       TopologicalSortVisitor(IntNodeMap& order, int num) 
  1182 	: _order(order), _num(num) {}
  1183       
  1184       void leave(const Node& node) {
  1185 	_order.set(node, --_num);
  1186       }
  1187 
  1188     private:
  1189       IntNodeMap& _order;
  1190       int _num;
  1191     };
  1192     
  1193   }
  1194 
  1195   /// \ingroup graph_prop
  1196   ///
  1197   /// \brief Sort the nodes of a DAG into topolgical order.
  1198   ///
  1199   /// Sort the nodes of a DAG into topolgical order.
  1200   ///
  1201   /// \param graph The graph. It should be directed and acyclic.
  1202   /// \retval order A writable node map. The values will be set from 0 to
  1203   /// the number of the nodes in the graph minus one. Each values of the map
  1204   /// will be set exactly once, the values  will be set descending order.
  1205   ///
  1206   /// \see checkedTopologicalSort
  1207   /// \see dag
  1208   template <typename Graph, typename NodeMap>
  1209   void topologicalSort(const Graph& graph, NodeMap& order) {
  1210     using namespace _topology_bits;
  1211 
  1212     checkConcept<concepts::Graph, Graph>();
  1213     checkConcept<concepts::WriteMap<typename Graph::Node, int>, NodeMap>();
  1214 
  1215     typedef typename Graph::Node Node;
  1216     typedef typename Graph::NodeIt NodeIt;
  1217     typedef typename Graph::Edge Edge;
  1218 
  1219     TopologicalSortVisitor<Graph, NodeMap> 
  1220       visitor(order, countNodes(graph)); 
  1221 
  1222     DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
  1223       dfs(graph, visitor);
  1224 
  1225     dfs.init();
  1226     for (NodeIt it(graph); it != INVALID; ++it) {
  1227       if (!dfs.reached(it)) {
  1228 	dfs.addSource(it);
  1229 	dfs.start();
  1230       }
  1231     }    
  1232   }
  1233 
  1234   /// \ingroup graph_prop
  1235   ///
  1236   /// \brief Sort the nodes of a DAG into topolgical order.
  1237   ///
  1238   /// Sort the nodes of a DAG into topolgical order. It also checks
  1239   /// that the given graph is DAG.
  1240   ///
  1241   /// \param graph The graph. It should be directed and acyclic.
  1242   /// \retval order A readable - writable node map. The values will be set 
  1243   /// from 0 to the number of the nodes in the graph minus one. Each values 
  1244   /// of the map will be set exactly once, the values will be set descending 
  1245   /// order.
  1246   /// \return %False when the graph is not DAG.
  1247   ///
  1248   /// \see topologicalSort
  1249   /// \see dag
  1250   template <typename Graph, typename NodeMap>
  1251   bool checkedTopologicalSort(const Graph& graph, NodeMap& order) {
  1252     using namespace _topology_bits;
  1253 
  1254     checkConcept<concepts::Graph, Graph>();
  1255     checkConcept<concepts::ReadWriteMap<typename Graph::Node, int>, NodeMap>();
  1256 
  1257     typedef typename Graph::Node Node;
  1258     typedef typename Graph::NodeIt NodeIt;
  1259     typedef typename Graph::Edge Edge;
  1260 
  1261     order = constMap<Node, int, -1>();
  1262 
  1263     TopologicalSortVisitor<Graph, NodeMap> 
  1264       visitor(order, countNodes(graph)); 
  1265 
  1266     DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
  1267       dfs(graph, visitor);
  1268 
  1269     dfs.init();
  1270     for (NodeIt it(graph); it != INVALID; ++it) {
  1271       if (!dfs.reached(it)) {
  1272 	dfs.addSource(it);
  1273 	while (!dfs.emptyQueue()) {
  1274  	  Edge edge = dfs.nextEdge();
  1275  	  Node target = graph.target(edge);
  1276  	  if (dfs.reached(target) && order[target] == -1) {
  1277  	    return false;
  1278  	  }
  1279  	  dfs.processNextEdge();
  1280  	}
  1281       }
  1282     }
  1283     return true;
  1284   }
  1285 
  1286   /// \ingroup graph_prop
  1287   ///
  1288   /// \brief Check that the given directed graph is a DAG.
  1289   ///
  1290   /// Check that the given directed graph is a DAG. The DAG is
  1291   /// an Directed Acyclic Graph.
  1292   /// \return %False when the graph is not DAG.
  1293   /// \see acyclic
  1294   template <typename Graph>
  1295   bool dag(const Graph& graph) {
  1296 
  1297     checkConcept<concepts::Graph, Graph>();
  1298 
  1299     typedef typename Graph::Node Node;
  1300     typedef typename Graph::NodeIt NodeIt;
  1301     typedef typename Graph::Edge Edge;
  1302 
  1303     typedef typename Graph::template NodeMap<bool> ProcessedMap;
  1304 
  1305     typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>::
  1306       Create dfs(graph);
  1307 
  1308     ProcessedMap processed(graph);
  1309     dfs.processedMap(processed);
  1310 
  1311     dfs.init();
  1312     for (NodeIt it(graph); it != INVALID; ++it) {
  1313       if (!dfs.reached(it)) {
  1314 	dfs.addSource(it);
  1315 	while (!dfs.emptyQueue()) {
  1316 	  Edge edge = dfs.nextEdge();
  1317 	  Node target = graph.target(edge);
  1318 	  if (dfs.reached(target) && !processed[target]) {
  1319 	    return false;
  1320 	  }
  1321 	  dfs.processNextEdge();
  1322 	}
  1323       }
  1324     }    
  1325     return true;
  1326   }
  1327 
  1328   /// \ingroup graph_prop
  1329   ///
  1330   /// \brief Check that the given undirected graph is acyclic.
  1331   ///
  1332   /// Check that the given undirected graph acyclic.
  1333   /// \param graph The undirected graph.
  1334   /// \return %True when there is no circle in the graph.
  1335   /// \see dag
  1336   template <typename UGraph>
  1337   bool acyclic(const UGraph& graph) {
  1338     checkConcept<concepts::UGraph, UGraph>();
  1339     typedef typename UGraph::Node Node;
  1340     typedef typename UGraph::NodeIt NodeIt;
  1341     typedef typename UGraph::Edge Edge;
  1342     Dfs<UGraph> dfs(graph);
  1343     dfs.init();
  1344     for (NodeIt it(graph); it != INVALID; ++it) {
  1345       if (!dfs.reached(it)) {
  1346 	dfs.addSource(it);
  1347 	while (!dfs.emptyQueue()) {
  1348 	  Edge edge = dfs.nextEdge();
  1349 	  Node source = graph.source(edge);
  1350 	  Node target = graph.target(edge);
  1351 	  if (dfs.reached(target) && 
  1352 	      dfs.predEdge(source) != graph.oppositeEdge(edge)) {
  1353 	    return false;
  1354 	  }
  1355 	  dfs.processNextEdge();
  1356 	}
  1357       }
  1358     }
  1359     return true;
  1360   }
  1361 
  1362   /// \ingroup graph_prop
  1363   ///
  1364   /// \brief Check that the given undirected graph is tree.
  1365   ///
  1366   /// Check that the given undirected graph is tree.
  1367   /// \param graph The undirected graph.
  1368   /// \return %True when the graph is acyclic and connected.
  1369   template <typename UGraph>
  1370   bool tree(const UGraph& graph) {
  1371     checkConcept<concepts::UGraph, UGraph>();
  1372     typedef typename UGraph::Node Node;
  1373     typedef typename UGraph::NodeIt NodeIt;
  1374     typedef typename UGraph::Edge Edge;
  1375     Dfs<UGraph> dfs(graph);
  1376     dfs.init();
  1377     dfs.addSource(NodeIt(graph));
  1378     while (!dfs.emptyQueue()) {
  1379       Edge edge = dfs.nextEdge();
  1380       Node source = graph.source(edge);
  1381       Node target = graph.target(edge);
  1382       if (dfs.reached(target) && 
  1383 	  dfs.predEdge(source) != graph.oppositeEdge(edge)) {
  1384 	return false;
  1385       }
  1386       dfs.processNextEdge();
  1387     }
  1388     for (NodeIt it(graph); it != INVALID; ++it) {
  1389       if (!dfs.reached(it)) {
  1390 	return false;
  1391       }
  1392     }    
  1393     return true;
  1394   }
  1395 
  1396   namespace _topology_bits {
  1397 
  1398     template <typename Graph>
  1399     class BipartiteVisitor : public BfsVisitor<Graph> {
  1400     public:
  1401       typedef typename Graph::Edge Edge;
  1402       typedef typename Graph::Node Node;
  1403 
  1404       BipartiteVisitor(const Graph& graph, bool& bipartite) 
  1405         : _graph(graph), _part(graph), _bipartite(bipartite) {}
  1406       
  1407       void start(const Node& node) {
  1408         _part[node] = true;
  1409       }
  1410       void discover(const Edge& edge) {
  1411         _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
  1412       }
  1413       void examine(const Edge& edge) {
  1414         _bipartite = _bipartite && 
  1415           _part[_graph.target(edge)] != _part[_graph.source(edge)];
  1416       }
  1417 
  1418     private:
  1419 
  1420       const Graph& _graph;
  1421       typename Graph::template NodeMap<bool> _part;
  1422       bool& _bipartite;
  1423     };
  1424 
  1425     template <typename Graph, typename PartMap>
  1426     class BipartitePartitionsVisitor : public BfsVisitor<Graph> {
  1427     public:
  1428       typedef typename Graph::Edge Edge;
  1429       typedef typename Graph::Node Node;
  1430 
  1431       BipartitePartitionsVisitor(const Graph& graph, 
  1432                                  PartMap& part, bool& bipartite) 
  1433         : _graph(graph), _part(part), _bipartite(bipartite) {}
  1434       
  1435       void start(const Node& node) {
  1436         _part.set(node, true);
  1437       }
  1438       void discover(const Edge& edge) {
  1439         _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
  1440       }
  1441       void examine(const Edge& edge) {
  1442         _bipartite = _bipartite && 
  1443           _part[_graph.target(edge)] != _part[_graph.source(edge)];
  1444       }
  1445 
  1446     private:
  1447 
  1448       const Graph& _graph;
  1449       PartMap& _part;
  1450       bool& _bipartite;
  1451     };
  1452   }
  1453 
  1454   /// \ingroup graph_prop
  1455   ///
  1456   /// \brief Check if the given undirected graph is bipartite or not
  1457   ///
  1458   /// The function checks if the given undirected \c graph graph is bipartite 
  1459   /// or not. The \ref Bfs algorithm is used to calculate the result.
  1460   /// \param graph The undirected graph.
  1461   /// \return %True if \c graph is bipartite, %false otherwise.
  1462   /// \sa bipartitePartitions
  1463   ///
  1464   /// \author Balazs Attila Mihaly  
  1465   template<typename UGraph>
  1466   inline bool bipartite(const UGraph &graph){
  1467     using namespace _topology_bits;
  1468 
  1469     checkConcept<concepts::UGraph, UGraph>();
  1470     
  1471     typedef typename UGraph::NodeIt NodeIt;
  1472     typedef typename UGraph::EdgeIt EdgeIt;
  1473     
  1474     bool bipartite = true;
  1475 
  1476     BipartiteVisitor<UGraph> 
  1477       visitor(graph, bipartite);
  1478     BfsVisit<UGraph, BipartiteVisitor<UGraph> > 
  1479       bfs(graph, visitor);
  1480     bfs.init();
  1481     for(NodeIt it(graph); it != INVALID; ++it) {
  1482       if(!bfs.reached(it)){
  1483 	bfs.addSource(it);
  1484         while (!bfs.emptyQueue()) {
  1485           bfs.processNextNode();
  1486           if (!bipartite) return false;
  1487         }
  1488       }
  1489     }
  1490     return true;
  1491   }
  1492   
  1493   /// \ingroup graph_prop
  1494   ///
  1495   /// \brief Check if the given undirected graph is bipartite or not
  1496   ///
  1497   /// The function checks if the given undirected graph is bipartite 
  1498   /// or not. The  \ref  Bfs  algorithm  is   used  to  calculate the result. 
  1499   /// During the execution, the \c partMap will be set as the two 
  1500   /// partitions of the graph.
  1501   /// \param graph The undirected graph.
  1502   /// \retval partMap A writable bool map of nodes. It will be set as the
  1503   /// two partitions of the graph. 
  1504   /// \return %True if \c graph is bipartite, %false otherwise.
  1505   ///
  1506   /// \author Balazs Attila Mihaly  
  1507   ///
  1508   /// \image html bipartite_partitions.png
  1509   /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth
  1510   template<typename UGraph, typename NodeMap>
  1511   inline bool bipartitePartitions(const UGraph &graph, NodeMap &partMap){
  1512     using namespace _topology_bits;
  1513 
  1514     checkConcept<concepts::UGraph, UGraph>();
  1515     
  1516     typedef typename UGraph::Node Node;
  1517     typedef typename UGraph::NodeIt NodeIt;
  1518     typedef typename UGraph::EdgeIt EdgeIt;
  1519 
  1520     bool bipartite = true;
  1521 
  1522     BipartitePartitionsVisitor<UGraph, NodeMap> 
  1523       visitor(graph, partMap, bipartite);
  1524     BfsVisit<UGraph, BipartitePartitionsVisitor<UGraph, NodeMap> > 
  1525       bfs(graph, visitor);
  1526     bfs.init();
  1527     for(NodeIt it(graph); it != INVALID; ++it) {
  1528       if(!bfs.reached(it)){
  1529 	bfs.addSource(it);
  1530         while (!bfs.emptyQueue()) {
  1531           bfs.processNextNode();
  1532           if (!bipartite) return false;
  1533         }
  1534       }
  1535     }
  1536     return true;
  1537   }
  1538 
  1539   /// \brief Returns true when there is not loop edge in the graph.
  1540   ///
  1541   /// Returns true when there is not loop edge in the graph.
  1542   template <typename Graph>
  1543   bool loopFree(const Graph& graph) {
  1544     for (typename Graph::EdgeIt it(graph); it != INVALID; ++it) {
  1545       if (graph.source(it) == graph.target(it)) return false;
  1546     }
  1547     return true;
  1548   }
  1549 
  1550   /// \brief Returns true when there is not parallel edges in the graph.
  1551   ///
  1552   /// Returns true when there is not parallel edges in the graph.
  1553   template <typename Graph>
  1554   bool parallelFree(const Graph& graph) {
  1555     typename Graph::template NodeMap<bool> reached(graph, false);
  1556     for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
  1557       for (typename Graph::OutEdgeIt e(graph, n); e != INVALID; ++e) {
  1558         if (reached[graph.target(e)]) return false;
  1559         reached.set(graph.target(e), true);
  1560       }
  1561       for (typename Graph::OutEdgeIt e(graph, n); e != INVALID; ++e) {
  1562         reached.set(graph.target(e), false);
  1563       }
  1564     }
  1565     return true;
  1566   }
  1567 
  1568   /// \brief Returns true when there is not loop edge and parallel
  1569   /// edges in the graph.
  1570   ///
  1571   /// Returns true when there is not loop edge and parallel edges in
  1572   /// the graph.
  1573   template <typename Graph>
  1574   bool simpleGraph(const Graph& graph) {
  1575     typename Graph::template NodeMap<bool> reached(graph, false);
  1576     for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
  1577       reached.set(n, true);
  1578       for (typename Graph::OutEdgeIt e(graph, n); e != INVALID; ++e) {
  1579         if (reached[graph.target(e)]) return false;
  1580         reached.set(graph.target(e), true);
  1581       }
  1582       for (typename Graph::OutEdgeIt e(graph, n); e != INVALID; ++e) {
  1583         reached.set(graph.target(e), false);
  1584       }
  1585       reached.set(n, false);
  1586     }
  1587     return true;
  1588   }
  1589    
  1590 } //namespace lemon
  1591 
  1592 #endif //LEMON_TOPOLOGY_H