lemon/planarity.h
author deba
Thu, 20 Dec 2007 15:13:06 +0000
changeset 2545 2bed3e806e1e
parent 2500 9d9855af1de1
child 2553 bfced05fa852
permissions -rw-r--r--
Casting index to int
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 #ifndef LEMON_PLANARITY_H
    19 #define LEMON_PLANARITY_H
    20 
    21 /// \ingroup planar
    22 /// \file
    23 /// \brief Planarity checking, embedding, drawing and coloring
    24 
    25 #include <vector>
    26 #include <list>
    27 
    28 #include <lemon/dfs.h>
    29 #include <lemon/bfs.h>
    30 #include <lemon/radix_sort.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/path.h>
    33 #include <lemon/iterable_maps.h>
    34 #include <lemon/edge_set.h>
    35 #include <lemon/bucket_heap.h>
    36 #include <lemon/ugraph_adaptor.h>
    37 #include <lemon/color.h>
    38 
    39 
    40 namespace lemon {
    41 
    42   namespace _planarity_bits {
    43 
    44     template <typename UGraph>
    45     struct PlanarityVisitor : DfsVisitor<UGraph> {
    46 
    47       typedef typename UGraph::Node Node;
    48       typedef typename UGraph::Edge Edge;
    49 
    50       typedef typename UGraph::template NodeMap<Edge> PredMap;
    51 
    52       typedef typename UGraph::template UEdgeMap<bool> TreeMap;
    53 
    54       typedef typename UGraph::template NodeMap<int> OrderMap;
    55       typedef std::vector<Node> OrderList;
    56 
    57       typedef typename UGraph::template NodeMap<int> LowMap;
    58       typedef typename UGraph::template NodeMap<int> AncestorMap;
    59 
    60       PlanarityVisitor(const UGraph& ugraph,
    61 		       PredMap& pred_map, TreeMap& tree_map,
    62 		       OrderMap& order_map, OrderList& order_list,
    63 		       AncestorMap& ancestor_map, LowMap& low_map)
    64 	: _ugraph(ugraph), _pred_map(pred_map), _tree_map(tree_map),
    65 	  _order_map(order_map), _order_list(order_list),
    66 	  _ancestor_map(ancestor_map), _low_map(low_map) {}
    67       
    68       void reach(const Node& node) {
    69 	_order_map[node] = _order_list.size();
    70 	_low_map[node] = _order_list.size();
    71 	_ancestor_map[node] = _order_list.size();
    72 	_order_list.push_back(node);
    73       }
    74 
    75       void discover(const Edge& edge) {
    76 	Node source = _ugraph.source(edge);
    77 	Node target = _ugraph.target(edge);
    78 
    79 	_tree_map[edge] = true;
    80 	_pred_map[target] = edge;
    81       }
    82 
    83       void examine(const Edge& edge) {
    84 	Node source = _ugraph.source(edge);
    85 	Node target = _ugraph.target(edge);
    86 	
    87 	if (_order_map[target] < _order_map[source] && !_tree_map[edge]) {
    88 	  if (_low_map[source] > _order_map[target]) {
    89 	    _low_map[source] = _order_map[target];
    90 	  }
    91 	  if (_ancestor_map[source] > _order_map[target]) {
    92 	    _ancestor_map[source] = _order_map[target];
    93 	  }
    94 	}
    95       }
    96 
    97       void backtrack(const Edge& edge) {
    98 	Node source = _ugraph.source(edge);
    99 	Node target = _ugraph.target(edge);
   100 
   101 	if (_low_map[source] > _low_map[target]) {
   102 	  _low_map[source] = _low_map[target];
   103 	}
   104       }
   105 
   106       const UGraph& _ugraph;
   107       PredMap& _pred_map;
   108       TreeMap& _tree_map;
   109       OrderMap& _order_map;
   110       OrderList& _order_list;
   111       AncestorMap& _ancestor_map;
   112       LowMap& _low_map;
   113     };
   114 
   115     template <typename UGraph, bool embedding = true>
   116     struct NodeDataNode {
   117       int prev, next;
   118       int visited;
   119       typename UGraph::Edge first;
   120       bool inverted;
   121     };
   122 
   123     template <typename UGraph>
   124     struct NodeDataNode<UGraph, false> {
   125       int prev, next;
   126       int visited;
   127     };
   128 
   129     template <typename UGraph>
   130     struct ChildListNode {
   131       typedef typename UGraph::Node Node;
   132       Node first;
   133       Node prev, next;
   134     };
   135 
   136     template <typename UGraph>
   137     struct EdgeListNode {
   138       typename UGraph::Edge prev, next;
   139     };
   140 
   141   }
   142 
   143   /// \ingroup planar
   144   ///
   145   /// \brief Planarity checking of an undirected simple graph
   146   ///
   147   /// This class implements the Boyer-Myrvold algorithm for planarity
   148   /// checking of an undirected graph. This class is a simplified
   149   /// version of the PlanarEmbedding algorithm class, and it does
   150   /// provide neither embedding nor kuratowski subdivisons.
   151   template <typename UGraph>
   152   class PlanarityChecking {
   153   private:
   154     
   155     UGRAPH_TYPEDEFS(typename UGraph);
   156       
   157     const UGraph& _ugraph;
   158 
   159   private:
   160 
   161     typedef typename UGraph::template NodeMap<Edge> PredMap;
   162     
   163     typedef typename UGraph::template UEdgeMap<bool> TreeMap;
   164 
   165     typedef typename UGraph::template NodeMap<int> OrderMap;
   166     typedef std::vector<Node> OrderList;
   167 
   168     typedef typename UGraph::template NodeMap<int> LowMap;
   169     typedef typename UGraph::template NodeMap<int> AncestorMap;
   170 
   171     typedef _planarity_bits::NodeDataNode<UGraph> NodeDataNode;
   172     typedef std::vector<NodeDataNode> NodeData;
   173     
   174     typedef _planarity_bits::ChildListNode<UGraph> ChildListNode;
   175     typedef typename UGraph::template NodeMap<ChildListNode> ChildLists;
   176 
   177     typedef typename UGraph::template NodeMap<std::list<int> > MergeRoots;
   178  
   179     typedef typename UGraph::template NodeMap<bool> EmbedEdge;
   180 
   181   public:
   182 
   183     /// \brief Constructor
   184     ///
   185     /// \warining The graph should be simple, i.e. parallel and loop edge
   186     /// free.
   187     PlanarityChecking(const UGraph& ugraph) : _ugraph(ugraph) {}
   188 
   189     /// \brief Runs the algorithm.
   190     ///
   191     /// Runs the algorithm.  
   192     /// \return %True when the graph is planar.
   193     bool run() {
   194       typedef _planarity_bits::PlanarityVisitor<UGraph> Visitor;
   195 
   196       PredMap pred_map(_ugraph, INVALID);
   197       TreeMap tree_map(_ugraph, false);
   198 
   199       OrderMap order_map(_ugraph, -1);
   200       OrderList order_list;
   201 
   202       AncestorMap ancestor_map(_ugraph, -1);
   203       LowMap low_map(_ugraph, -1);
   204 
   205       Visitor visitor(_ugraph, pred_map, tree_map,
   206 		      order_map, order_list, ancestor_map, low_map);
   207       DfsVisit<UGraph, Visitor> visit(_ugraph, visitor);
   208       visit.run();
   209 
   210       ChildLists child_lists(_ugraph);
   211       createChildLists(tree_map, order_map, low_map, child_lists);
   212 
   213       NodeData node_data(2 * order_list.size());
   214       
   215       EmbedEdge embed_edge(_ugraph, false);
   216 
   217       MergeRoots merge_roots(_ugraph);
   218       
   219       for (int i = order_list.size() - 1; i >= 0; --i) {
   220 
   221 	Node node = order_list[i];
   222 
   223 	Node source = node;
   224 	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   225 	  Node target = _ugraph.target(e);
   226 	  
   227 	  if (order_map[source] < order_map[target] && tree_map[e]) {
   228 	    initFace(target, node_data, order_map, order_list);
   229 	  }
   230 	}
   231 	
   232 	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   233 	  Node target = _ugraph.target(e);
   234 	  
   235 	  if (order_map[source] < order_map[target] && !tree_map[e]) {
   236 	    embed_edge[target] = true;
   237 	    walkUp(target, source, i, pred_map, low_map,
   238 		   order_map, order_list, node_data, merge_roots);
   239 	  }
   240 	}
   241 
   242 	for (typename MergeRoots::Value::iterator it = 
   243 	       merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
   244 	  int rn = *it;
   245 	  walkDown(rn, i, node_data, order_list, child_lists, 
   246 		   ancestor_map, low_map, embed_edge, merge_roots);
   247 	}
   248 	merge_roots[node].clear();
   249 	
   250 	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   251 	  Node target = _ugraph.target(e);
   252 	  
   253 	  if (order_map[source] < order_map[target] && !tree_map[e]) {
   254 	    if (embed_edge[target]) {
   255 	      return false;
   256 	    }
   257 	  }
   258 	}
   259       }
   260 
   261       return true;
   262     }
   263     
   264   private:
   265 
   266     void createChildLists(const TreeMap& tree_map, const OrderMap& order_map,
   267 			  const LowMap& low_map, ChildLists& child_lists) {
   268 
   269       for (NodeIt n(_ugraph); n != INVALID; ++n) {
   270 	Node source = n;
   271 	
   272 	std::vector<Node> targets;  
   273 	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
   274 	  Node target = _ugraph.target(e);
   275 
   276 	  if (order_map[source] < order_map[target] && tree_map[e]) {
   277 	    targets.push_back(target);
   278 	  }
   279 	}	
   280 
   281 	if (targets.size() == 0) {
   282 	  child_lists[source].first = INVALID;
   283 	} else if (targets.size() == 1) {
   284 	  child_lists[source].first = targets[0];
   285 	  child_lists[targets[0]].prev = INVALID;
   286 	  child_lists[targets[0]].next = INVALID;
   287 	} else {
   288 	  radixSort(targets.begin(), targets.end(), mapFunctor(low_map));
   289 	  for (int i = 1; i < int(targets.size()); ++i) {
   290 	    child_lists[targets[i]].prev = targets[i - 1];
   291 	    child_lists[targets[i - 1]].next = targets[i];
   292 	  }
   293 	  child_lists[targets.back()].next = INVALID; 
   294 	  child_lists[targets.front()].prev = INVALID;
   295 	  child_lists[source].first = targets.front();
   296 	}
   297       }
   298     }
   299 
   300     void walkUp(const Node& node, Node root, int rorder,
   301 		const PredMap& pred_map, const LowMap& low_map,
   302 		const OrderMap& order_map, const OrderList& order_list,
   303 		NodeData& node_data, MergeRoots& merge_roots) {
   304 
   305       int na, nb;
   306       bool da, db;
   307       
   308       na = nb = order_map[node];
   309       da = true; db = false;
   310       
   311       while (true) {
   312 	
   313 	if (node_data[na].visited == rorder) break;
   314 	if (node_data[nb].visited == rorder) break;
   315 
   316 	node_data[na].visited = rorder;
   317 	node_data[nb].visited = rorder;
   318 
   319 	int rn = -1;
   320 
   321 	if (na >= int(order_list.size())) {
   322 	  rn = na;
   323 	} else if (nb >= int(order_list.size())) {
   324 	  rn = nb;
   325 	}
   326 
   327 	if (rn == -1) {
   328 	  int nn;
   329 	  
   330 	  nn = da ? node_data[na].prev : node_data[na].next;
   331 	  da = node_data[nn].prev != na;
   332 	  na = nn;
   333 	  
   334 	  nn = db ? node_data[nb].prev : node_data[nb].next;
   335 	  db = node_data[nn].prev != nb;
   336 	  nb = nn;
   337 
   338 	} else {
   339 
   340 	  Node rep = order_list[rn - order_list.size()];
   341 	  Node parent = _ugraph.source(pred_map[rep]);
   342 
   343 	  if (low_map[rep] < rorder) {
   344 	    merge_roots[parent].push_back(rn);
   345 	  } else {
   346 	    merge_roots[parent].push_front(rn);
   347 	  }
   348 	  
   349 	  if (parent != root) {  
   350 	    na = nb = order_map[parent];
   351 	    da = true; db = false;
   352 	  } else {
   353 	    break;
   354 	  }
   355 	}	
   356       }
   357     }
   358 
   359     void walkDown(int rn, int rorder, NodeData& node_data,
   360 		  OrderList& order_list, ChildLists& child_lists,
   361 		  AncestorMap& ancestor_map, LowMap& low_map,
   362 		  EmbedEdge& embed_edge, MergeRoots& merge_roots) {
   363 
   364       std::vector<std::pair<int, bool> > merge_stack;
   365 
   366       for (int di = 0; di < 2; ++di) {
   367 	bool rd = di == 0;
   368 	int pn = rn;
   369 	int n = rd ? node_data[rn].next : node_data[rn].prev;
   370 	
   371 	while (n != rn) {
   372 	  
   373 	  Node node = order_list[n];
   374 	  
   375 	  if (embed_edge[node]) {
   376 
   377 	    // Merging components on the critical path
   378 	    while (!merge_stack.empty()) {
   379 
   380 	      // Component root
   381 	      int cn = merge_stack.back().first;
   382 	      bool cd = merge_stack.back().second;
   383 	      merge_stack.pop_back();
   384 
   385 	      // Parent of component
   386 	      int dn = merge_stack.back().first;
   387 	      bool dd = merge_stack.back().second;
   388 	      merge_stack.pop_back();
   389 
   390 	      Node parent = order_list[dn];
   391 
   392 	      // Erasing from merge_roots
   393 	      merge_roots[parent].pop_front();
   394 	      
   395 	      Node child = order_list[cn - order_list.size()];
   396 
   397 	      // Erasing from child_lists
   398 	      if (child_lists[child].prev != INVALID) {
   399 		child_lists[child_lists[child].prev].next =
   400 		  child_lists[child].next;
   401 	      } else {
   402 		child_lists[parent].first = child_lists[child].next;
   403 	      }
   404 	      
   405 	      if (child_lists[child].next != INVALID) {
   406 		child_lists[child_lists[child].next].prev =
   407 		  child_lists[child].prev;
   408 	      }
   409 	      
   410 	      // Merging external faces
   411 	      {
   412 		int en = cn;
   413 		cn = cd ? node_data[cn].prev : node_data[cn].next;
   414 		cd = node_data[cn].next == en;
   415 
   416 	      }
   417 
   418 	      if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn;
   419 	      if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn;
   420 
   421 	    }
   422 
   423 	    bool d = pn == node_data[n].prev;
   424 
   425 	    if (node_data[n].prev == node_data[n].next && 
   426 		node_data[n].inverted) {
   427 	      d = !d;
   428 	    }
   429 
   430 	    // Embedding edge into external face
   431 	    if (rd) node_data[rn].next = n; else node_data[rn].prev = n;
   432 	    if (d) node_data[n].prev = rn; else node_data[n].next = rn;
   433 	    pn = rn;
   434 
   435 	    embed_edge[order_list[n]] = false;
   436 	  }
   437 
   438 	  if (!merge_roots[node].empty()) {
   439 
   440 	    bool d = pn == node_data[n].prev;
   441 
   442 	    merge_stack.push_back(std::make_pair(n, d));
   443 
   444 	    int rn = merge_roots[node].front();
   445 	    
   446 	    int xn = node_data[rn].next;
   447 	    Node xnode = order_list[xn];
   448 	    
   449 	    int yn = node_data[rn].prev;
   450 	    Node ynode = order_list[yn];
   451 	    
   452 	    bool rd;
   453 	    if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
   454 	      rd = true;
   455 	    } else if (!external(ynode, rorder, child_lists, 
   456 				 ancestor_map, low_map)) {
   457 	      rd = false;
   458 	    } else if (pertinent(xnode, embed_edge, merge_roots)) {
   459 	      rd = true;
   460 	    } else {
   461 	      rd = false;
   462 	    }
   463 	    
   464 	    merge_stack.push_back(std::make_pair(rn, rd));
   465 	    
   466 	    pn = rn;
   467 	    n = rd ? xn : yn;	      
   468 	    	    
   469 	  } else if (!external(node, rorder, child_lists,
   470 			       ancestor_map, low_map)) {
   471 	    int nn = (node_data[n].next != pn ? 
   472 		      node_data[n].next : node_data[n].prev);
   473 
   474 	    bool nd = n == node_data[nn].prev;
   475 
   476 	    if (nd) node_data[nn].prev = pn;
   477 	    else node_data[nn].next = pn; 
   478 
   479 	    if (n == node_data[pn].prev) node_data[pn].prev = nn;
   480 	    else node_data[pn].next = nn;
   481 
   482 	    node_data[nn].inverted = 
   483 	      (node_data[nn].prev == node_data[nn].next && nd != rd);
   484 
   485 	    n = nn;
   486 	  }
   487 	  else break;
   488 	  
   489 	}
   490 
   491 	if (!merge_stack.empty() || n == rn) {
   492 	  break;
   493 	}
   494       }
   495     }
   496 
   497     void initFace(const Node& node, NodeData& node_data, 
   498 		  const OrderMap& order_map, const OrderList& order_list) {
   499       int n = order_map[node];
   500       int rn = n + order_list.size();
   501       
   502       node_data[n].next = node_data[n].prev = rn;
   503       node_data[rn].next = node_data[rn].prev = n;
   504       
   505       node_data[n].visited = order_list.size();
   506       node_data[rn].visited = order_list.size();
   507       
   508     }
   509 
   510     bool external(const Node& node, int rorder,
   511 		  ChildLists& child_lists, AncestorMap& ancestor_map, 
   512 		  LowMap& low_map) {
   513       Node child = child_lists[node].first;
   514 
   515       if (child != INVALID) {
   516 	if (low_map[child] < rorder) return true;
   517       }
   518 
   519       if (ancestor_map[node] < rorder) return true;
   520 
   521       return false;
   522     }
   523 
   524     bool pertinent(const Node& node, const EmbedEdge& embed_edge,
   525 		   const MergeRoots& merge_roots) {
   526       return !merge_roots[node].empty() || embed_edge[node];
   527     }
   528 
   529   };
   530 
   531   /// \ingroup planar
   532   ///
   533   /// \brief Planar embedding of an undirected simple graph
   534   ///
   535   /// This class implements the Boyer-Myrvold algorithm for planar
   536   /// embedding of an undirected graph. The planar embeding is an
   537   /// ordering of the outgoing edges in each node, which is a possible
   538   /// configuration to draw the graph in the plane. If there is not
   539   /// such ordering then the graph contains a \f$ K_5 \f$ (full graph
   540   /// with 5 nodes) or an \f$ K_{3,3} \f$ (complete bipartite graph on
   541   /// 3 ANode and 3 BNode) subdivision.
   542   ///
   543   /// The current implementation calculates an embedding or an
   544   /// Kuratowski subdivision if the graph is not planar. The running
   545   /// time of the algorithm is \f$ O(n) \f$.
   546   template <typename UGraph>
   547   class PlanarEmbedding {
   548   private:
   549     
   550     UGRAPH_TYPEDEFS(typename UGraph);
   551       
   552     const UGraph& _ugraph;
   553     typename UGraph::template EdgeMap<Edge> _embedding;
   554 
   555     typename UGraph::template UEdgeMap<bool> _kuratowski;
   556 
   557   private:
   558 
   559     typedef typename UGraph::template NodeMap<Edge> PredMap;
   560     
   561     typedef typename UGraph::template UEdgeMap<bool> TreeMap;
   562 
   563     typedef typename UGraph::template NodeMap<int> OrderMap;
   564     typedef std::vector<Node> OrderList;
   565 
   566     typedef typename UGraph::template NodeMap<int> LowMap;
   567     typedef typename UGraph::template NodeMap<int> AncestorMap;
   568 
   569     typedef _planarity_bits::NodeDataNode<UGraph> NodeDataNode;
   570     typedef std::vector<NodeDataNode> NodeData;
   571     
   572     typedef _planarity_bits::ChildListNode<UGraph> ChildListNode;
   573     typedef typename UGraph::template NodeMap<ChildListNode> ChildLists;
   574 
   575     typedef typename UGraph::template NodeMap<std::list<int> > MergeRoots;
   576  
   577     typedef typename UGraph::template NodeMap<Edge> EmbedEdge;
   578 
   579     typedef _planarity_bits::EdgeListNode<UGraph> EdgeListNode;
   580     typedef typename UGraph::template EdgeMap<EdgeListNode> EdgeLists;
   581 
   582     typedef typename UGraph::template NodeMap<bool> FlipMap;
   583 
   584     typedef typename UGraph::template NodeMap<int> TypeMap;
   585 
   586     enum IsolatorNodeType {
   587       HIGHX = 6, LOWX = 7,
   588       HIGHY = 8, LOWY = 9,
   589       ROOT = 10, PERTINENT = 11,
   590       INTERNAL = 12
   591     };
   592 
   593   public:
   594 
   595     /// \brief The map for store of embedding
   596     typedef typename UGraph::template EdgeMap<Edge> EmbeddingMap;
   597 
   598     /// \brief Constructor
   599     ///
   600     /// \warining The graph should be simple, i.e. parallel and loop edge
   601     /// free.
   602     PlanarEmbedding(const UGraph& ugraph)
   603       : _ugraph(ugraph), _embedding(_ugraph), _kuratowski(ugraph, false) {}
   604 
   605     /// \brief Runs the algorithm.
   606     ///
   607     /// Runs the algorithm.  
   608     /// \param kuratowski If the parameter is false, then the
   609     /// algorithm does not calculate the isolate Kuratowski
   610     /// subdivisions.
   611     ///\return %True when the graph is planar.
   612     bool run(bool kuratowski = true) {
   613       typedef _planarity_bits::PlanarityVisitor<UGraph> Visitor;
   614 
   615       PredMap pred_map(_ugraph, INVALID);
   616       TreeMap tree_map(_ugraph, false);
   617 
   618       OrderMap order_map(_ugraph, -1);
   619       OrderList order_list;
   620 
   621       AncestorMap ancestor_map(_ugraph, -1);
   622       LowMap low_map(_ugraph, -1);
   623 
   624       Visitor visitor(_ugraph, pred_map, tree_map,
   625 		      order_map, order_list, ancestor_map, low_map);
   626       DfsVisit<UGraph, Visitor> visit(_ugraph, visitor);
   627       visit.run();
   628 
   629       ChildLists child_lists(_ugraph);
   630       createChildLists(tree_map, order_map, low_map, child_lists);
   631 
   632       NodeData node_data(2 * order_list.size());
   633       
   634       EmbedEdge embed_edge(_ugraph, INVALID);
   635 
   636       MergeRoots merge_roots(_ugraph);
   637 
   638       EdgeLists edge_lists(_ugraph);
   639 
   640       FlipMap flip_map(_ugraph, false);
   641 
   642       for (int i = order_list.size() - 1; i >= 0; --i) {
   643 
   644 	Node node = order_list[i];
   645 
   646 	node_data[i].first = INVALID;
   647 	
   648 	Node source = node;
   649 	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   650 	  Node target = _ugraph.target(e);
   651 	  
   652 	  if (order_map[source] < order_map[target] && tree_map[e]) {
   653 	    initFace(target, edge_lists, node_data,
   654 		      pred_map, order_map, order_list);
   655 	  }
   656 	}
   657 	
   658 	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   659 	  Node target = _ugraph.target(e);
   660 	  
   661 	  if (order_map[source] < order_map[target] && !tree_map[e]) {
   662 	    embed_edge[target] = e;
   663 	    walkUp(target, source, i, pred_map, low_map,
   664 		   order_map, order_list, node_data, merge_roots);
   665 	  }
   666 	}
   667 
   668 	for (typename MergeRoots::Value::iterator it = 
   669 	       merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
   670 	  int rn = *it;
   671 	  walkDown(rn, i, node_data, edge_lists, flip_map, order_list, 
   672 		   child_lists, ancestor_map, low_map, embed_edge, merge_roots);
   673 	}
   674 	merge_roots[node].clear();
   675 	
   676 	for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
   677 	  Node target = _ugraph.target(e);
   678 	  
   679 	  if (order_map[source] < order_map[target] && !tree_map[e]) {
   680 	    if (embed_edge[target] != INVALID) {
   681 	      if (kuratowski) {
   682 		isolateKuratowski(e, node_data, edge_lists, flip_map,
   683 				  order_map, order_list, pred_map, child_lists,
   684 				  ancestor_map, low_map, 
   685 				  embed_edge, merge_roots);
   686 	      }
   687 	      return false;
   688 	    }
   689 	  }
   690 	}
   691       }
   692 
   693       for (int i = 0; i < int(order_list.size()); ++i) {
   694 
   695 	mergeRemainingFaces(order_list[i], node_data, order_list, order_map,
   696 			    child_lists, edge_lists);
   697 	storeEmbedding(order_list[i], node_data, order_map, pred_map,
   698 		       edge_lists, flip_map);
   699       }
   700 
   701       return true;
   702     }
   703 
   704     /// \brief Gives back the successor of an edge
   705     ///
   706     /// Gives back the successor of an edge. This function makes
   707     /// possible to query the cyclic order of the outgoing edges from
   708     /// a node.
   709     Edge next(const Edge& edge) const {
   710       return _embedding[edge];
   711     }
   712 
   713     /// \brief Gives back the calculated embedding map
   714     ///
   715     /// The returned map contains the successor of each edge in the
   716     /// graph.
   717     const EmbeddingMap& embedding() const {
   718       return _embedding;
   719     }
   720 
   721     /// \brief Gives back true when the undirected edge is in the
   722     /// kuratowski subdivision
   723     ///
   724     /// Gives back true when the undirected edge is in the kuratowski
   725     /// subdivision
   726     bool kuratowski(const UEdge& uedge) {
   727       return _kuratowski[uedge];
   728     }
   729 
   730   private:
   731 
   732     void createChildLists(const TreeMap& tree_map, const OrderMap& order_map,
   733 			  const LowMap& low_map, ChildLists& child_lists) {
   734 
   735       for (NodeIt n(_ugraph); n != INVALID; ++n) {
   736 	Node source = n;
   737 	
   738 	std::vector<Node> targets;  
   739 	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
   740 	  Node target = _ugraph.target(e);
   741 
   742 	  if (order_map[source] < order_map[target] && tree_map[e]) {
   743 	    targets.push_back(target);
   744 	  }
   745 	}	
   746 
   747 	if (targets.size() == 0) {
   748 	  child_lists[source].first = INVALID;
   749 	} else if (targets.size() == 1) {
   750 	  child_lists[source].first = targets[0];
   751 	  child_lists[targets[0]].prev = INVALID;
   752 	  child_lists[targets[0]].next = INVALID;
   753 	} else {
   754 	  radixSort(targets.begin(), targets.end(), mapFunctor(low_map));
   755 	  for (int i = 1; i < int(targets.size()); ++i) {
   756 	    child_lists[targets[i]].prev = targets[i - 1];
   757 	    child_lists[targets[i - 1]].next = targets[i];
   758 	  }
   759 	  child_lists[targets.back()].next = INVALID; 
   760 	  child_lists[targets.front()].prev = INVALID;
   761 	  child_lists[source].first = targets.front();
   762 	}
   763       }
   764     }
   765 
   766     void walkUp(const Node& node, Node root, int rorder,
   767 		const PredMap& pred_map, const LowMap& low_map,
   768 		const OrderMap& order_map, const OrderList& order_list,
   769 		NodeData& node_data, MergeRoots& merge_roots) {
   770 
   771       int na, nb;
   772       bool da, db;
   773       
   774       na = nb = order_map[node];
   775       da = true; db = false;
   776       
   777       while (true) {
   778 	
   779 	if (node_data[na].visited == rorder) break;
   780 	if (node_data[nb].visited == rorder) break;
   781 
   782 	node_data[na].visited = rorder;
   783 	node_data[nb].visited = rorder;
   784 
   785 	int rn = -1;
   786 
   787 	if (na >= int(order_list.size())) {
   788 	  rn = na;
   789 	} else if (nb >= int(order_list.size())) {
   790 	  rn = nb;
   791 	}
   792 
   793 	if (rn == -1) {
   794 	  int nn;
   795 	  
   796 	  nn = da ? node_data[na].prev : node_data[na].next;
   797 	  da = node_data[nn].prev != na;
   798 	  na = nn;
   799 	  
   800 	  nn = db ? node_data[nb].prev : node_data[nb].next;
   801 	  db = node_data[nn].prev != nb;
   802 	  nb = nn;
   803 
   804 	} else {
   805 
   806 	  Node rep = order_list[rn - order_list.size()];
   807 	  Node parent = _ugraph.source(pred_map[rep]);
   808 
   809 	  if (low_map[rep] < rorder) {
   810 	    merge_roots[parent].push_back(rn);
   811 	  } else {
   812 	    merge_roots[parent].push_front(rn);
   813 	  }
   814 	  
   815 	  if (parent != root) {  
   816 	    na = nb = order_map[parent];
   817 	    da = true; db = false;
   818 	  } else {
   819 	    break;
   820 	  }
   821 	}	
   822       }
   823     }
   824 
   825     void walkDown(int rn, int rorder, NodeData& node_data,
   826 		  EdgeLists& edge_lists, FlipMap& flip_map, 
   827 		  OrderList& order_list, ChildLists& child_lists,
   828 		  AncestorMap& ancestor_map, LowMap& low_map,
   829 		  EmbedEdge& embed_edge, MergeRoots& merge_roots) {
   830 
   831       std::vector<std::pair<int, bool> > merge_stack;
   832 
   833       for (int di = 0; di < 2; ++di) {
   834 	bool rd = di == 0;
   835 	int pn = rn;
   836 	int n = rd ? node_data[rn].next : node_data[rn].prev;
   837 	
   838 	while (n != rn) {
   839 	  
   840 	  Node node = order_list[n];
   841 	  
   842 	  if (embed_edge[node] != INVALID) {
   843 
   844 	    // Merging components on the critical path
   845 	    while (!merge_stack.empty()) {
   846 
   847 	      // Component root
   848 	      int cn = merge_stack.back().first;
   849 	      bool cd = merge_stack.back().second;
   850 	      merge_stack.pop_back();
   851 
   852 	      // Parent of component
   853 	      int dn = merge_stack.back().first;
   854 	      bool dd = merge_stack.back().second;
   855 	      merge_stack.pop_back();
   856 
   857 	      Node parent = order_list[dn];
   858 
   859 	      // Erasing from merge_roots
   860 	      merge_roots[parent].pop_front();
   861 	      
   862 	      Node child = order_list[cn - order_list.size()];
   863 
   864 	      // Erasing from child_lists
   865 	      if (child_lists[child].prev != INVALID) {
   866 		child_lists[child_lists[child].prev].next =
   867 		  child_lists[child].next;
   868 	      } else {
   869 		child_lists[parent].first = child_lists[child].next;
   870 	      }
   871 	      
   872 	      if (child_lists[child].next != INVALID) {
   873 		child_lists[child_lists[child].next].prev =
   874 		  child_lists[child].prev;
   875 	      }
   876 
   877 	      // Merging edges + flipping
   878 	      Edge de = node_data[dn].first;
   879 	      Edge ce = node_data[cn].first;
   880 
   881 	      flip_map[order_list[cn - order_list.size()]] = cd != dd;
   882 	      if (cd != dd) {
   883 		std::swap(edge_lists[ce].prev, edge_lists[ce].next);
   884 		ce = edge_lists[ce].prev;
   885 		std::swap(edge_lists[ce].prev, edge_lists[ce].next);
   886 	      }
   887 
   888 	      {
   889 		Edge dne = edge_lists[de].next; 
   890 		Edge cne = edge_lists[ce].next; 
   891 
   892 		edge_lists[de].next = cne;
   893 		edge_lists[ce].next = dne;
   894 	      
   895 		edge_lists[dne].prev = ce;
   896 		edge_lists[cne].prev = de;
   897 	      }
   898 	      	      
   899 	      if (dd) {
   900 		node_data[dn].first = ce;
   901 	      }
   902 	      
   903 	      // Merging external faces
   904 	      {
   905 		int en = cn;
   906 		cn = cd ? node_data[cn].prev : node_data[cn].next;
   907 		cd = node_data[cn].next == en;
   908 
   909  		if (node_data[cn].prev == node_data[cn].next && 
   910 		    node_data[cn].inverted) {
   911  		  cd = !cd;
   912  		}
   913 	      }
   914 
   915 	      if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn;
   916 	      if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn;
   917 
   918 	    }
   919 
   920 	    bool d = pn == node_data[n].prev;
   921 
   922 	    if (node_data[n].prev == node_data[n].next && 
   923 		node_data[n].inverted) {
   924 	      d = !d;
   925 	    }
   926 
   927 	    // Add new edge
   928 	    {
   929 	      Edge edge = embed_edge[node];
   930 	      Edge re = node_data[rn].first;
   931 
   932 	      edge_lists[edge_lists[re].next].prev = edge;
   933 	      edge_lists[edge].next = edge_lists[re].next;
   934 	      edge_lists[edge].prev = re;
   935 	      edge_lists[re].next = edge;
   936 
   937 	      if (!rd) {
   938 		node_data[rn].first = edge;
   939 	      }
   940 
   941 	      Edge rev = _ugraph.oppositeEdge(edge);
   942 	      Edge e = node_data[n].first;
   943 
   944 	      edge_lists[edge_lists[e].next].prev = rev;
   945 	      edge_lists[rev].next = edge_lists[e].next;
   946 	      edge_lists[rev].prev = e;
   947 	      edge_lists[e].next = rev;
   948 
   949 	      if (d) {
   950 		node_data[n].first = rev;
   951 	      }
   952 	      
   953 	    }
   954 
   955 	    // Embedding edge into external face
   956 	    if (rd) node_data[rn].next = n; else node_data[rn].prev = n;
   957 	    if (d) node_data[n].prev = rn; else node_data[n].next = rn;
   958 	    pn = rn;
   959 
   960 	    embed_edge[order_list[n]] = INVALID;
   961 	  }
   962 
   963 	  if (!merge_roots[node].empty()) {
   964 
   965 	    bool d = pn == node_data[n].prev;
   966 	    if (node_data[n].prev == node_data[n].next && 
   967 		node_data[n].inverted) {
   968 	      d = !d;
   969 	    }
   970 
   971 	    merge_stack.push_back(std::make_pair(n, d));
   972 
   973 	    int rn = merge_roots[node].front();
   974 	    
   975 	    int xn = node_data[rn].next;
   976 	    Node xnode = order_list[xn];
   977 	    
   978 	    int yn = node_data[rn].prev;
   979 	    Node ynode = order_list[yn];
   980 	    
   981 	    bool rd;
   982 	    if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
   983 	      rd = true;
   984 	    } else if (!external(ynode, rorder, child_lists, 
   985 				 ancestor_map, low_map)) {
   986 	      rd = false;
   987 	    } else if (pertinent(xnode, embed_edge, merge_roots)) {
   988 	      rd = true;
   989 	    } else {
   990 	      rd = false;
   991 	    }
   992 	    
   993 	    merge_stack.push_back(std::make_pair(rn, rd));
   994 	    
   995 	    pn = rn;
   996 	    n = rd ? xn : yn;	      
   997 	    	    
   998 	  } else if (!external(node, rorder, child_lists,
   999 			       ancestor_map, low_map)) {
  1000 	    int nn = (node_data[n].next != pn ? 
  1001 		      node_data[n].next : node_data[n].prev);
  1002 
  1003 	    bool nd = n == node_data[nn].prev;
  1004 
  1005 	    if (nd) node_data[nn].prev = pn;
  1006 	    else node_data[nn].next = pn; 
  1007 
  1008 	    if (n == node_data[pn].prev) node_data[pn].prev = nn;
  1009 	    else node_data[pn].next = nn;
  1010 
  1011 	    node_data[nn].inverted = 
  1012 	      (node_data[nn].prev == node_data[nn].next && nd != rd);
  1013 
  1014 	    n = nn;
  1015 	  }
  1016 	  else break;
  1017 	  
  1018 	}
  1019 
  1020 	if (!merge_stack.empty() || n == rn) {
  1021 	  break;
  1022 	}
  1023       }
  1024     }
  1025 
  1026     void initFace(const Node& node, EdgeLists& edge_lists,
  1027 		   NodeData& node_data, const PredMap& pred_map,
  1028 		   const OrderMap& order_map, const OrderList& order_list) {
  1029       int n = order_map[node];
  1030       int rn = n + order_list.size();
  1031       
  1032       node_data[n].next = node_data[n].prev = rn;
  1033       node_data[rn].next = node_data[rn].prev = n;
  1034       
  1035       node_data[n].visited = order_list.size();
  1036       node_data[rn].visited = order_list.size();
  1037 
  1038       node_data[n].inverted = false;
  1039       node_data[rn].inverted = false;
  1040 
  1041       Edge edge = pred_map[node];
  1042       Edge rev = _ugraph.oppositeEdge(edge);
  1043 
  1044       node_data[rn].first = edge;
  1045       node_data[n].first = rev;
  1046 
  1047       edge_lists[edge].prev = edge;
  1048       edge_lists[edge].next = edge;
  1049 
  1050       edge_lists[rev].prev = rev;
  1051       edge_lists[rev].next = rev;
  1052 
  1053     }
  1054 
  1055     void mergeRemainingFaces(const Node& node, NodeData& node_data,
  1056 			     OrderList& order_list, OrderMap& order_map,
  1057 			     ChildLists& child_lists, EdgeLists& edge_lists) {
  1058       while (child_lists[node].first != INVALID) {
  1059 	int dd = order_map[node];
  1060 	Node child = child_lists[node].first; 
  1061 	int cd = order_map[child] + order_list.size();
  1062 	child_lists[node].first = child_lists[child].next;
  1063 
  1064 	Edge de = node_data[dd].first;
  1065 	Edge ce = node_data[cd].first;
  1066 
  1067 	if (de != INVALID) {
  1068 	  Edge dne = edge_lists[de].next; 
  1069 	  Edge cne = edge_lists[ce].next; 
  1070 	  
  1071 	  edge_lists[de].next = cne;
  1072 	  edge_lists[ce].next = dne;
  1073 	  
  1074 	  edge_lists[dne].prev = ce;
  1075 	  edge_lists[cne].prev = de;
  1076 	}
  1077 	
  1078 	node_data[dd].first = ce;
  1079 
  1080       }
  1081     }
  1082 
  1083     void storeEmbedding(const Node& node, NodeData& node_data,
  1084 			OrderMap& order_map, PredMap& pred_map,
  1085 			EdgeLists& edge_lists, FlipMap& flip_map) {
  1086 
  1087       if (node_data[order_map[node]].first == INVALID) return;
  1088 
  1089       if (pred_map[node] != INVALID) {
  1090 	Node source = _ugraph.source(pred_map[node]);
  1091 	flip_map[node] = flip_map[node] != flip_map[source];
  1092       }
  1093       
  1094       Edge first = node_data[order_map[node]].first;
  1095       Edge prev = first;
  1096 
  1097       Edge edge = flip_map[node] ?
  1098 	edge_lists[prev].prev : edge_lists[prev].next;
  1099 
  1100       _embedding[prev] = edge;
  1101       
  1102       while (edge != first) {
  1103 	Edge next = edge_lists[edge].prev == prev ?
  1104 	  edge_lists[edge].next : edge_lists[edge].prev;
  1105 	prev = edge; edge = next;
  1106 	_embedding[prev] = edge;
  1107       }
  1108     }
  1109 
  1110 
  1111     bool external(const Node& node, int rorder,
  1112 		  ChildLists& child_lists, AncestorMap& ancestor_map, 
  1113 		  LowMap& low_map) {
  1114       Node child = child_lists[node].first;
  1115 
  1116       if (child != INVALID) {
  1117 	if (low_map[child] < rorder) return true;
  1118       }
  1119 
  1120       if (ancestor_map[node] < rorder) return true;
  1121 
  1122       return false;
  1123     }
  1124 
  1125     bool pertinent(const Node& node, const EmbedEdge& embed_edge,
  1126 		   const MergeRoots& merge_roots) {
  1127       return !merge_roots[node].empty() || embed_edge[node] != INVALID;
  1128     }
  1129 
  1130     int lowPoint(const Node& node, OrderMap& order_map, ChildLists& child_lists,
  1131 		 AncestorMap& ancestor_map, LowMap& low_map) {
  1132       int low_point;
  1133 
  1134       Node child = child_lists[node].first;
  1135 
  1136       if (child != INVALID) {
  1137 	low_point = low_map[child];
  1138       } else {
  1139 	low_point = order_map[node];
  1140       }
  1141 
  1142       if (low_point > ancestor_map[node]) {
  1143 	low_point = ancestor_map[node];
  1144       }
  1145 
  1146       return low_point;
  1147     }
  1148 
  1149     int findComponentRoot(Node root, Node node, ChildLists& child_lists, 
  1150 			  OrderMap& order_map, OrderList& order_list) {
  1151 
  1152       int order = order_map[root];
  1153       int norder = order_map[node];
  1154 
  1155       Node child = child_lists[root].first;
  1156       while (child != INVALID) {
  1157 	int corder = order_map[child];
  1158 	if (corder > order && corder < norder) {
  1159 	  order = corder;
  1160 	}
  1161 	child = child_lists[child].next;
  1162       }
  1163       return order + order_list.size();
  1164     }
  1165 
  1166     Node findPertinent(Node node, OrderMap& order_map, NodeData& node_data,
  1167 		       EmbedEdge& embed_edge, MergeRoots& merge_roots) {
  1168       Node wnode =_ugraph.target(node_data[order_map[node]].first);
  1169       while (!pertinent(wnode, embed_edge, merge_roots)) {
  1170 	wnode = _ugraph.target(node_data[order_map[wnode]].first);
  1171       }
  1172       return wnode;
  1173     }
  1174 
  1175 
  1176     Node findExternal(Node node, int rorder, OrderMap& order_map, 
  1177 		      ChildLists& child_lists, AncestorMap& ancestor_map,
  1178 		      LowMap& low_map, NodeData& node_data) {
  1179       Node wnode =_ugraph.target(node_data[order_map[node]].first);
  1180       while (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
  1181 	wnode = _ugraph.target(node_data[order_map[wnode]].first);
  1182       }
  1183       return wnode;
  1184     }
  1185 
  1186     void markCommonPath(Node node, int rorder, Node& wnode, Node& znode, 
  1187 			OrderList& order_list, OrderMap& order_map, 
  1188 			NodeData& node_data, EdgeLists& edge_lists, 
  1189 			EmbedEdge& embed_edge, MergeRoots& merge_roots, 
  1190 			ChildLists& child_lists, AncestorMap& ancestor_map, 
  1191 			LowMap& low_map) {
  1192       
  1193       Node cnode = node;
  1194       Node pred = INVALID;
  1195       
  1196       while (true) {
  1197 
  1198 	bool pert = pertinent(cnode, embed_edge, merge_roots);
  1199 	bool ext = external(cnode, rorder, child_lists, ancestor_map, low_map);
  1200 
  1201 	if (pert && ext) {
  1202 	  if (!merge_roots[cnode].empty()) {
  1203 	    int cn = merge_roots[cnode].back();
  1204 	    
  1205 	    if (low_map[order_list[cn - order_list.size()]] < rorder) {
  1206 	      Edge edge = node_data[cn].first;
  1207 	      _kuratowski.set(edge, true);
  1208 	      
  1209 	      pred = cnode;
  1210 	      cnode = _ugraph.target(edge);
  1211 	    
  1212 	      continue;
  1213 	    }
  1214 	  }
  1215 	  wnode = znode = cnode;
  1216 	  return;
  1217 
  1218 	} else if (pert) {
  1219 	  wnode = cnode;
  1220 	  
  1221 	  while (!external(cnode, rorder, child_lists, ancestor_map, low_map)) {
  1222 	    Edge edge = node_data[order_map[cnode]].first;
  1223 	  
  1224 	    if (_ugraph.target(edge) == pred) {
  1225 	      edge = edge_lists[edge].next;
  1226 	    }
  1227 	    _kuratowski.set(edge, true);
  1228 	    
  1229 	    Node next = _ugraph.target(edge);
  1230 	    pred = cnode; cnode = next;
  1231 	  }
  1232 	  
  1233 	  znode = cnode;
  1234 	  return;
  1235 
  1236 	} else if (ext) {
  1237 	  znode = cnode;
  1238 	  
  1239 	  while (!pertinent(cnode, embed_edge, merge_roots)) {
  1240 	    Edge edge = node_data[order_map[cnode]].first;
  1241 	  
  1242 	    if (_ugraph.target(edge) == pred) {
  1243 	      edge = edge_lists[edge].next;
  1244 	    }
  1245 	    _kuratowski.set(edge, true);
  1246 	    
  1247 	    Node next = _ugraph.target(edge);
  1248 	    pred = cnode; cnode = next;
  1249 	  }
  1250 	  
  1251 	  wnode = cnode;
  1252 	  return;
  1253 	  
  1254 	} else {
  1255 	  Edge edge = node_data[order_map[cnode]].first;
  1256 	  
  1257 	  if (_ugraph.target(edge) == pred) {
  1258 	    edge = edge_lists[edge].next;
  1259 	  }
  1260 	  _kuratowski.set(edge, true);
  1261 
  1262 	  Node next = _ugraph.target(edge);
  1263 	  pred = cnode; cnode = next;
  1264 	}
  1265 	
  1266       }
  1267 
  1268     }
  1269 
  1270     void orientComponent(Node root, int rn, OrderMap& order_map,
  1271 			 PredMap& pred_map, NodeData& node_data, 
  1272 			 EdgeLists& edge_lists, FlipMap& flip_map, 
  1273 			 TypeMap& type_map) {
  1274       node_data[order_map[root]].first = node_data[rn].first;
  1275       type_map[root] = 1;
  1276 
  1277       std::vector<Node> st, qu;
  1278 
  1279       st.push_back(root);
  1280       while (!st.empty()) {
  1281 	Node node = st.back();
  1282 	st.pop_back();
  1283 	qu.push_back(node);
  1284 	
  1285 	Edge edge = node_data[order_map[node]].first;
  1286 	
  1287 	if (type_map[_ugraph.target(edge)] == 0) {
  1288 	  st.push_back(_ugraph.target(edge));
  1289 	  type_map[_ugraph.target(edge)] = 1;
  1290 	} 
  1291 	
  1292 	Edge last = edge, pred = edge;
  1293 	edge = edge_lists[edge].next;
  1294 	while (edge != last) {
  1295 
  1296 	  if (type_map[_ugraph.target(edge)] == 0) {
  1297 	    st.push_back(_ugraph.target(edge));
  1298 	    type_map[_ugraph.target(edge)] = 1;
  1299 	  } 
  1300 	  
  1301 	  Edge next = edge_lists[edge].next != pred ? 
  1302 	    edge_lists[edge].next : edge_lists[edge].prev;
  1303 	  pred = edge; edge = next;
  1304 	}
  1305 
  1306       }
  1307 
  1308       type_map[root] = 2;
  1309       flip_map[root] = false;
  1310 
  1311       for (int i = 1; i < int(qu.size()); ++i) {
  1312 
  1313 	Node node = qu[i];
  1314 
  1315 	while (type_map[node] != 2) {
  1316 	  st.push_back(node);
  1317 	  type_map[node] = 2;
  1318 	  node = _ugraph.source(pred_map[node]);
  1319 	}
  1320 
  1321 	bool flip = flip_map[node];
  1322 
  1323 	while (!st.empty()) {
  1324 	  node = st.back();
  1325 	  st.pop_back();
  1326 	  
  1327 	  flip_map[node] = flip != flip_map[node];
  1328 	  flip = flip_map[node];
  1329 
  1330 	  if (flip) {
  1331 	    Edge edge = node_data[order_map[node]].first;
  1332 	    std::swap(edge_lists[edge].prev, edge_lists[edge].next);
  1333 	    edge = edge_lists[edge].prev;
  1334 	    std::swap(edge_lists[edge].prev, edge_lists[edge].next);
  1335 	    node_data[order_map[node]].first = edge;
  1336 	  }
  1337 	}
  1338       }
  1339 
  1340       for (int i = 0; i < int(qu.size()); ++i) {
  1341 
  1342 	Edge edge = node_data[order_map[qu[i]]].first;
  1343 	Edge last = edge, pred = edge;
  1344 
  1345 	edge = edge_lists[edge].next;
  1346 	while (edge != last) {
  1347 
  1348 	  if (edge_lists[edge].next == pred) {
  1349 	    std::swap(edge_lists[edge].next, edge_lists[edge].prev);
  1350 	  } 
  1351 	  pred = edge; edge = edge_lists[edge].next;
  1352 	}
  1353 	
  1354       }
  1355     }
  1356 
  1357     void setFaceFlags(Node root, Node wnode, Node ynode, Node xnode,
  1358 		      OrderMap& order_map, NodeData& node_data, 
  1359 		      TypeMap& type_map) {
  1360       Node node = _ugraph.target(node_data[order_map[root]].first);
  1361 
  1362       while (node != ynode) {
  1363 	type_map[node] = HIGHY;
  1364 	node = _ugraph.target(node_data[order_map[node]].first);
  1365       }
  1366 
  1367       while (node != wnode) {
  1368 	type_map[node] = LOWY;
  1369 	node = _ugraph.target(node_data[order_map[node]].first);
  1370       }
  1371       
  1372       node = _ugraph.target(node_data[order_map[wnode]].first);
  1373       
  1374       while (node != xnode) {
  1375 	type_map[node] = LOWX;
  1376 	node = _ugraph.target(node_data[order_map[node]].first);
  1377       }
  1378       type_map[node] = LOWX;
  1379 
  1380       node = _ugraph.target(node_data[order_map[xnode]].first);
  1381       while (node != root) {
  1382 	type_map[node] = HIGHX;
  1383 	node = _ugraph.target(node_data[order_map[node]].first);
  1384       }
  1385 
  1386       type_map[wnode] = PERTINENT;
  1387       type_map[root] = ROOT;
  1388     }
  1389 
  1390     void findInternalPath(std::vector<Edge>& ipath,
  1391 			  Node wnode, Node root, TypeMap& type_map, 
  1392 			  OrderMap& order_map, NodeData& node_data, 
  1393 			  EdgeLists& edge_lists) {
  1394       std::vector<Edge> st;
  1395 
  1396       Node node = wnode;
  1397       
  1398       while (node != root) {
  1399 	Edge edge = edge_lists[node_data[order_map[node]].first].next;
  1400 	st.push_back(edge);
  1401 	node = _ugraph.target(edge);
  1402       }
  1403       
  1404       while (true) {
  1405 	Edge edge = st.back();
  1406 	if (type_map[_ugraph.target(edge)] == LOWX ||
  1407 	    type_map[_ugraph.target(edge)] == HIGHX) {
  1408 	  break;
  1409 	}
  1410 	if (type_map[_ugraph.target(edge)] == 2) {
  1411 	  type_map[_ugraph.target(edge)] = 3;
  1412 	  
  1413 	  edge = edge_lists[_ugraph.oppositeEdge(edge)].next;
  1414 	  st.push_back(edge);
  1415 	} else {
  1416 	  st.pop_back();
  1417 	  edge = edge_lists[edge].next;
  1418 	  
  1419 	  while (_ugraph.oppositeEdge(edge) == st.back()) {
  1420 	    edge = st.back();
  1421 	    st.pop_back();
  1422 	    edge = edge_lists[edge].next;
  1423 	  }
  1424 	  st.push_back(edge);
  1425 	}
  1426       }
  1427       
  1428       for (int i = 0; i < int(st.size()); ++i) {
  1429 	if (type_map[_ugraph.target(st[i])] != LOWY &&
  1430 	    type_map[_ugraph.target(st[i])] != HIGHY) {
  1431 	  for (; i < int(st.size()); ++i) {
  1432 	    ipath.push_back(st[i]);
  1433 	  }
  1434 	}
  1435       }
  1436     }
  1437 
  1438     void setInternalFlags(std::vector<Edge>& ipath, TypeMap& type_map) {
  1439       for (int i = 1; i < int(ipath.size()); ++i) {
  1440 	type_map[_ugraph.source(ipath[i])] = INTERNAL;
  1441       }
  1442     }
  1443 
  1444     void findPilePath(std::vector<Edge>& ppath,
  1445 		      Node root, TypeMap& type_map, OrderMap& order_map, 
  1446 		      NodeData& node_data, EdgeLists& edge_lists) {
  1447       std::vector<Edge> st;
  1448 
  1449       st.push_back(_ugraph.oppositeEdge(node_data[order_map[root]].first));
  1450       st.push_back(node_data[order_map[root]].first);
  1451       
  1452       while (st.size() > 1) {
  1453 	Edge edge = st.back();
  1454 	if (type_map[_ugraph.target(edge)] == INTERNAL) {
  1455 	  break;
  1456 	}
  1457 	if (type_map[_ugraph.target(edge)] == 3) {
  1458 	  type_map[_ugraph.target(edge)] = 4;
  1459 	  
  1460 	  edge = edge_lists[_ugraph.oppositeEdge(edge)].next;
  1461 	  st.push_back(edge);
  1462 	} else {
  1463 	  st.pop_back();
  1464 	  edge = edge_lists[edge].next;
  1465 	  
  1466 	  while (!st.empty() && _ugraph.oppositeEdge(edge) == st.back()) {
  1467 	    edge = st.back();
  1468 	    st.pop_back();
  1469 	    edge = edge_lists[edge].next;
  1470 	  }
  1471 	  st.push_back(edge);
  1472 	}
  1473       }
  1474       
  1475       for (int i = 1; i < int(st.size()); ++i) {
  1476 	ppath.push_back(st[i]);
  1477       }
  1478     }
  1479 
  1480 
  1481     int markExternalPath(Node node, OrderMap& order_map,
  1482 			 ChildLists& child_lists, PredMap& pred_map,
  1483 			 AncestorMap& ancestor_map, LowMap& low_map) {
  1484       int lp = lowPoint(node, order_map, child_lists,
  1485 			ancestor_map, low_map);
  1486       
  1487       if (ancestor_map[node] != lp) {
  1488 	node = child_lists[node].first;
  1489 	_kuratowski[pred_map[node]] = true;
  1490 
  1491 	while (ancestor_map[node] != lp) {
  1492 	  for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
  1493 	    Node tnode = _ugraph.target(e); 
  1494 	    if (order_map[tnode] > order_map[node] && low_map[tnode] == lp) {
  1495 	      node = tnode;
  1496 	      _kuratowski[e] = true;
  1497 	      break;
  1498 	    }
  1499 	  }
  1500 	}
  1501       }
  1502 
  1503       for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
  1504 	if (order_map[_ugraph.target(e)] == lp) {
  1505 	  _kuratowski[e] = true;
  1506 	  break;
  1507 	}
  1508       }
  1509       
  1510       return lp;
  1511     }
  1512 
  1513     void markPertinentPath(Node node, OrderMap& order_map, 
  1514 			   NodeData& node_data, EdgeLists& edge_lists,
  1515 			   EmbedEdge& embed_edge, MergeRoots& merge_roots) {
  1516       while (embed_edge[node] == INVALID) {
  1517 	int n = merge_roots[node].front();
  1518 	Edge edge = node_data[n].first;
  1519 
  1520 	_kuratowski.set(edge, true);
  1521 	
  1522 	Node pred = node;
  1523 	node = _ugraph.target(edge);
  1524 	while (!pertinent(node, embed_edge, merge_roots)) {
  1525 	  edge = node_data[order_map[node]].first;
  1526 	  if (_ugraph.target(edge) == pred) {
  1527 	    edge = edge_lists[edge].next;
  1528 	  }
  1529 	  _kuratowski.set(edge, true);
  1530 	  pred = node;
  1531 	  node = _ugraph.target(edge);
  1532 	}
  1533       }
  1534       _kuratowski.set(embed_edge[node], true);
  1535     } 
  1536 
  1537     void markPredPath(Node node, Node snode, PredMap& pred_map) {
  1538       while (node != snode) {
  1539 	_kuratowski.set(pred_map[node], true);
  1540 	node = _ugraph.source(pred_map[node]);
  1541       }
  1542     }
  1543 
  1544     void markFacePath(Node ynode, Node xnode, 
  1545 		      OrderMap& order_map, NodeData& node_data) {
  1546       Edge edge = node_data[order_map[ynode]].first;
  1547       Node node = _ugraph.target(edge);
  1548       _kuratowski.set(edge, true);
  1549 	
  1550       while (node != xnode) {
  1551 	edge = node_data[order_map[node]].first;
  1552 	_kuratowski.set(edge, true);
  1553 	node = _ugraph.target(edge);
  1554       }
  1555     }
  1556 
  1557     void markInternalPath(std::vector<Edge>& path) {
  1558       for (int i = 0; i < int(path.size()); ++i) {
  1559 	_kuratowski.set(path[i], true);
  1560       }
  1561     }
  1562 
  1563     void markPilePath(std::vector<Edge>& path) {
  1564       for (int i = 0; i < int(path.size()); ++i) {
  1565 	_kuratowski.set(path[i], true);
  1566       }
  1567     }
  1568 
  1569     void isolateKuratowski(Edge edge, NodeData& node_data, 
  1570 			   EdgeLists& edge_lists, FlipMap& flip_map,
  1571 			   OrderMap& order_map, OrderList& order_list, 
  1572 			   PredMap& pred_map, ChildLists& child_lists,
  1573 			   AncestorMap& ancestor_map, LowMap& low_map, 
  1574 			   EmbedEdge& embed_edge, MergeRoots& merge_roots) {
  1575 
  1576       Node root = _ugraph.source(edge);
  1577       Node enode = _ugraph.target(edge);
  1578 
  1579       int rorder = order_map[root];
  1580 
  1581       TypeMap type_map(_ugraph, 0);
  1582 
  1583       int rn = findComponentRoot(root, enode, child_lists, 
  1584 				 order_map, order_list);
  1585 
  1586       Node xnode = order_list[node_data[rn].next];
  1587       Node ynode = order_list[node_data[rn].prev];
  1588 
  1589       // Minor-A
  1590       {
  1591 	while (!merge_roots[xnode].empty() || !merge_roots[ynode].empty()) {
  1592 	  
  1593 	  if (!merge_roots[xnode].empty()) {
  1594 	    root = xnode;
  1595 	    rn = merge_roots[xnode].front();
  1596 	  } else {
  1597 	    root = ynode;
  1598 	    rn = merge_roots[ynode].front();
  1599 	  }
  1600 	  
  1601 	  xnode = order_list[node_data[rn].next];
  1602 	  ynode = order_list[node_data[rn].prev];
  1603 	}
  1604 	
  1605 	if (root != _ugraph.source(edge)) {
  1606 	  orientComponent(root, rn, order_map, pred_map, 
  1607 			  node_data, edge_lists, flip_map, type_map);
  1608 	  markFacePath(root, root, order_map, node_data);
  1609 	  int xlp = markExternalPath(xnode, order_map, child_lists, 
  1610 				     pred_map, ancestor_map, low_map);
  1611 	  int ylp = markExternalPath(ynode, order_map, child_lists, 
  1612 				     pred_map, ancestor_map, low_map);
  1613 	  markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1614 	  Node lwnode = findPertinent(ynode, order_map, node_data,
  1615 				     embed_edge, merge_roots);
  1616 	  
  1617 	  markPertinentPath(lwnode, order_map, node_data, edge_lists,
  1618 			    embed_edge, merge_roots);
  1619 	  
  1620 	  return;
  1621 	}
  1622       }
  1623       
  1624       orientComponent(root, rn, order_map, pred_map, 
  1625 		      node_data, edge_lists, flip_map, type_map);
  1626 
  1627       Node wnode = findPertinent(ynode, order_map, node_data,
  1628 				 embed_edge, merge_roots);
  1629       setFaceFlags(root, wnode, ynode, xnode, order_map, node_data, type_map);
  1630 
  1631       
  1632       //Minor-B
  1633       if (!merge_roots[wnode].empty()) {
  1634 	int cn = merge_roots[wnode].back();
  1635 	Node rep = order_list[cn - order_list.size()];
  1636 	if (low_map[rep] < rorder) {
  1637 	  markFacePath(root, root, order_map, node_data);
  1638 	  int xlp = markExternalPath(xnode, order_map, child_lists, 
  1639 				     pred_map, ancestor_map, low_map);
  1640 	  int ylp = markExternalPath(ynode, order_map, child_lists, 
  1641 				     pred_map, ancestor_map, low_map);
  1642 
  1643 	  Node lwnode, lznode;
  1644 	  markCommonPath(wnode, rorder, lwnode, lznode, order_list, 
  1645 			 order_map, node_data, edge_lists, embed_edge, 
  1646 			 merge_roots, child_lists, ancestor_map, low_map);
  1647 	  	  
  1648 	  markPertinentPath(lwnode, order_map, node_data, edge_lists,
  1649 			    embed_edge, merge_roots);
  1650 	  int zlp = markExternalPath(lznode, order_map, child_lists, 
  1651 				     pred_map, ancestor_map, low_map);
  1652 
  1653 	  int minlp = xlp < ylp ? xlp : ylp;
  1654 	  if (zlp < minlp) minlp = zlp;
  1655 
  1656 	  int maxlp = xlp > ylp ? xlp : ylp;
  1657 	  if (zlp > maxlp) maxlp = zlp;
  1658 	  
  1659 	  markPredPath(order_list[maxlp], order_list[minlp], pred_map);
  1660 	  
  1661 	  return;
  1662 	}
  1663       }
  1664 
  1665       Node pxnode, pynode;
  1666       std::vector<Edge> ipath;
  1667       findInternalPath(ipath, wnode, root, type_map, order_map,
  1668 		       node_data, edge_lists);
  1669       setInternalFlags(ipath, type_map);
  1670       pynode = _ugraph.source(ipath.front());
  1671       pxnode = _ugraph.target(ipath.back());
  1672 
  1673       wnode = findPertinent(pynode, order_map, node_data,
  1674 			    embed_edge, merge_roots);
  1675       
  1676       // Minor-C
  1677       {
  1678 	if (type_map[_ugraph.source(ipath.front())] == HIGHY) {
  1679 	  if (type_map[_ugraph.target(ipath.back())] == HIGHX) {
  1680 	    markFacePath(xnode, pxnode, order_map, node_data);
  1681 	  }
  1682 	  markFacePath(root, xnode, order_map, node_data);
  1683 	  markPertinentPath(wnode, order_map, node_data, edge_lists,
  1684 			    embed_edge, merge_roots);
  1685 	  markInternalPath(ipath);
  1686 	  int xlp = markExternalPath(xnode, order_map, child_lists, 
  1687 				     pred_map, ancestor_map, low_map);
  1688 	  int ylp = markExternalPath(ynode, order_map, child_lists, 
  1689 				     pred_map, ancestor_map, low_map);
  1690 	  markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1691 	  return;
  1692 	}
  1693 
  1694 	if (type_map[_ugraph.target(ipath.back())] == HIGHX) {
  1695 	  markFacePath(ynode, root, order_map, node_data);
  1696 	  markPertinentPath(wnode, order_map, node_data, edge_lists,
  1697 			    embed_edge, merge_roots);
  1698 	  markInternalPath(ipath);
  1699 	  int xlp = markExternalPath(xnode, order_map, child_lists, 
  1700 				     pred_map, ancestor_map, low_map);
  1701 	  int ylp = markExternalPath(ynode, order_map, child_lists, 
  1702 				     pred_map, ancestor_map, low_map);
  1703 	  markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1704 	  return;
  1705 	}
  1706       }
  1707 
  1708       std::vector<Edge> ppath;
  1709       findPilePath(ppath, root, type_map, order_map, node_data, edge_lists);
  1710       
  1711       // Minor-D
  1712       if (!ppath.empty()) {
  1713 	markFacePath(ynode, xnode, order_map, node_data);
  1714 	markPertinentPath(wnode, order_map, node_data, edge_lists,
  1715 			  embed_edge, merge_roots);
  1716 	markPilePath(ppath);
  1717 	markInternalPath(ipath);
  1718 	int xlp = markExternalPath(xnode, order_map, child_lists, 
  1719 				   pred_map, ancestor_map, low_map);
  1720 	int ylp = markExternalPath(ynode, order_map, child_lists, 
  1721 				   pred_map, ancestor_map, low_map);
  1722 	markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1723 	return;
  1724       }
  1725 
  1726       // Minor-E*
  1727       {
  1728 
  1729 	if (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
  1730 	  Node znode = findExternal(pynode, rorder, order_map, 
  1731 				    child_lists, ancestor_map,
  1732 				    low_map, node_data);
  1733 	  
  1734 	  if (type_map[znode] == LOWY) {
  1735 	    markFacePath(root, xnode, order_map, node_data);
  1736 	    markPertinentPath(wnode, order_map, node_data, edge_lists,
  1737 			      embed_edge, merge_roots);
  1738 	    markInternalPath(ipath);
  1739 	    int xlp = markExternalPath(xnode, order_map, child_lists, 
  1740 				       pred_map, ancestor_map, low_map);
  1741 	    int zlp = markExternalPath(znode, order_map, child_lists, 
  1742 				       pred_map, ancestor_map, low_map);
  1743 	    markPredPath(root, order_list[xlp < zlp ? xlp : zlp], pred_map);
  1744 	  } else {
  1745 	    markFacePath(ynode, root, order_map, node_data);
  1746 	    markPertinentPath(wnode, order_map, node_data, edge_lists,
  1747 			      embed_edge, merge_roots);
  1748 	    markInternalPath(ipath);
  1749 	    int ylp = markExternalPath(ynode, order_map, child_lists, 
  1750 				       pred_map, ancestor_map, low_map);
  1751 	    int zlp = markExternalPath(znode, order_map, child_lists, 
  1752 				       pred_map, ancestor_map, low_map);
  1753 	    markPredPath(root, order_list[ylp < zlp ? ylp : zlp], pred_map);
  1754 	  }
  1755 	  return;
  1756 	}
  1757 
  1758 	int xlp = markExternalPath(xnode, order_map, child_lists, 
  1759 				   pred_map, ancestor_map, low_map);
  1760 	int ylp = markExternalPath(ynode, order_map, child_lists, 
  1761 				   pred_map, ancestor_map, low_map);
  1762 	int wlp = markExternalPath(wnode, order_map, child_lists, 
  1763 				   pred_map, ancestor_map, low_map);
  1764 
  1765 	if (wlp > xlp && wlp > ylp) {
  1766 	  markFacePath(root, root, order_map, node_data);
  1767 	  markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
  1768 	  return;
  1769 	}
  1770 
  1771 	markInternalPath(ipath);
  1772 	markPertinentPath(wnode, order_map, node_data, edge_lists,
  1773 			  embed_edge, merge_roots);
  1774 
  1775 	if (xlp > ylp && xlp > wlp) {
  1776 	  markFacePath(root, pynode, order_map, node_data);
  1777 	  markFacePath(wnode, xnode, order_map, node_data);
  1778 	  markPredPath(root, order_list[ylp < wlp ? ylp : wlp], pred_map);
  1779 	  return;
  1780 	}
  1781 
  1782 	if (ylp > xlp && ylp > wlp) {
  1783 	  markFacePath(pxnode, root, order_map, node_data);
  1784 	  markFacePath(ynode, wnode, order_map, node_data);
  1785 	  markPredPath(root, order_list[xlp < wlp ? xlp : wlp], pred_map);
  1786 	  return;
  1787 	}
  1788 
  1789 	if (pynode != ynode) {
  1790 	  markFacePath(pxnode, wnode, order_map, node_data);
  1791 
  1792 	  int minlp = xlp < ylp ? xlp : ylp;
  1793 	  if (wlp < minlp) minlp = wlp;
  1794 
  1795 	  int maxlp = xlp > ylp ? xlp : ylp;
  1796 	  if (wlp > maxlp) maxlp = wlp;
  1797 	  
  1798 	  markPredPath(order_list[maxlp], order_list[minlp], pred_map);
  1799 	  return;
  1800 	}
  1801 
  1802 	if (pxnode != xnode) {
  1803 	  markFacePath(wnode, pynode, order_map, node_data);
  1804 
  1805 	  int minlp = xlp < ylp ? xlp : ylp;
  1806 	  if (wlp < minlp) minlp = wlp;
  1807 
  1808 	  int maxlp = xlp > ylp ? xlp : ylp;
  1809 	  if (wlp > maxlp) maxlp = wlp;
  1810 	  
  1811 	  markPredPath(order_list[maxlp], order_list[minlp], pred_map);
  1812 	  return;
  1813 	}
  1814 
  1815 	markFacePath(root, root, order_map, node_data);
  1816 	int minlp = xlp < ylp ? xlp : ylp;
  1817 	if (wlp < minlp) minlp = wlp;
  1818 	markPredPath(root, order_list[minlp], pred_map);
  1819 	return;
  1820       }
  1821       
  1822     }
  1823 
  1824   };
  1825 
  1826   namespace _planarity_bits {
  1827 
  1828     template <typename UGraph, typename EmbeddingMap>
  1829     void makeConnected(UGraph& ugraph, EmbeddingMap& embedding) {
  1830       DfsVisitor<UGraph> null_visitor;
  1831       DfsVisit<UGraph, DfsVisitor<UGraph> > dfs(ugraph, null_visitor);
  1832       dfs.init();
  1833 
  1834       typename UGraph::Node u = INVALID;
  1835       for (typename UGraph::NodeIt n(ugraph); n != INVALID; ++n) {
  1836 	if (!dfs.reached(n)) {
  1837 	  dfs.addSource(n);
  1838 	  dfs.start();
  1839 	  if (u == INVALID) {
  1840 	    u = n;
  1841 	  } else {
  1842 	    typename UGraph::Node v = n;
  1843 	    
  1844 	    typename UGraph::Edge ue = typename UGraph::OutEdgeIt(ugraph, u);
  1845 	    typename UGraph::Edge ve = typename UGraph::OutEdgeIt(ugraph, v);
  1846 
  1847 	    typename UGraph::Edge e = ugraph.direct(ugraph.addEdge(u, v), true);
  1848 	    
  1849 	    if (ue != INVALID) {
  1850 	      embedding[e] = embedding[ue];
  1851 	      embedding[ue] = e;
  1852 	    } else {
  1853 	      embedding[e] = e;
  1854 	    }
  1855 
  1856 	    if (ve != INVALID) {
  1857 	      embedding[ugraph.oppositeEdge(e)] = embedding[ve];
  1858 	      embedding[ve] = ugraph.oppositeEdge(e);
  1859 	    } else {
  1860 	      embedding[ugraph.oppositeEdge(e)] = ugraph.oppositeEdge(e);
  1861 	    }
  1862 	  }
  1863 	}
  1864       }
  1865     }
  1866 
  1867     template <typename UGraph, typename EmbeddingMap>
  1868     void makeBiNodeConnected(UGraph& ugraph, EmbeddingMap& embedding) {
  1869       typename UGraph::template EdgeMap<bool> processed(ugraph);
  1870 
  1871       std::vector<typename UGraph::Edge> edges;
  1872       for (typename UGraph::EdgeIt e(ugraph); e != INVALID; ++e) {
  1873 	edges.push_back(e);
  1874       }
  1875 
  1876       IterableBoolMap<UGraph, typename UGraph::Node> visited(ugraph, false);
  1877       
  1878       for (int i = 0; i < int(edges.size()); ++i) {
  1879 	typename UGraph::Edge pp = edges[i];
  1880 	if (processed[pp]) continue;
  1881 
  1882 	typename UGraph::Edge e = embedding[ugraph.oppositeEdge(pp)];
  1883 	processed[e] = true;
  1884 	visited.set(ugraph.source(e), true);
  1885 	
  1886 	typename UGraph::Edge p = e, l = e;
  1887 	e = embedding[ugraph.oppositeEdge(e)];
  1888 	
  1889 	while (e != l) {
  1890 	  processed[e] = true;
  1891 
  1892 	  if (visited[ugraph.source(e)]) {
  1893 	    
  1894 	    typename UGraph::Edge n = 
  1895 	      ugraph.direct(ugraph.addEdge(ugraph.source(p), 
  1896 					   ugraph.target(e)), true);
  1897 	    embedding[n] = p;
  1898 	    embedding[ugraph.oppositeEdge(pp)] = n;
  1899 
  1900 	    embedding[ugraph.oppositeEdge(n)] = 
  1901 	      embedding[ugraph.oppositeEdge(e)];
  1902 	    embedding[ugraph.oppositeEdge(e)] = 
  1903 	      ugraph.oppositeEdge(n);
  1904 	    
  1905 	    p = n;
  1906 	    e = embedding[ugraph.oppositeEdge(n)];
  1907 	  } else {
  1908 	    visited.set(ugraph.source(e), true);
  1909 	    pp = p;
  1910 	    p = e;
  1911 	    e = embedding[ugraph.oppositeEdge(e)];
  1912 	  }
  1913 	}
  1914 	visited.setAll(false);
  1915       }
  1916     }
  1917     
  1918     
  1919     template <typename UGraph, typename EmbeddingMap>
  1920     void makeMaxPlanar(UGraph& ugraph, EmbeddingMap& embedding) {
  1921       
  1922       typename UGraph::template NodeMap<int> degree(ugraph);
  1923 
  1924       for (typename UGraph::NodeIt n(ugraph); n != INVALID; ++n) {
  1925 	degree[n] = countIncEdges(ugraph, n);
  1926       }
  1927 
  1928       typename UGraph::template EdgeMap<bool> processed(ugraph);
  1929       IterableBoolMap<UGraph, typename UGraph::Node> visited(ugraph, false);
  1930 
  1931       std::vector<typename UGraph::Edge> edges;
  1932       for (typename UGraph::EdgeIt e(ugraph); e != INVALID; ++e) {
  1933 	edges.push_back(e);
  1934       }
  1935 
  1936       for (int i = 0; i < int(edges.size()); ++i) {
  1937 	typename UGraph::Edge e = edges[i];
  1938 
  1939 	if (processed[e]) continue;
  1940 	processed[e] = true;
  1941 
  1942 	typename UGraph::Edge mine = e;
  1943 	int mind = degree[ugraph.source(e)];
  1944 
  1945 	int face_size = 1;	
  1946 
  1947 	typename UGraph::Edge l = e;
  1948 	e = embedding[ugraph.oppositeEdge(e)];
  1949 	while (l != e) {
  1950 	  processed[e] = true;
  1951 
  1952 	  ++face_size;
  1953 
  1954 	  if (degree[ugraph.source(e)] < mind) {
  1955 	    mine = e;
  1956 	    mind = degree[ugraph.source(e)];
  1957 	  }
  1958 	  
  1959 	  e = embedding[ugraph.oppositeEdge(e)];	  
  1960 	}
  1961 	
  1962 	if (face_size < 4) {
  1963 	  continue;
  1964 	}
  1965 
  1966 	typename UGraph::Node s = ugraph.source(mine);
  1967 	for (typename UGraph::OutEdgeIt e(ugraph, s); e != INVALID; ++e) {
  1968 	  visited.set(ugraph.target(e), true); 
  1969 	}
  1970 
  1971 	typename UGraph::Edge oppe = INVALID;
  1972 
  1973 	e = embedding[ugraph.oppositeEdge(mine)];
  1974 	e = embedding[ugraph.oppositeEdge(e)];
  1975 	while (ugraph.target(e) != s) {
  1976 	  if (visited[ugraph.source(e)]) {
  1977 	    oppe = e;
  1978 	    break;
  1979 	  }
  1980 	  e = embedding[ugraph.oppositeEdge(e)];
  1981 	}
  1982 	visited.setAll(false);
  1983 	
  1984 	if (oppe == INVALID) {
  1985 
  1986 	  e = embedding[ugraph.oppositeEdge(mine)];
  1987 	  typename UGraph::Edge pn = mine, p = e;
  1988 
  1989 	  e = embedding[ugraph.oppositeEdge(e)];
  1990 	  while (ugraph.target(e) != s) {
  1991 	    typename UGraph::Edge n = 
  1992 	      ugraph.direct(ugraph.addEdge(s, ugraph.source(e)), true);
  1993 
  1994 	    embedding[n] = pn;
  1995 	    embedding[ugraph.oppositeEdge(n)] = e;
  1996 	    embedding[ugraph.oppositeEdge(p)] = ugraph.oppositeEdge(n);
  1997 
  1998 	    pn = n;
  1999 	    
  2000 	    p = e;
  2001 	    e = embedding[ugraph.oppositeEdge(e)];
  2002 	  }
  2003 
  2004 	  embedding[ugraph.oppositeEdge(e)] = pn;
  2005 
  2006 	} else {
  2007 
  2008 	  mine = embedding[ugraph.oppositeEdge(mine)];
  2009 	  s = ugraph.source(mine);
  2010 	  oppe = embedding[ugraph.oppositeEdge(oppe)];
  2011 	  typename UGraph::Node t = ugraph.source(oppe);
  2012 	  
  2013 	  typename UGraph::Edge ce = ugraph.direct(ugraph.addEdge(s, t), true);
  2014 	  embedding[ce] = mine;
  2015 	  embedding[ugraph.oppositeEdge(ce)] = oppe;
  2016 
  2017 	  typename UGraph::Edge pn = ce, p = oppe;	  
  2018 	  e = embedding[ugraph.oppositeEdge(oppe)];
  2019 	  while (ugraph.target(e) != s) {
  2020 	    typename UGraph::Edge n = 
  2021 	      ugraph.direct(ugraph.addEdge(s, ugraph.source(e)), true);
  2022 
  2023 	    embedding[n] = pn;
  2024 	    embedding[ugraph.oppositeEdge(n)] = e;
  2025 	    embedding[ugraph.oppositeEdge(p)] = ugraph.oppositeEdge(n);
  2026 
  2027 	    pn = n;
  2028 	    
  2029 	    p = e;
  2030 	    e = embedding[ugraph.oppositeEdge(e)];
  2031 	    
  2032 	  }
  2033 	  embedding[ugraph.oppositeEdge(e)] = pn;
  2034 
  2035 	  pn = ugraph.oppositeEdge(ce), p = mine;	  
  2036 	  e = embedding[ugraph.oppositeEdge(mine)];
  2037 	  while (ugraph.target(e) != t) {
  2038 	    typename UGraph::Edge n = 
  2039 	      ugraph.direct(ugraph.addEdge(t, ugraph.source(e)), true);
  2040 
  2041 	    embedding[n] = pn;
  2042 	    embedding[ugraph.oppositeEdge(n)] = e;
  2043 	    embedding[ugraph.oppositeEdge(p)] = ugraph.oppositeEdge(n);
  2044 
  2045 	    pn = n;
  2046 	    
  2047 	    p = e;
  2048 	    e = embedding[ugraph.oppositeEdge(e)];
  2049 	    
  2050 	  }
  2051 	  embedding[ugraph.oppositeEdge(e)] = pn;
  2052 	}
  2053       }
  2054     }
  2055 
  2056   }
  2057 
  2058   /// \ingroup planar
  2059   ///
  2060   /// \brief Schnyder's planar drawing algorithms
  2061   ///
  2062   /// The planar drawing algorithm calculates location for each node
  2063   /// in the plane, which coordinates satisfies that if each edge is
  2064   /// represented with a straight line then the edges will not
  2065   /// intersect each other.
  2066   ///
  2067   /// Scnyder's algorithm embeds the graph on \c (n-2,n-2) size grid,
  2068   /// ie. each node will be located in the \c [0,n-2]x[0,n-2] square.
  2069   /// The time complexity of the algorithm is O(n).
  2070   template <typename UGraph>
  2071   class PlanarDrawing {
  2072   public:
  2073 
  2074     UGRAPH_TYPEDEFS(typename UGraph);
  2075 
  2076     /// \brief The point type for store coordinates
  2077     typedef dim2::Point<int> Point;
  2078     /// \brief The map type for store coordinates
  2079     typedef typename UGraph::template NodeMap<Point> PointMap;
  2080 
  2081 
  2082     /// \brief Constructor
  2083     ///
  2084     /// Constructor
  2085     /// \pre The ugraph should be simple, ie. loop and parallel edge free. 
  2086     PlanarDrawing(const UGraph& ugraph)
  2087       : _ugraph(ugraph), _point_map(ugraph) {}
  2088 
  2089   private:
  2090 
  2091     template <typename AuxUGraph, typename AuxEmbeddingMap>
  2092     void drawing(const AuxUGraph& ugraph, 
  2093 		 const AuxEmbeddingMap& next, 
  2094 		 PointMap& point_map) {
  2095       UGRAPH_TYPEDEFS(typename AuxUGraph);
  2096 
  2097       typename AuxUGraph::template EdgeMap<Edge> prev(ugraph);
  2098 
  2099       for (NodeIt n(ugraph); n != INVALID; ++n) {
  2100 	Edge e = OutEdgeIt(ugraph, n);
  2101 	
  2102 	Edge p = e, l = e;
  2103 	
  2104 	e = next[e];
  2105 	while (e != l) {
  2106 	  prev[e] = p;
  2107 	  p = e;
  2108 	  e = next[e];
  2109 	}
  2110 	prev[e] = p;
  2111       }
  2112 
  2113       Node anode, bnode, cnode;
  2114 
  2115       {
  2116 	Edge e = EdgeIt(ugraph);
  2117 	anode = ugraph.source(e);
  2118 	bnode = ugraph.target(e);
  2119 	cnode = ugraph.target(next[ugraph.oppositeEdge(e)]);
  2120       }
  2121       
  2122       IterableBoolMap<AuxUGraph, Node> proper(ugraph, false);
  2123       typename AuxUGraph::template NodeMap<int> conn(ugraph, -1);
  2124 
  2125       conn[anode] = conn[bnode] = -2;      
  2126       {
  2127 	for (OutEdgeIt e(ugraph, anode); e != INVALID; ++e) {
  2128 	  Node m = ugraph.target(e);
  2129 	  if (conn[m] == -1) {
  2130 	    conn[m] = 1;
  2131 	  }
  2132 	}
  2133 	conn[cnode] = 2;
  2134 
  2135 	for (OutEdgeIt e(ugraph, bnode); e != INVALID; ++e) {
  2136 	  Node m = ugraph.target(e);
  2137 	  if (conn[m] == -1) {
  2138 	    conn[m] = 1;
  2139 	  } else if (conn[m] != -2) {
  2140 	    conn[m] += 1;	    
  2141 	    Edge pe = ugraph.oppositeEdge(e);
  2142 	    if (conn[ugraph.target(next[pe])] == -2) {
  2143 	      conn[m] -= 1;
  2144 	    }
  2145 	    if (conn[ugraph.target(prev[pe])] == -2) {
  2146 	      conn[m] -= 1;
  2147 	    }
  2148 
  2149 	    proper.set(m, conn[m] == 1);
  2150 	  }
  2151 	}
  2152       }
  2153       
  2154 
  2155       typename AuxUGraph::template EdgeMap<int> angle(ugraph, -1);
  2156 
  2157       while (proper.trueNum() != 0) {
  2158 	Node n = typename IterableBoolMap<AuxUGraph, Node>::TrueIt(proper);
  2159 	proper.set(n, false);
  2160 	conn[n] = -2;
  2161 
  2162 	for (OutEdgeIt e(ugraph, n); e != INVALID; ++e) {
  2163 	  Node m = ugraph.target(e);
  2164 	  if (conn[m] == -1) {
  2165 	    conn[m] = 1;
  2166 	  } else if (conn[m] != -2) {
  2167 	    conn[m] += 1;	    
  2168 	    Edge pe = ugraph.oppositeEdge(e);
  2169 	    if (conn[ugraph.target(next[pe])] == -2) {
  2170 	      conn[m] -= 1;
  2171 	    }
  2172 	    if (conn[ugraph.target(prev[pe])] == -2) {
  2173 	      conn[m] -= 1;
  2174 	    }
  2175 
  2176 	    proper.set(m, conn[m] == 1);
  2177 	  }
  2178 	}
  2179 
  2180 	{
  2181 	  Edge e = OutEdgeIt(ugraph, n);
  2182 	  Edge p = e, l = e;
  2183 	  
  2184 	  e = next[e];
  2185 	  while (e != l) {
  2186 	    
  2187 	    if (conn[ugraph.target(e)] == -2 && conn[ugraph.target(p)] == -2) {
  2188 	      Edge f = e;
  2189 	      angle[f] = 0;
  2190 	      f = next[ugraph.oppositeEdge(f)];
  2191 	      angle[f] = 1;
  2192 	      f = next[ugraph.oppositeEdge(f)];
  2193 	      angle[f] = 2;
  2194 	    }
  2195 	    
  2196 	    p = e;
  2197 	    e = next[e];
  2198 	  }
  2199 	  
  2200 	  if (conn[ugraph.target(e)] == -2 && conn[ugraph.target(p)] == -2) {
  2201 	    Edge f = e;
  2202 	    angle[f] = 0;
  2203 	    f = next[ugraph.oppositeEdge(f)];
  2204 	    angle[f] = 1;
  2205 	    f = next[ugraph.oppositeEdge(f)];
  2206 	    angle[f] = 2;
  2207 	  }
  2208 	}
  2209       }
  2210 
  2211       typename AuxUGraph::template NodeMap<Node> apred(ugraph, INVALID);
  2212       typename AuxUGraph::template NodeMap<Node> bpred(ugraph, INVALID);
  2213       typename AuxUGraph::template NodeMap<Node> cpred(ugraph, INVALID);
  2214 
  2215       typename AuxUGraph::template NodeMap<int> apredid(ugraph, -1);
  2216       typename AuxUGraph::template NodeMap<int> bpredid(ugraph, -1);
  2217       typename AuxUGraph::template NodeMap<int> cpredid(ugraph, -1);
  2218 
  2219       for (EdgeIt e(ugraph); e != INVALID; ++e) {
  2220 	if (angle[e] == angle[next[e]]) {
  2221 	  switch (angle[e]) {
  2222 	  case 2:
  2223 	    apred[ugraph.target(e)] = ugraph.source(e);
  2224 	    apredid[ugraph.target(e)] = ugraph.id(ugraph.source(e));
  2225 	    break;
  2226 	  case 1:
  2227 	    bpred[ugraph.target(e)] = ugraph.source(e);
  2228 	    bpredid[ugraph.target(e)] = ugraph.id(ugraph.source(e));
  2229 	    break;
  2230 	  case 0:
  2231 	    cpred[ugraph.target(e)] = ugraph.source(e);
  2232 	    cpredid[ugraph.target(e)] = ugraph.id(ugraph.source(e));
  2233 	    break;
  2234 	  }
  2235 	}
  2236       }
  2237 
  2238       cpred[anode] = INVALID;
  2239       cpred[bnode] = INVALID;
  2240 
  2241       std::vector<Node> aorder, border, corder; 
  2242 
  2243       {
  2244 	typename AuxUGraph::template NodeMap<bool> processed(ugraph, false);
  2245 	std::vector<Node> st;
  2246 	for (NodeIt n(ugraph); n != INVALID; ++n) {
  2247 	  if (!processed[n] && n != bnode && n != cnode) {
  2248 	    st.push_back(n);
  2249 	    processed[n] = true;
  2250 	    Node m = apred[n];
  2251 	    while (m != INVALID && !processed[m]) {
  2252 	      st.push_back(m);
  2253 	      processed[m] = true;
  2254 	      m = apred[m];
  2255 	    }
  2256 	    while (!st.empty()) {
  2257 	      aorder.push_back(st.back());
  2258 	      st.pop_back();
  2259 	    }
  2260 	  }
  2261 	}
  2262       }
  2263 
  2264       {
  2265 	typename AuxUGraph::template NodeMap<bool> processed(ugraph, false);
  2266 	std::vector<Node> st;
  2267 	for (NodeIt n(ugraph); n != INVALID; ++n) {
  2268 	  if (!processed[n] && n != cnode && n != anode) {
  2269 	    st.push_back(n);
  2270 	    processed[n] = true;
  2271 	    Node m = bpred[n];
  2272 	    while (m != INVALID && !processed[m]) {
  2273 	      st.push_back(m);
  2274 	      processed[m] = true;
  2275 	      m = bpred[m];
  2276 	    }
  2277 	    while (!st.empty()) {
  2278 	      border.push_back(st.back());
  2279 	      st.pop_back();
  2280 	    }
  2281 	  }
  2282 	}
  2283       }
  2284 
  2285       {
  2286 	typename AuxUGraph::template NodeMap<bool> processed(ugraph, false);
  2287 	std::vector<Node> st;
  2288 	for (NodeIt n(ugraph); n != INVALID; ++n) {
  2289 	  if (!processed[n] && n != anode && n != bnode) {
  2290 	    st.push_back(n);
  2291 	    processed[n] = true;
  2292 	    Node m = cpred[n];
  2293 	    while (m != INVALID && !processed[m]) {
  2294 	      st.push_back(m);
  2295 	      processed[m] = true;
  2296 	      m = cpred[m];
  2297 	    }
  2298 	    while (!st.empty()) {
  2299 	      corder.push_back(st.back());
  2300 	      st.pop_back();
  2301 	    }
  2302 	  }
  2303 	}
  2304       }
  2305 
  2306       typename AuxUGraph::template NodeMap<int> atree(ugraph, 0);
  2307       for (int i = aorder.size() - 1; i >= 0; --i) {
  2308 	Node n = aorder[i];
  2309 	atree[n] = 1;
  2310 	for (OutEdgeIt e(ugraph, n); e != INVALID; ++e) {
  2311 	  if (apred[ugraph.target(e)] == n) {
  2312 	    atree[n] += atree[ugraph.target(e)];
  2313 	  }
  2314 	} 
  2315       }
  2316 
  2317       typename AuxUGraph::template NodeMap<int> btree(ugraph, 0);
  2318       for (int i = border.size() - 1; i >= 0; --i) {
  2319 	Node n = border[i];
  2320 	btree[n] = 1;
  2321 	for (OutEdgeIt e(ugraph, n); e != INVALID; ++e) {
  2322 	  if (bpred[ugraph.target(e)] == n) {
  2323 	    btree[n] += btree[ugraph.target(e)];
  2324 	  }
  2325 	} 
  2326       }
  2327       
  2328       typename AuxUGraph::template NodeMap<int> apath(ugraph, 0);
  2329       apath[bnode] = apath[cnode] = 1;
  2330       typename AuxUGraph::template NodeMap<int> apath_btree(ugraph, 0);
  2331       apath_btree[bnode] = btree[bnode];
  2332       for (int i = 1; i < int(aorder.size()); ++i) {
  2333 	Node n = aorder[i];
  2334 	apath[n] = apath[apred[n]] + 1;
  2335 	apath_btree[n] = btree[n] + apath_btree[apred[n]];
  2336       }
  2337 
  2338       typename AuxUGraph::template NodeMap<int> bpath_atree(ugraph, 0);
  2339       bpath_atree[anode] = atree[anode];
  2340       for (int i = 1; i < int(border.size()); ++i) {
  2341 	Node n = border[i];
  2342 	bpath_atree[n] = atree[n] + bpath_atree[bpred[n]];
  2343       }
  2344 
  2345       typename AuxUGraph::template NodeMap<int> cpath(ugraph, 0);
  2346       cpath[anode] = cpath[bnode] = 1;
  2347       typename AuxUGraph::template NodeMap<int> cpath_atree(ugraph, 0);
  2348       cpath_atree[anode] = atree[anode];
  2349       typename AuxUGraph::template NodeMap<int> cpath_btree(ugraph, 0);
  2350       cpath_btree[bnode] = btree[bnode];
  2351       for (int i = 1; i < int(corder.size()); ++i) {
  2352 	Node n = corder[i];
  2353 	cpath[n] = cpath[cpred[n]] + 1;
  2354 	cpath_atree[n] = atree[n] + cpath_atree[cpred[n]];
  2355 	cpath_btree[n] = btree[n] + cpath_btree[cpred[n]];
  2356       }
  2357 
  2358       typename AuxUGraph::template NodeMap<int> third(ugraph);
  2359       for (NodeIt n(ugraph); n != INVALID; ++n) {
  2360 	point_map[n].x = 
  2361 	  bpath_atree[n] + cpath_atree[n] - atree[n] - cpath[n] + 1;
  2362 	point_map[n].y = 
  2363 	  cpath_btree[n] + apath_btree[n] - btree[n] - apath[n] + 1;
  2364       }
  2365       
  2366     }
  2367 
  2368   public:
  2369 
  2370     /// \brief Calculates the node locations
  2371     ///
  2372     /// This function calculates the node locations.
  2373     bool run() {
  2374       PlanarEmbedding<UGraph> pe(_ugraph);
  2375       if (!pe.run()) return false;
  2376       
  2377       run(pe);
  2378       return true;
  2379     }
  2380 
  2381     /// \brief Calculates the node locations according to a
  2382     /// combinatorical embedding
  2383     ///
  2384     /// This function calculates the node locations. The \c embedding
  2385     /// parameter should contain a valid combinatorical embedding, ie.
  2386     /// a valid cyclic order of the edges.
  2387     template <typename EmbeddingMap>
  2388     void run(const EmbeddingMap& embedding) {
  2389       typedef SmartUEdgeSet<UGraph> AuxUGraph; 
  2390 
  2391       if (3 * countNodes(_ugraph) - 6 == countUEdges(_ugraph)) {
  2392 	drawing(_ugraph, embedding, _point_map);
  2393 	return;
  2394       }
  2395 
  2396       AuxUGraph aux_ugraph(_ugraph);
  2397       typename AuxUGraph::template EdgeMap<typename AuxUGraph::Edge> 
  2398 	aux_embedding(aux_ugraph);
  2399 
  2400       {
  2401 
  2402 	typename UGraph::template UEdgeMap<typename AuxUGraph::UEdge> 
  2403 	  ref(_ugraph);
  2404 	
  2405 	for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
  2406 	  ref[e] = aux_ugraph.addEdge(_ugraph.source(e), _ugraph.target(e));
  2407 	}
  2408 
  2409 	for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
  2410 	  Edge ee = embedding[_ugraph.direct(e, true)];
  2411 	  aux_embedding[aux_ugraph.direct(ref[e], true)] = 
  2412 	    aux_ugraph.direct(ref[ee], _ugraph.direction(ee));
  2413 	  ee = embedding[_ugraph.direct(e, false)];
  2414 	  aux_embedding[aux_ugraph.direct(ref[e], false)] = 
  2415 	    aux_ugraph.direct(ref[ee], _ugraph.direction(ee));
  2416 	}
  2417       }
  2418       _planarity_bits::makeConnected(aux_ugraph, aux_embedding);
  2419       _planarity_bits::makeBiNodeConnected(aux_ugraph, aux_embedding);
  2420       _planarity_bits::makeMaxPlanar(aux_ugraph, aux_embedding);
  2421       drawing(aux_ugraph, aux_embedding, _point_map);
  2422     }
  2423 
  2424     /// \brief The coordinate of the given node
  2425     ///
  2426     /// The coordinate of the given node.
  2427     Point operator[](const Node& node) {
  2428       return _point_map[node];
  2429     }
  2430 
  2431     /// \brief Returns the grid embedding in a \e NodeMap.
  2432     ///
  2433     /// Returns the grid embedding in a \e NodeMap of \c dim2::Point<int> .
  2434     const PointMap& coords() const {
  2435       return _point_map;
  2436     }
  2437 
  2438   private:
  2439     
  2440     const UGraph& _ugraph;
  2441     PointMap _point_map;
  2442     
  2443   };
  2444 
  2445   namespace _planarity_bits {
  2446 
  2447     template <typename ColorMap>
  2448     class KempeFilter {
  2449     public:
  2450       typedef typename ColorMap::Key Key;
  2451       typedef bool Value;
  2452 
  2453       KempeFilter(const ColorMap& color_map, 
  2454 		  const typename ColorMap::Value& first,
  2455 		  const typename ColorMap::Value& second)
  2456 	: _color_map(color_map), _first(first), _second(second) {}
  2457 
  2458       Value operator[](const Key& key) const {
  2459 	return _color_map[key] == _first || _color_map[key] == _second;
  2460       }
  2461 
  2462     private:
  2463       const ColorMap& _color_map;
  2464       typename ColorMap::Value _first, _second;
  2465     };
  2466   }
  2467 
  2468   /// \ingroup planar
  2469   ///
  2470   /// \brief Coloring planar graphs
  2471   ///
  2472   /// The graph coloring problem is the coloring of the graph nodes
  2473   /// such way that there are not adjacent nodes with the same
  2474   /// color. The planar graphs can be always colored with four colors,
  2475   /// it is proved by Appel and Haken and their proofs provide a
  2476   /// quadratic time algorithm for four coloring, but it could not be
  2477   /// used to implement efficient algorithm. The five and six coloring
  2478   /// can be made in linear time, but in this class the five coloring
  2479   /// has quadratic worst case time complexity. The two coloring (if
  2480   /// possible) is solvable with a graph search algorithm and it is
  2481   /// implemented in \ref bipartitePartitions() function in Lemon. To
  2482   /// decide whether the planar graph is three colorable is
  2483   /// NP-complete.
  2484   ///
  2485   /// This class contains member functions for calculate colorings
  2486   /// with five and six colors. The six coloring algorithm is a simple
  2487   /// greedy coloring on the backward minimum outgoing order of nodes.
  2488   /// This order can be computed such way, that in each phase the node
  2489   /// with least outgoing edges to unprocessed nodes is choosen. This
  2490   /// order guarantees that at the time of coloring of a node it has
  2491   /// at most five already colored adjacents. The five coloring
  2492   /// algorithm works in the same way, but if the greedy approach
  2493   /// fails to color with five color, ie. the node has five already
  2494   /// different colored neighbours, it swaps the colors in one
  2495   /// connected two colored set with the Kempe recoloring method.
  2496   template <typename UGraph>
  2497   class PlanarColoring {
  2498   public:
  2499 
  2500     UGRAPH_TYPEDEFS(typename UGraph);
  2501 
  2502     /// \brief The map type for store color indexes
  2503     typedef typename UGraph::template NodeMap<int> IndexMap;
  2504     /// \brief The map type for store colors
  2505     typedef ComposeMap<Palette, IndexMap> ColorMap;
  2506 
  2507     /// \brief Constructor
  2508     ///
  2509     /// Constructor
  2510     /// \pre The ugraph should be simple, ie. loop and parallel edge free. 
  2511     PlanarColoring(const UGraph& ugraph)
  2512       : _ugraph(ugraph), _color_map(ugraph), _palette(0) {
  2513       _palette.add(Color(1,0,0));
  2514       _palette.add(Color(0,1,0));
  2515       _palette.add(Color(0,0,1));
  2516       _palette.add(Color(1,1,0));
  2517       _palette.add(Color(1,0,1));
  2518       _palette.add(Color(0,1,1));
  2519     }
  2520 
  2521     /// \brief Returns the \e NodeMap of color indexes
  2522     ///
  2523     /// Returns the \e NodeMap of color indexes. The values are in the
  2524     /// range \c [0..4] or \c [0..5] according to the five coloring or 
  2525     /// six coloring.
  2526     IndexMap colorIndexMap() const {
  2527       return _color_map;
  2528     }
  2529 
  2530     /// \brief Returns the \e NodeMap of colors
  2531     ///
  2532     /// Returns the \e NodeMap of colors. The values are five or six
  2533     /// distinct \ref lemon::Color "colors".
  2534     ColorMap colorMap() const {
  2535       return composeMap(_palette, _color_map);
  2536     }
  2537 
  2538     /// \brief Returns the color index of the node
  2539     ///
  2540     /// Returns the color index of the node. The values are in the
  2541     /// range \c [0..4] or \c [0..5] according to the five coloring or
  2542     /// six coloring.
  2543     int colorIndex(const Node& node) const {
  2544       return _color_map[node];
  2545     }
  2546 
  2547     /// \brief Returns the color of the node
  2548     ///
  2549     /// Returns the color of the node. The values are five or six
  2550     /// distinct \ref lemon::Color "colors".
  2551     int color(const Node& node) const {
  2552       return _palette[_color_map[node]];
  2553     }
  2554     
  2555 
  2556     /// \brief Calculates a coloring with at most six colors
  2557     ///
  2558     /// This function calculates a coloring with at most six colors. The time
  2559     /// complexity of this variant is linear in the size of the graph.
  2560     /// \return %True when the algorithm could color the graph with six color.
  2561     /// If the algorithm fails, then the graph could not be planar.
  2562     bool runSixColoring() {
  2563       
  2564       typename UGraph::template NodeMap<int> heap_index(_ugraph, -1);
  2565       BucketHeap<typename UGraph::template NodeMap<int> > heap(heap_index);
  2566       
  2567       for (NodeIt n(_ugraph); n != INVALID; ++n) {
  2568 	_color_map[n] = -2;
  2569 	heap.push(n, countOutEdges(_ugraph, n));
  2570       }
  2571       
  2572       std::vector<Node> order;
  2573       
  2574       while (!heap.empty()) {
  2575 	Node n = heap.top();
  2576 	heap.pop();
  2577 	_color_map[n] = -1;
  2578 	order.push_back(n);
  2579 	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  2580 	  Node t = _ugraph.runningNode(e); 
  2581 	  if (_color_map[t] == -2) {
  2582 	    heap.decrease(t, heap[t] - 1);
  2583 	  }
  2584 	}
  2585       }
  2586 
  2587       for (int i = order.size() - 1; i >= 0; --i) {
  2588 	std::vector<bool> forbidden(6, false);
  2589 	for (OutEdgeIt e(_ugraph, order[i]); e != INVALID; ++e) {
  2590 	  Node t = _ugraph.runningNode(e); 
  2591 	  if (_color_map[t] != -1) {
  2592 	    forbidden[_color_map[t]] = true;
  2593 	  }
  2594 	}
  2595        	for (int k = 0; k < 6; ++k) {
  2596 	  if (!forbidden[k]) {
  2597 	    _color_map[order[i]] = k;
  2598 	    break;
  2599 	  }
  2600 	}
  2601 	if (_color_map[order[i]] == -1) {
  2602 	  return false;
  2603 	}
  2604       }
  2605       return true;
  2606     }
  2607 
  2608   private:
  2609 
  2610     bool recolor(const Node& u, const Node& v) {
  2611       int ucolor = _color_map[u];
  2612       int vcolor = _color_map[v];
  2613       typedef _planarity_bits::KempeFilter<IndexMap> KempeFilter;
  2614       KempeFilter filter(_color_map, ucolor, vcolor);
  2615 
  2616       typedef NodeSubUGraphAdaptor<const UGraph, const KempeFilter> KempeUGraph;
  2617       KempeUGraph kempe_ugraph(_ugraph, filter);
  2618       
  2619       std::vector<Node> comp;
  2620       Bfs<KempeUGraph> bfs(kempe_ugraph);
  2621       bfs.init();
  2622       bfs.addSource(u);
  2623       while (!bfs.emptyQueue()) {
  2624 	Node n = bfs.nextNode();
  2625 	if (n == v) return false;
  2626 	comp.push_back(n);
  2627 	bfs.processNextNode();
  2628       }
  2629 
  2630       int scolor = ucolor + vcolor;
  2631       for (int i = 0; i < static_cast<int>(comp.size()); ++i) {
  2632 	_color_map[comp[i]] = scolor - _color_map[comp[i]]; 
  2633       }
  2634 
  2635       return true;
  2636     }
  2637 
  2638     template <typename EmbeddingMap>
  2639     void kempeRecoloring(const Node& node, const EmbeddingMap& embedding) {
  2640       std::vector<Node> nodes;
  2641       nodes.reserve(4);
  2642 
  2643       for (Edge e = OutEdgeIt(_ugraph, node); e != INVALID; e = embedding[e]) {
  2644 	Node t = _ugraph.target(e); 
  2645 	if (_color_map[t] != -1) {
  2646 	  nodes.push_back(t);
  2647 	  if (nodes.size() == 4) break;
  2648 	}
  2649       }
  2650       
  2651       int color = _color_map[nodes[0]];
  2652       if (recolor(nodes[0], nodes[2])) {
  2653 	_color_map[node] = color;
  2654       } else {
  2655 	color = _color_map[nodes[1]];
  2656 	recolor(nodes[1], nodes[3]);
  2657 	_color_map[node] = color;
  2658       }
  2659     }
  2660 
  2661   public:
  2662 
  2663     /// \brief Calculates a coloring with at most five colors
  2664     ///
  2665     /// This function calculates a coloring with at most five
  2666     /// colors. The wirst case time complexity of this variant is
  2667     /// quadratic in the size of the graph.
  2668     template <typename EmbeddingMap>
  2669     void runFiveColoring(const EmbeddingMap& embedding) {
  2670       
  2671       typename UGraph::template NodeMap<int> heap_index(_ugraph, -1);
  2672       BucketHeap<typename UGraph::template NodeMap<int> > heap(heap_index);
  2673       
  2674       for (NodeIt n(_ugraph); n != INVALID; ++n) {
  2675 	_color_map[n] = -2;
  2676 	heap.push(n, countOutEdges(_ugraph, n));
  2677       }
  2678       
  2679       std::vector<Node> order;
  2680       
  2681       while (!heap.empty()) {
  2682 	Node n = heap.top();
  2683 	heap.pop();
  2684 	_color_map[n] = -1;
  2685 	order.push_back(n);
  2686 	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  2687 	  Node t = _ugraph.runningNode(e); 
  2688 	  if (_color_map[t] == -2) {
  2689 	    heap.decrease(t, heap[t] - 1);
  2690 	  }
  2691 	}
  2692       }
  2693 
  2694       for (int i = order.size() - 1; i >= 0; --i) {
  2695 	std::vector<bool> forbidden(5, false);
  2696 	for (OutEdgeIt e(_ugraph, order[i]); e != INVALID; ++e) {
  2697 	  Node t = _ugraph.runningNode(e); 
  2698 	  if (_color_map[t] != -1) {
  2699 	    forbidden[_color_map[t]] = true;
  2700 	  }
  2701 	}
  2702 	for (int k = 0; k < 5; ++k) {
  2703 	  if (!forbidden[k]) {
  2704 	    _color_map[order[i]] = k;
  2705 	    break;
  2706 	  }
  2707 	}
  2708 	if (_color_map[order[i]] == -1) {
  2709 	  kempeRecoloring(order[i], embedding);
  2710 	}
  2711       }
  2712     }
  2713 
  2714     /// \brief Calculates a coloring with at most five colors
  2715     ///
  2716     /// This function calculates a coloring with at most five
  2717     /// colors. The worst case time complexity of this variant is
  2718     /// quadratic in the size of the graph, but it most cases it does
  2719     /// not have to use Kempe recoloring method, in this case it is
  2720     /// equivalent with the runSixColoring() algorithm.
  2721     /// \return %True when the graph is planar.
  2722     bool runFiveColoring() {
  2723       PlanarEmbedding<UGraph> pe(_ugraph);
  2724       if (!pe.run()) return false;
  2725       
  2726       runFiveColoring(pe.embeddingMap());
  2727       return true;
  2728     }
  2729 
  2730   private:
  2731     
  2732     const UGraph& _ugraph;
  2733     IndexMap _color_map;
  2734     Palette _palette;
  2735   };
  2736 
  2737 }
  2738 
  2739 #endif