src/work/athos/lp/lp_base.h
author alpar
Wed, 30 Mar 2005 10:38:22 +0000
changeset 1273 2b2ffa625775
parent 1272 17be4c5bc6c6
child 1275 16980bf77bd3
permissions -rw-r--r--
- Better (but still incomplete) doc
- lp_test runs correctly
     1 /* -*- C++ -*-
     2  * src/lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_LP_BASE_H
    18 #define LEMON_LP_BASE_H
    19 
    20 #include<vector>
    21 #include<map>
    22 #include<limits>
    23 #include<math.h>
    24 
    25 #include<lemon/utility.h>
    26 #include<lemon/error.h>
    27 #include<lemon/invalid.h>
    28 
    29 //#include"lin_expr.h"
    30 
    31 ///\file
    32 ///\brief The interface of the LP solver interface.
    33 namespace lemon {
    34   
    35   ///Internal data structure to convert floating id's to fix one's
    36     
    37   ///\todo This might by implemented to be usable in other places.
    38   class _FixId 
    39   {
    40     std::vector<int> index;
    41     std::vector<int> cross;
    42     int first_free;
    43   public:
    44     _FixId() : first_free(-1) {};
    45     ///Convert a floating id to a fix one
    46 
    47     ///\param n is a floating id
    48     ///\return the corresponding fix id
    49     int fixId(int n) {return cross[n];}
    50     ///Convert a fix id to a floating one
    51 
    52     ///\param n is a fix id
    53     ///\return the corresponding floating id
    54     int floatingId(int n) { return index[n];}
    55     ///Add a new floating id.
    56 
    57     ///\param n is a floating id
    58     ///\return the fix id of the new value
    59     ///\todo Multiple additions should also be handled.
    60     int insert(int n)
    61     {
    62       if(n>=int(cross.size())) {
    63 	cross.resize(n+1);
    64 	if(first_free==-1) {
    65 	  cross[n]=index.size();
    66 	  index.push_back(n);
    67 	}
    68 	else {
    69 	  cross[n]=first_free;
    70 	  int next=index[first_free];
    71 	  index[first_free]=n;
    72 	  first_free=next;
    73 	}
    74 	return cross[n];
    75       }
    76       ///\todo Create an own exception type.
    77       else throw LogicError(); //floatingId-s must form a continuous range;
    78     }
    79     ///Remove a fix id.
    80 
    81     ///\param n is a fix id
    82     ///
    83     void erase(int n) 
    84     {
    85       int fl=index[n];
    86       index[n]=first_free;
    87       first_free=n;
    88       for(int i=fl+1;i<int(cross.size());++i) {
    89 	cross[i-1]=cross[i];
    90 	index[cross[i]]--;
    91       }
    92       cross.pop_back();
    93     }
    94     ///An upper bound on the largest fix id.
    95 
    96     ///\todo Do we need this?
    97     ///
    98     std::size_t maxFixId() { return cross.size()-1; }
    99   
   100   };
   101     
   102   ///Common base class for LP solvers
   103   class LpSolverBase {
   104     
   105   public:
   106 
   107     ///\e
   108     enum SolutionType {
   109       ///\e
   110       INFEASIBLE = 0,
   111       ///\e
   112       UNBOUNDED = 1,
   113       ///\e
   114       OPTIMAL = 2,
   115       ///\e
   116       FEASIBLE = 3,
   117     };
   118       
   119     ///The floating point type used by the solver
   120     typedef double Value;
   121     ///The infinity constant
   122     static const Value INF;
   123     ///The not a number constant
   124     static const Value NaN;
   125     
   126     ///Refer to a column of the LP.
   127 
   128     ///This type is used to refer to a column of the LP.
   129     ///
   130     ///Its value remains valid and correct even after the addition or erase of
   131     ///other columns.
   132     ///
   133     ///\todo Document what can one do with a Col (INVALID, comparing,
   134     ///it is similar to Node/Edge)
   135     class Col {
   136     protected:
   137       int id;
   138       friend class LpSolverBase;
   139     public:
   140       typedef Value ExprValue;
   141       typedef True LpSolverCol;
   142       Col() {}
   143       Col(const Invalid&) : id(-1) {}
   144       bool operator<(Col c) const  {return id<c.id;}
   145       bool operator==(Col c) const  {return id==c.id;}
   146       bool operator!=(Col c) const  {return id==c.id;}
   147     };
   148 
   149     ///Refer to a row of the LP.
   150 
   151     ///This type is used to refer to a row of the LP.
   152     ///
   153     ///Its value remains valid and correct even after the addition or erase of
   154     ///other rows.
   155     ///
   156     ///\todo Document what can one do with a Row (INVALID, comparing,
   157     ///it is similar to Node/Edge)
   158     class Row {
   159     protected:
   160       int id;
   161       friend class LpSolverBase;
   162     public:
   163       typedef Value ExprValue;
   164       typedef True LpSolverRow;
   165       Row() {}
   166       Row(const Invalid&) : id(-1) {}
   167       typedef True LpSolverRow;
   168       bool operator<(Row c) const  {return id<c.id;}
   169       bool operator==(Row c) const  {return id==c.id;}
   170       bool operator!=(Row c) const  {return id==c.id;} 
   171    };
   172     
   173     ///Linear expression
   174     //    typedef SparseLinExpr<Col> Expr;
   175     class Expr : public std::map<Col,Value>
   176     {
   177     public:
   178       typedef LpSolverBase::Col Key; 
   179       typedef LpSolverBase::Value Value;
   180       
   181     protected:
   182       typedef std::map<Col,Value> Base;
   183       
   184       Value const_comp;
   185   public:
   186       typedef True IsLinExpression;
   187       ///\e
   188       Expr() : Base(), const_comp(0) { }
   189       ///\e
   190       Expr(const Key &v) : const_comp(0) {
   191 	Base::insert(std::make_pair(v, 1));
   192       }
   193       ///\e
   194       Expr(const Value &v) : const_comp(v) {}
   195       ///\e
   196       void set(const Key &v,const Value &c) {
   197 	Base::insert(std::make_pair(v, c));
   198       }
   199       ///\e
   200       Value &constComp() { return const_comp; }
   201       ///\e
   202       const Value &constComp() const { return const_comp; }
   203       
   204       ///Removes the components with zero coefficient.
   205       void simplify() {
   206 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   207 	  Base::iterator j=i;
   208 	  ++j;
   209 	  if ((*i).second==0) Base::erase(i);
   210 	  j=i;
   211 	}
   212       }
   213 
   214       ///Sets all coefficients and the constant component to 0.
   215       void clear() {
   216 	Base::clear();
   217 	const_comp=0;
   218       }
   219 
   220       ///\e
   221       Expr &operator+=(const Expr &e) {
   222 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   223 	  (*this)[j->first]+=j->second;
   224 	///\todo it might be speeded up using "hints"
   225 	const_comp+=e.const_comp;
   226 	return *this;
   227       }
   228       ///\e
   229       Expr &operator-=(const Expr &e) {
   230 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   231 	  (*this)[j->first]-=j->second;
   232 	const_comp-=e.const_comp;
   233 	return *this;
   234       }
   235       ///\e
   236       Expr &operator*=(const Value &c) {
   237 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   238 	  j->second*=c;
   239 	const_comp*=c;
   240 	return *this;
   241       }
   242       ///\e
   243       Expr &operator/=(const Value &c) {
   244 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   245 	  j->second/=c;
   246 	const_comp/=c;
   247 	return *this;
   248       }
   249     };
   250     
   251     ///Linear constraint
   252     //typedef LinConstr<Expr> Constr;
   253     class Constr
   254     {
   255     public:
   256       typedef LpSolverBase::Expr Expr;
   257       typedef Expr::Key Key;
   258       typedef Expr::Value Value;
   259       
   260       static const Value INF;
   261       static const Value NaN;
   262       //     static const Value INF=0;
   263       //     static const Value NaN=1;
   264       
   265     protected:
   266       Expr _expr;
   267       Value _lb,_ub;
   268     public:
   269       ///\e
   270       Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   271       ///\e
   272       Constr(Value lb,const Expr &e,Value ub) :
   273 	_expr(e), _lb(lb), _ub(ub) {}
   274       ///\e
   275       Constr(const Expr &e,Value ub) : 
   276 	_expr(e), _lb(NaN), _ub(ub) {}
   277       ///\e
   278       Constr(Value lb,const Expr &e) :
   279 	_expr(e), _lb(lb), _ub(NaN) {}
   280       ///\e
   281       Constr(const Expr &e) : 
   282 	_expr(e), _lb(NaN), _ub(NaN) {}
   283       ///\e
   284       void clear() 
   285       {
   286 	_expr.clear();
   287 	_lb=_ub=NaN;
   288       }
   289       ///\e
   290       Expr &expr() { return _expr; }
   291       ///\e
   292       const Expr &expr() const { return _expr; }
   293       ///\e
   294       Value &lowerBound() { return _lb; }
   295       ///\e
   296       const Value &lowerBound() const { return _lb; }
   297       ///\e
   298       Value &upperBound() { return _ub; }
   299       ///\e
   300       const Value &upperBound() const { return _ub; }
   301     };
   302     
   303 
   304   protected:
   305     _FixId rows;
   306     _FixId cols;
   307 
   308     /// \e
   309     virtual int _addCol() = 0;
   310     /// \e
   311     virtual int _addRow() = 0;
   312     /// \e
   313 
   314     /// \warning Arrays are indexed from 1 (datum at index 0 is ignored)
   315     ///
   316     virtual void _setRowCoeffs(int i, 
   317 			       int length,
   318                                int  const * indices, 
   319                                Value  const * values ) = 0;
   320     /// \e
   321 
   322     /// \warning Arrays are indexed from 1 (datum at index 0 is ignored)
   323     ///
   324     virtual void _setColCoeffs(int i, 
   325 			       int length,
   326                                int  const * indices, 
   327                                Value  const * values ) = 0;
   328     
   329     /// \e
   330 
   331     /// The lower bound of a variable (column) have to be given by an 
   332     /// extended number of type Value, i.e. a finite number of type 
   333     /// Value or -\ref INF.
   334     virtual void _setColLowerBound(int i, Value value) = 0;
   335     /// \e
   336 
   337     /// The upper bound of a variable (column) have to be given by an 
   338     /// extended number of type Value, i.e. a finite number of type 
   339     /// Value or \ref INF.
   340     virtual void _setColUpperBound(int i, Value value) = 0;
   341     /// \e
   342 
   343     /// The lower bound of a linear expression (row) have to be given by an 
   344     /// extended number of type Value, i.e. a finite number of type 
   345     /// Value or -\ref INF.
   346     virtual void _setRowLowerBound(int i, Value value) = 0;
   347     /// \e
   348 
   349     /// The upper bound of a linear expression (row) have to be given by an 
   350     /// extended number of type Value, i.e. a finite number of type 
   351     /// Value or \ref INF.
   352     virtual void _setRowUpperBound(int i, Value value) = 0;
   353 
   354     /// \e
   355     virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   356 
   357     ///\e
   358     
   359     ///\bug Wrong interface
   360     ///
   361     virtual SolutionType _solve() = 0;
   362 
   363     ///\e
   364 
   365     ///\bug Wrong interface
   366     ///
   367     virtual Value _getSolution(int i) = 0;
   368     ///\e
   369 
   370     ///\bug unimplemented!!!!
   371     void clearObj() {}
   372   public:
   373 
   374 
   375     ///\e
   376     virtual ~LpSolverBase() {}
   377 
   378     ///\name Building up and modification of the LP
   379 
   380     ///@{
   381 
   382     ///Add a new empty column (i.e a new variable) to the LP
   383     Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
   384 
   385     ///\brief Fill the elements of a container with newly created columns
   386     ///(i.e a new variables)
   387     ///
   388     ///This magic function takes a container as its argument
   389     ///and fills its elements
   390     ///with new columns (i.e. variables)
   391     ///\param t can be
   392     ///- a standard STL compatible iterable container with
   393     ///\ref Col as its \c values_type
   394     ///like
   395     ///\code
   396     ///std::vector<LpSolverBase::Col>
   397     ///std::list<LpSolverBase::Col>
   398     ///\endcode
   399     ///- a standard STL compatible iterable container with
   400     ///\ref Col as its \c mapped_type
   401     ///like
   402     ///\code
   403     ///std::map<AnyType,LpSolverBase::Col>
   404     ///\endcode
   405     ///- an iterable lemon \ref concept::WriteMap "write map" like 
   406     ///\code
   407     ///ListGraph::NodeMap<LpSolverBase::Col>
   408     ///ListGraph::EdgeMap<LpSolverBase::Col>
   409     ///\endcode
   410     ///\return The number of the created column.
   411     ///\bug Iterable nodemap hasn't been implemented yet.
   412 #ifdef DOXYGEN
   413     template<class T>
   414     int addColSet(T &t) { return 0;} 
   415 #else
   416     template<class T>
   417     typename enable_if<typename T::value_type::LpSolverCol,int>::type
   418     addColSet(T &t,dummy<0> = 0) {
   419       int s=0;
   420       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   421       return s;
   422     }
   423     template<class T>
   424     typename enable_if<typename T::value_type::second_type::LpSolverCol,
   425 		       int>::type
   426     addColSet(T &t,dummy<1> = 1) { 
   427       int s=0;
   428       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   429 	i->second=addCol();
   430 	s++;
   431       }
   432       return s;
   433     }
   434     template<class T>
   435     typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
   436 		       int>::type
   437     addColSet(T &t,dummy<2> = 2) { 
   438       ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
   439       int s=0;
   440       for(typename T::ValueSet::iterator i=t.valueSet().begin();
   441 	  i!=t.valueSet().end();
   442 	  ++i)
   443 	{
   444 	  *i=addCol();
   445 	  s++;
   446 	}
   447       return s;
   448     }
   449 #endif
   450 
   451     ///Add a new empty row (i.e a new constaint) to the LP
   452 
   453     ///This function adds a new empty row (i.e a new constaint) to the LP.
   454     ///\return The created row
   455     Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   456 
   457     ///Set a row (i.e a constaint) of the LP
   458 
   459     ///\param r is the row to be modified
   460     ///\param l is lower bound (-\ref INF means no bound)
   461     ///\param e is a linear expression (see \ref Expr)
   462     ///\param u is the upper bound (\ref INF means no bound)
   463     ///\bug This is a temportary function. The interface will change to
   464     ///a better one.
   465     void setRow(Row r, Value l,const Expr &e, Value u) {
   466       std::vector<int> indices;
   467       std::vector<Value> values;
   468       indices.push_back(0);
   469       values.push_back(0);
   470       for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
   471 	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   472 	  indices.push_back(cols.floatingId((*i).first.id));
   473 	  values.push_back((*i).second);
   474 	}
   475       _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
   476 		    &indices[0],&values[0]);
   477       _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
   478       _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
   479     }
   480 
   481     ///Set a row (i.e a constaint) of the LP
   482 
   483     ///\param r is the row to be modified
   484     ///\param c is a linear expression (see \ref Constr)
   485     void setRow(Row r, const Constr &c) {
   486       setRow(r,
   487 	     isnan(c.lowerBound())?-INF:c.lowerBound(),
   488 	     c.expr(),
   489 	     isnan(c.upperBound())?INF:c.upperBound());
   490     }
   491 
   492     ///Add a new row (i.e a new constaint) to the LP
   493 
   494     ///\param l is the lower bound (-\ref INF means no bound)
   495     ///\param e is a linear expression (see \ref Expr)
   496     ///\param u is the upper bound (\ref INF means no bound)
   497     ///\return The created row.
   498     ///\bug This is a temportary function. The interface will change to
   499     ///a better one.
   500     Row addRow(Value l,const Expr &e, Value u) {
   501       Row r=addRow();
   502       setRow(r,l,e,u);
   503       return r;
   504     }
   505 
   506     ///Add a new row (i.e a new constaint) to the LP
   507 
   508     ///\param c is a linear expression (see \ref Constr)
   509     ///\return The created row.
   510     Row addRow(const Constr &c) {
   511       Row r=addRow();
   512       setRow(r,c);
   513       return r;
   514     }
   515 
   516     /// Set the lower bound of a column (i.e a variable)
   517 
   518     /// The upper bound of a variable (column) have to be given by an 
   519     /// extended number of type Value, i.e. a finite number of type 
   520     /// Value or -\ref INF.
   521     virtual void setColLowerBound(Col c, Value value) {
   522       _setColLowerBound(cols.floatingId(c.id),value);
   523     }
   524     /// Set the upper bound of a column (i.e a variable)
   525 
   526     /// The upper bound of a variable (column) have to be given by an 
   527     /// extended number of type Value, i.e. a finite number of type 
   528     /// Value or \ref INF.
   529     virtual void setColUpperBound(Col c, Value value) {
   530       _setColUpperBound(cols.floatingId(c.id),value);
   531     };
   532     /// Set the lower bound of a row (i.e a constraint)
   533 
   534     /// The lower bound of a linear expression (row) have to be given by an 
   535     /// extended number of type Value, i.e. a finite number of type 
   536     /// Value or -\ref INF.
   537     virtual void setRowLowerBound(Row r, Value value) {
   538       _setRowLowerBound(rows.floatingId(r.id),value);
   539     };
   540     /// Set the upper bound of a row (i.e a constraint)
   541 
   542     /// The upper bound of a linear expression (row) have to be given by an 
   543     /// extended number of type Value, i.e. a finite number of type 
   544     /// Value or \ref INF.
   545     virtual void setRowUpperBound(Row r, Value value) {
   546       _setRowUpperBound(rows.floatingId(r.id),value);
   547     };
   548     ///Set an element of the objective function
   549     void setObjCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
   550     ///Set the objective function
   551     
   552     ///\param e is a linear expression of type \ref Expr.
   553     ///\todo What to do with the constant component?
   554     void setObj(Expr e) {
   555       clearObj();
   556       for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
   557 	setObjCoeff((*i).first,(*i).second);
   558     }
   559 
   560     ///@}
   561 
   562 
   563     ///\name Solving the LP
   564 
   565     ///@{
   566 
   567     ///\e
   568     SolutionType solve() { return _solve(); }
   569     
   570     ///@}
   571     
   572     ///\name Obtaining the solution LP
   573 
   574     ///@{
   575 
   576     ///\e
   577     Value solution(Col c) { return _getSolution(cols.floatingId(c.id)); }
   578 
   579     ///@}
   580     
   581   };  
   582 
   583   ///\e
   584   
   585   ///\relates LpSolverBase::Expr
   586   ///
   587   inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
   588 				      const LpSolverBase::Expr &b) 
   589   {
   590     LpSolverBase::Expr tmp(a);
   591     tmp+=b; ///\todo Don't STL have some special 'merge' algorithm?
   592     return tmp;
   593   }
   594   ///\e
   595   
   596   ///\relates LpSolverBase::Expr
   597   ///
   598   inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
   599 				      const LpSolverBase::Expr &b) 
   600   {
   601     LpSolverBase::Expr tmp(a);
   602     tmp-=b; ///\todo Don't STL have some special 'merge' algorithm?
   603     return tmp;
   604   }
   605   ///\e
   606   
   607   ///\relates LpSolverBase::Expr
   608   ///
   609   inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
   610 				      const LpSolverBase::Value &b) 
   611   {
   612     LpSolverBase::Expr tmp(a);
   613     tmp*=b; ///\todo Don't STL have some special 'merge' algorithm?
   614     return tmp;
   615   }
   616   
   617   ///\e
   618   
   619   ///\relates LpSolverBase::Expr
   620   ///
   621   inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
   622 				      const LpSolverBase::Expr &b) 
   623   {
   624     LpSolverBase::Expr tmp(b);
   625     tmp*=a; ///\todo Don't STL have some special 'merge' algorithm?
   626     return tmp;
   627   }
   628   ///\e
   629   
   630   ///\relates LpSolverBase::Expr
   631   ///
   632   inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
   633 				      const LpSolverBase::Value &b) 
   634   {
   635     LpSolverBase::Expr tmp(a);
   636     tmp/=b; ///\todo Don't STL have some special 'merge' algorithm?
   637     return tmp;
   638   }
   639   
   640   ///\e
   641   
   642   ///\relates LpSolverBase::Constr
   643   ///
   644   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   645 					 const LpSolverBase::Expr &f) 
   646   {
   647     return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
   648   }
   649 
   650   ///\e
   651   
   652   ///\relates LpSolverBase::Constr
   653   ///
   654   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
   655 					 const LpSolverBase::Expr &f) 
   656   {
   657     return LpSolverBase::Constr(e,f);
   658   }
   659 
   660   ///\e
   661   
   662   ///\relates LpSolverBase::Constr
   663   ///
   664   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   665 					 const LpSolverBase::Value &f) 
   666   {
   667     return LpSolverBase::Constr(e,f);
   668   }
   669 
   670   ///\e
   671   
   672   ///\relates LpSolverBase::Constr
   673   ///
   674   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   675 					 const LpSolverBase::Expr &f) 
   676   {
   677     return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
   678   }
   679 
   680 
   681   ///\e
   682   
   683   ///\relates LpSolverBase::Constr
   684   ///
   685   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
   686 					 const LpSolverBase::Expr &f) 
   687   {
   688     return LpSolverBase::Constr(f,e);
   689   }
   690 
   691 
   692   ///\e
   693   
   694   ///\relates LpSolverBase::Constr
   695   ///
   696   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   697 					 const LpSolverBase::Value &f) 
   698   {
   699     return LpSolverBase::Constr(f,e);
   700   }
   701 
   702   ///\e
   703   
   704   ///\relates LpSolverBase::Constr
   705   ///
   706   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
   707 					 const LpSolverBase::Expr &f) 
   708   {
   709     return LpSolverBase::Constr(0,e-f,0);
   710   }
   711 
   712   ///\e
   713   
   714   ///\relates LpSolverBase::Constr
   715   ///
   716   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
   717 					 const LpSolverBase::Constr&c) 
   718   {
   719     LpSolverBase::Constr tmp(c);
   720     ///\todo Create an own exception type.
   721     if(!isnan(tmp.lowerBound())) throw LogicError();
   722     else tmp.lowerBound()=n;
   723     return tmp;
   724   }
   725   ///\e
   726   
   727   ///\relates LpSolverBase::Constr
   728   ///
   729   inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
   730 					 const LpSolverBase::Value &n)
   731   {
   732     LpSolverBase::Constr tmp(c);
   733     ///\todo Create an own exception type.
   734     if(!isnan(tmp.upperBound())) throw LogicError();
   735     else tmp.upperBound()=n;
   736     return tmp;
   737   }
   738 
   739   ///\e
   740   
   741   ///\relates LpSolverBase::Constr
   742   ///
   743   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
   744 					 const LpSolverBase::Constr&c) 
   745   {
   746     LpSolverBase::Constr tmp(c);
   747     ///\todo Create an own exception type.
   748     if(!isnan(tmp.upperBound())) throw LogicError();
   749     else tmp.upperBound()=n;
   750     return tmp;
   751   }
   752   ///\e
   753   
   754   ///\relates LpSolverBase::Constr
   755   ///
   756   inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
   757 					 const LpSolverBase::Value &n)
   758   {
   759     LpSolverBase::Constr tmp(c);
   760     ///\todo Create an own exception type.
   761     if(!isnan(tmp.lowerBound())) throw LogicError();
   762     else tmp.lowerBound()=n;
   763     return tmp;
   764   }
   765 
   766 
   767 } //namespace lemon
   768 
   769 #endif //LEMON_LP_BASE_H