src/work/preflow_push_max_flow.hh
author klao
Sun, 25 Jan 2004 18:33:17 +0000
changeset 34 2b607665c9e2
parent 21 181b37336b29
permissions -rw-r--r--
Okos makefile
depend szabalyok
egyszeru valami.cc -> valami esetek implicit szabalyokkal
     1 /*
     2 preflow_push_max_flow_hh
     3 by jacint. 
     4 Runs a preflow push algorithm with the modification, 
     5 that we do not push on nodes with level at least n. 
     6 Moreover, if a level gets empty, we put all nodes above that
     7 level to level n. Hence, in the end, we arrive at a maximum preflow 
     8 with value of a max flow value. An empty level gives a minimum cut.
     9 
    10 Member functions:
    11 
    12 void run() : runs the algorithm
    13 
    14   The following functions should be used after run() was already run.
    15 
    16 T maxflow() : returns the value of a maximum flow
    17 
    18 node_property_vector<graph_type, bool> mincut(): returns a 
    19      characteristic vector of a minimum cut.
    20 */
    21 
    22 #ifndef PREFLOW_PUSH_MAX_FLOW_HH
    23 #define PREFLOW_PUSH_MAX_FLOW_HH
    24 
    25 #include <algorithm>
    26 #include <vector>
    27 #include <stack>
    28 
    29 #include <marci_list_graph.hh>
    30 #include <marci_graph_traits.hh>
    31 #include <marci_property_vector.hh>
    32 #include <reverse_bfs.hh>
    33 
    34 
    35 namespace marci {
    36 
    37   template <typename graph_type, typename T>
    38   class preflow_push_max_flow {
    39     
    40     typedef typename graph_traits<graph_type>::node_iterator node_iterator;
    41     typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
    42     typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
    43     typedef typename graph_traits<graph_type>::in_edge_iterator in_edge_iterator;
    44     
    45     graph_type& G;
    46     node_iterator s;
    47     node_iterator t;
    48     edge_property_vector<graph_type, T>& capacity; 
    49     T value;
    50     node_property_vector<graph_type, bool> mincutvector;    
    51 
    52 
    53      
    54   public:
    55         
    56     preflow_push_max_flow(graph_type& _G, node_iterator _s, node_iterator _t, edge_property_vector<graph_type, T>& _capacity) : G(_G), s(_s), t(_t), capacity(_capacity), mincutvector(_G, false) { }
    57 
    58 
    59     /*
    60       The run() function runs a modified version of the highest label preflow-push, which only 
    61       finds a maximum preflow, hence giving the value of a maximum flow.
    62     */
    63     void run() {
    64  
    65       edge_property_vector<graph_type, T> flow(G, 0);         //the flow value, 0 everywhere  
    66       node_property_vector<graph_type, int> level(G);         //level of node
    67       node_property_vector<graph_type, T> excess(G);          //excess of node
    68             
    69       int n=number_of(G.first_node());                        //number of nodes 
    70       int b=n-2; 
    71       /*b is a bound on the highest level of an active node. In the beginning it is at most n-2.*/
    72       
    73       std::vector<int> numb(n);                                //The number of nodes on level i < n.
    74 
    75       std::vector<std::stack<node_iterator> > stack(2*n-1);    //Stack of the active nodes in level i.
    76 
    77 
    78 
    79       /*Reverse_bfs from t, to find the starting level.*/
    80 
    81       reverse_bfs<list_graph> bfs(G, t);
    82       bfs.run();
    83       for(each_node_iterator v=G.first_node(); v.valid(); ++v) 
    84 	{
    85 	  int dist=bfs.dist(v);
    86 	  level.put(v, dist); 
    87 	  ++numb[dist];
    88 	}
    89 
    90       /*The level of s is fixed to n*/ 
    91       level.put(s,n);
    92 
    93 
    94       /* Starting flow. It is everywhere 0 at the moment. */
    95      
    96       for(out_edge_iterator i=G.first_out_edge(s); i.valid(); ++i) 
    97 	{
    98 	  node_iterator w=G.head(i);
    99 	  flow.put(i, capacity.get(i)); 
   100 	  stack[bfs.dist(w)].push(w); 
   101 	  excess.put(w, capacity.get(i));
   102 	}
   103 
   104 
   105       /* 
   106 	 End of preprocessing 
   107       */
   108 
   109 
   110 
   111 
   112       /*
   113 	Push/relabel on the highest level active nodes.
   114       */
   115 	
   116       /*While there exists an active node.*/
   117       while (b) { 
   118 
   119 	/*We decrease the bound if there is no active node of level b.*/
   120 	if (stack[b].empty()) {
   121 	  --b;
   122 	} else {
   123 
   124 	  node_iterator w=stack[b].top();    //w is the highest label active node.
   125 	  stack[b].pop();                    //We delete w from the stack.
   126 	
   127 	  int newlevel=2*n-2;                //In newlevel we maintain the next level of w.
   128 	
   129 	  for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) {
   130 	    node_iterator v=G.head(e);
   131 	    /*e is the edge wv.*/
   132 
   133 	    if (flow.get(e)<capacity.get(e)) {              
   134 	      /*e is an edge of the residual graph */
   135 
   136 	      if(level.get(w)==level.get(v)+1) {      
   137 		/*Push is allowed now*/
   138 
   139 		if (capacity.get(e)-flow.get(e) > excess.get(w)) {       
   140 		  /*A nonsaturating push.*/
   141 		  
   142 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   143 		  /*v becomes active.*/
   144 		  
   145 		  flow.put(e, flow.get(e)+excess.get(w));
   146 		  excess.put(v, excess.get(v)+excess.get(w));
   147 		  excess.put(w,0);
   148 		  //std::cout << w << " " << v <<" elore elen nonsat pump "  << std::endl;
   149 		  break; 
   150 		} else { 
   151 		  /*A saturating push.*/
   152 
   153 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   154 		  /*v becomes active.*/
   155 
   156 		  excess.put(v, excess.get(v)+capacity.get(e)-flow.get(e));
   157 		  excess.put(w, excess.get(w)-capacity.get(e)+flow.get(e));
   158 		  flow.put(e, capacity.get(e));
   159 		  //std::cout << w <<" " << v <<" elore elen sat pump "   << std::endl;
   160 		  if (excess.get(w)==0) break; 
   161 		  /*If w is not active any more, then we go on to the next node.*/
   162 		  
   163 		} // if (capacity.get(e)-flow.get(e) > excess.get(w))
   164 	      } // if (level.get(w)==level.get(v)+1)
   165 	    
   166 	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
   167 	    
   168 	    } //if (flow.get(e)<capacity.get(e))
   169 	 
   170 	  } //for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) 
   171 	  
   172 
   173 
   174 	  for(in_edge_iterator e=G.first_in_edge(w); e.valid(); ++e) {
   175 	    node_iterator v=G.tail(e);
   176 	    /*e is the edge vw.*/
   177 
   178 	    if (excess.get(w)==0) break;
   179 	    /*It may happen, that w became inactive in the first 'for' cycle.*/		
   180   
   181 	    if(flow.get(e)>0) {             
   182 	      /*e is an edge of the residual graph */
   183 
   184 	      if(level.get(w)==level.get(v)+1) {  
   185 		/*Push is allowed now*/
   186 		
   187 		if (flow.get(e) > excess.get(w)) { 
   188 		  /*A nonsaturating push.*/
   189 		  
   190 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   191 		  /*v becomes active.*/
   192 
   193 		  flow.put(e, flow.get(e)-excess.get(w));
   194 		  excess.put(v, excess.get(v)+excess.get(w));
   195 		  excess.put(w,0);
   196 		  //std::cout << v << " " << w << " vissza elen nonsat pump "     << std::endl;
   197 		  break; 
   198 		} else {                                               
   199 		  /*A saturating push.*/
   200 		  
   201 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   202 		  /*v becomes active.*/
   203 		  
   204 		  flow.put(e,0);
   205 		  excess.put(v, excess.get(v)+flow.get(e));
   206 		  excess.put(w, excess.get(w)-flow.get(e));
   207 		  //std::cout << v <<" " << w << " vissza elen sat pump "     << std::endl;
   208 		  if (excess.get(w)==0) { break;}
   209 		} //if (flow.get(e) > excess.get(v)) 
   210 	      } //if(level.get(w)==level.get(v)+1)
   211 	      
   212 	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
   213 	      //std::cout << "Leveldecrease of node " << w << " to " << newlevel << std::endl; 
   214 
   215 	    } //if (flow.get(e)>0)
   216 
   217 	  } //for in-edge
   218 
   219 
   220 
   221 
   222 	  /*
   223 	    Relabel
   224 	  */
   225 	  if (excess.get(w)>0) {
   226 	    /*Now newlevel <= n*/
   227 
   228 	    int l=level.get(w);	        //l is the old level of w.
   229 	    --numb[l];
   230 	   
   231 	    if (newlevel == n) {
   232 	      level.put(w,n);
   233 	      
   234 	    } else {
   235 	      
   236 	      if (numb[l]) {
   237 		/*If the level of w remains nonempty.*/
   238 		
   239 		level.put(w,++newlevel);
   240 		++numb[newlevel];
   241 		stack[newlevel].push(w);
   242 		b=newlevel;
   243 	      } else { 
   244 		/*If the level of w gets empty.*/
   245 	      
   246 		for (each_node_iterator v=G.first_node() ; v.valid() ; ++v) {
   247 		  if (level.get(v) >= l ) { 
   248 		    level.put(v,n);  
   249 		  }
   250 		}
   251 		
   252 		for (int i=l+1 ; i!=n ; ++i) numb[i]=0; 
   253 	      } //if (numb[l])
   254 	
   255 	    } // if (newlevel = n)
   256 	 
   257 	  } // if (excess.get(w)>0)
   258 
   259 
   260 	} //else
   261        
   262       } //while(b)
   263 
   264       value=excess.get(t);
   265       /*Max flow value.*/
   266       
   267 
   268 
   269       /*
   270 	We find an empty level, e. The nodes above this level give 
   271 	a minimum cut.
   272       */
   273       
   274       int e=1;
   275       
   276       while(e) {
   277 	if(numb[e]) ++e;
   278 	else break;
   279       } 
   280       for (each_node_iterator v=G.first_node(); v.valid(); ++v) {
   281 	if (level.get(v) > e) mincutvector.put(v, true);
   282       }
   283       
   284 
   285     } // void run()
   286 
   287 
   288 
   289     /*
   290       Returns the maximum value of a flow.
   291      */
   292 
   293     T maxflow() {
   294       return value;
   295     }
   296 
   297 
   298 
   299     /*
   300       Returns a minimum cut.
   301     */
   302     
   303     node_property_vector<graph_type, bool> mincut() {
   304       return mincutvector;
   305     }
   306     
   307 
   308   };
   309 }//namespace marci
   310 #endif 
   311 
   312 
   313 
   314 
   315