lemon/time_measure.h
author ladanyi
Wed, 02 Jul 2008 12:37:47 +0000
changeset 2615 2bf1f6e3d5ae
parent 2543 a0443c411220
permissions -rw-r--r--
Fix bug caused by m4 consuming pairs of square brackets (#108).
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_TIME_MEASURE_H
    20 #define LEMON_TIME_MEASURE_H
    21 
    22 ///\ingroup timecount
    23 ///\file
    24 ///\brief Tools for measuring cpu usage
    25 
    26 
    27 #ifdef WIN32
    28 #include <lemon/bits/mingw32_time.h>
    29 #else
    30 #include <sys/times.h>
    31 #endif
    32 
    33 #include <sys/time.h>
    34 #include <fstream>
    35 #include <iostream>
    36 #include <unistd.h>
    37 
    38 namespace lemon {
    39 
    40   /// \addtogroup timecount
    41   /// @{
    42 
    43   /// A class to store (cpu)time instances.
    44 
    45   /// This class stores five time values.
    46   /// - a real time
    47   /// - a user cpu time
    48   /// - a system cpu time
    49   /// - a user cpu time of children
    50   /// - a system cpu time of children
    51   ///
    52   /// TimeStamp's can be added to or substracted from each other and
    53   /// they can be pushed to a stream.
    54   ///
    55   /// In most cases, perhaps the \ref Timer or the \ref TimeReport
    56   /// class is what you want to use instead.
    57   ///
    58   ///\author Alpar Juttner
    59 
    60   class TimeStamp
    61   {
    62     struct rtms 
    63     {
    64       double tms_utime;
    65       double tms_stime;
    66       double tms_cutime;
    67       double tms_cstime;
    68       rtms() {}
    69       rtms(tms ts) : tms_utime(ts.tms_utime), tms_stime(ts.tms_stime),
    70 		     tms_cutime(ts.tms_cutime), tms_cstime(ts.tms_cstime) {}
    71     };
    72     rtms ts;
    73     double real_time;
    74   
    75     rtms &getTms() {return ts;}
    76     const rtms &getTms() const {return ts;}
    77 
    78     void _reset() { 
    79       ts.tms_utime = ts.tms_stime = ts.tms_cutime = ts.tms_cstime = 0; 
    80       real_time = 0;
    81     }
    82 
    83   public:
    84 
    85     ///Read the current time values of the process
    86     void stamp()
    87     {
    88       timeval tv;
    89       tms _ts;
    90       times(&_ts);
    91       gettimeofday(&tv, 0);real_time=tv.tv_sec+double(tv.tv_usec)/1e6;
    92       ts=_ts;
    93     }
    94   
    95     /// Constructor initializing with zero
    96     TimeStamp()
    97     { _reset(); }
    98     ///Constructor initializing with the current time values of the process
    99     TimeStamp(void *) { stamp();}
   100   
   101     ///Set every time value to zero
   102     TimeStamp &reset() {_reset();return *this;}
   103 
   104     ///\e
   105     TimeStamp &operator+=(const TimeStamp &b)
   106     {
   107       ts.tms_utime+=b.ts.tms_utime;
   108       ts.tms_stime+=b.ts.tms_stime;
   109       ts.tms_cutime+=b.ts.tms_cutime;
   110       ts.tms_cstime+=b.ts.tms_cstime;
   111       real_time+=b.real_time;
   112       return *this;
   113     }
   114     ///\e
   115     TimeStamp operator+(const TimeStamp &b) const
   116     {
   117       TimeStamp t(*this);
   118       return t+=b;
   119     }
   120     ///\e
   121     TimeStamp &operator-=(const TimeStamp &b)
   122     {
   123       ts.tms_utime-=b.ts.tms_utime;
   124       ts.tms_stime-=b.ts.tms_stime;
   125       ts.tms_cutime-=b.ts.tms_cutime;
   126       ts.tms_cstime-=b.ts.tms_cstime;
   127       real_time-=b.real_time;
   128       return *this;
   129     }
   130     ///\e
   131     TimeStamp operator-(const TimeStamp &b) const
   132     {
   133       TimeStamp t(*this);
   134       return t-=b;
   135     }
   136     ///\e
   137     TimeStamp &operator*=(double b)
   138     {
   139       ts.tms_utime*=b;
   140       ts.tms_stime*=b;
   141       ts.tms_cutime*=b;
   142       ts.tms_cstime*=b;
   143       real_time*=b;
   144       return *this;
   145     }
   146     ///\e
   147     TimeStamp operator*(double b) const
   148     {
   149       TimeStamp t(*this);
   150       return t*=b;
   151     }
   152     friend TimeStamp operator*(double b,const TimeStamp &t);
   153     ///\e
   154     TimeStamp &operator/=(double b)
   155     {
   156       ts.tms_utime/=b;
   157       ts.tms_stime/=b;
   158       ts.tms_cutime/=b;
   159       ts.tms_cstime/=b;
   160       real_time/=b;
   161       return *this;
   162     }
   163     ///\e
   164     TimeStamp operator/(double b) const
   165     {
   166       TimeStamp t(*this);
   167       return t/=b;
   168     }
   169     ///The time ellapsed since the last call of stamp()
   170     TimeStamp ellapsed() const
   171     {
   172       TimeStamp t(NULL);
   173       return t-*this;
   174     }
   175   
   176     friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t);
   177   
   178     ///Gives back the user time of the process
   179     double userTime() const
   180     {
   181       return double(ts.tms_utime)/sysconf(_SC_CLK_TCK);
   182     }
   183     ///Gives back the system time of the process
   184     double systemTime() const
   185     {
   186       return double(ts.tms_stime)/sysconf(_SC_CLK_TCK);
   187     }
   188     ///Gives back the user time of the process' children
   189     double cUserTime() const
   190     {
   191       return double(ts.tms_cutime)/sysconf(_SC_CLK_TCK);
   192     }
   193     ///Gives back the user time of the process' children
   194     double cSystemTime() const
   195     {
   196       return double(ts.tms_cstime)/sysconf(_SC_CLK_TCK);
   197     }
   198     ///Gives back the real time
   199     double realTime() const {return real_time;}
   200   };
   201 
   202   TimeStamp operator*(double b,const TimeStamp &t) 
   203   {
   204     return t*b;
   205   }
   206   
   207   ///Prints the time counters
   208 
   209   ///Prints the time counters in the following form:
   210   ///
   211   /// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt>
   212   ///
   213   /// where the values are the
   214   /// \li \c u: user cpu time,
   215   /// \li \c s: system cpu time,
   216   /// \li \c cu: user cpu time of children,
   217   /// \li \c cs: system cpu time of children,
   218   /// \li \c real: real time.
   219   /// \relates TimeStamp
   220   inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t)
   221   {
   222     long cls = sysconf(_SC_CLK_TCK);
   223     os << "u: " << double(t.getTms().tms_utime)/cls <<
   224       "s, s: " << double(t.getTms().tms_stime)/cls <<
   225       "s, cu: " << double(t.getTms().tms_cutime)/cls <<
   226       "s, cs: " << double(t.getTms().tms_cstime)/cls <<
   227       "s, real: " << t.realTime() << "s";
   228     return os;
   229   }
   230 
   231   ///Class for measuring the cpu time and real time usage of the process
   232 
   233   ///Class for measuring the cpu time and real time usage of the process.
   234   ///It is quite easy-to-use, here is a short example.
   235   ///\code
   236   /// #include<lemon/time_measure.h>
   237   /// #include<iostream>
   238   ///
   239   /// int main()
   240   /// {
   241   ///
   242   ///   ...
   243   ///
   244   ///   Timer t;
   245   ///   doSomething();
   246   ///   std::cout << t << '\n';
   247   ///   t.restart();
   248   ///   doSomethingElse();
   249   ///   std::cout << t << '\n';
   250   ///
   251   ///   ...
   252   ///
   253   /// }
   254   ///\endcode
   255   ///
   256   ///The \ref Timer can also be \ref stop() "stopped" and
   257   ///\ref start() "started" again, so it is possible to compute collected
   258   ///running times.
   259   ///
   260   ///\warning Depending on the operation system and its actual configuration
   261   ///the time counters have a certain (10ms on a typical Linux system)
   262   ///granularity.
   263   ///Therefore this tool is not appropriate to measure very short times.
   264   ///Also, if you start and stop the timer very frequently, it could lead to
   265   ///distorted results.
   266   ///
   267   ///\note If you want to measure the running time of the execution of a certain
   268   ///function, consider the usage of \ref TimeReport instead.
   269   ///
   270   ///\todo This shouldn't be Unix (Linux) specific.
   271   ///\sa TimeReport
   272   ///
   273   ///\author Alpar Juttner
   274   class Timer
   275   {
   276     int _running; //Timer is running iff _running>0; (_running>=0 always holds)
   277     TimeStamp start_time; //This is the relativ start-time if the timer
   278                           //is _running, the collected _running time otherwise.
   279     
   280     void _reset() {if(_running) start_time.stamp(); else start_time.reset();}
   281   
   282   public: 
   283     ///Constructor.
   284 
   285     ///\param run indicates whether or not the timer starts immediately.
   286     ///
   287     Timer(bool run=true) :_running(run) {_reset();}
   288 
   289     ///\name Control the state of the timer
   290     ///Basically a Timer can be either running or stopped,
   291     ///but it provides a bit finer control on the execution.
   292     ///The \ref Timer also counts the number of \ref start()
   293     ///executions, and is stops only after the same amount (or more)
   294     ///\ref stop() "stop()"s. This can be useful e.g. to compute the running time
   295     ///of recursive functions.
   296     ///
   297 
   298     ///@{
   299 
   300     ///Reset and stop the time counters
   301 
   302     ///This function resets and stops the time counters
   303     ///\sa restart()
   304     void reset()
   305     {
   306       _running=0;
   307       _reset();
   308     }
   309 
   310     ///Start the time counters
   311     
   312     ///This function starts the time counters.
   313     ///
   314     ///If the timer is started more than ones, it will remain running
   315     ///until the same amount of \ref stop() is called.
   316     ///\sa stop()
   317     void start() 
   318     {
   319       if(_running) _running++;
   320       else {
   321 	_running=1;
   322 	TimeStamp t;
   323 	t.stamp();
   324 	start_time=t-start_time;
   325       }
   326     }
   327 
   328     
   329     ///Stop the time counters
   330 
   331     ///This function stops the time counters. If start() was executed more than
   332     ///once, then the same number of stop() execution is necessary the really
   333     ///stop the timer.
   334     /// 
   335     ///\sa halt()
   336     ///\sa start()
   337     ///\sa restart()
   338     ///\sa reset()
   339 
   340     void stop() 
   341     {
   342       if(_running && !--_running) {
   343 	TimeStamp t;
   344 	t.stamp();
   345 	start_time=t-start_time;
   346       }
   347     }
   348 
   349     ///Halt (i.e stop immediately) the time counters
   350 
   351     ///This function stops immediately the time counters, i.e. <tt>t.stop()</tt>
   352     ///is a faster
   353     ///equivalent of the following.
   354     ///\code
   355     ///  while(t.running()) t.stop()
   356     ///\endcode
   357     ///
   358     ///
   359     ///\sa stop()
   360     ///\sa restart()
   361     ///\sa reset()
   362 
   363     void halt() 
   364     {
   365       if(_running) {
   366 	_running=0;
   367 	TimeStamp t;
   368 	t.stamp();
   369 	start_time=t-start_time;
   370       }
   371     }
   372 
   373     ///Returns the running state of the timer
   374 
   375     ///This function returns the number of stop() exections that is
   376     ///necessary to really stop the timer.
   377     ///For example the timer
   378     ///is running if and only if the return value is \c true
   379     ///(i.e. greater than
   380     ///zero).
   381     int running()  { return _running; }
   382     
   383     
   384     ///Restart the time counters
   385 
   386     ///This function is a shorthand for
   387     ///a reset() and a start() calls.
   388     ///
   389     void restart() 
   390     {
   391       reset();
   392       start();
   393     }
   394     
   395     ///@}
   396 
   397     ///\name Query Functions for the ellapsed time
   398 
   399     ///@{
   400 
   401     ///Gives back the ellapsed user time of the process
   402     double userTime() const
   403     {
   404       return operator TimeStamp().userTime();
   405     }
   406     ///Gives back the ellapsed system time of the process
   407     double systemTime() const
   408     {
   409       return operator TimeStamp().systemTime();
   410     }
   411     ///Gives back the ellapsed user time of the process' children
   412     double cUserTime() const
   413     {
   414       return operator TimeStamp().cUserTime();
   415     }
   416     ///Gives back the ellapsed user time of the process' children
   417     double cSystemTime() const
   418     {
   419       return operator TimeStamp().cSystemTime();
   420     }
   421     ///Gives back the ellapsed real time
   422     double realTime() const
   423     {
   424       return operator TimeStamp().realTime();
   425     }
   426     ///Computes the ellapsed time
   427 
   428     ///This conversion computes the ellapsed time, therefore you can print
   429     ///the ellapsed time like this.
   430     ///\code
   431     ///  Timer t;
   432     ///  doSomething();
   433     ///  std::cout << t << '\n';
   434     ///\endcode
   435     operator TimeStamp () const
   436     {
   437       TimeStamp t;
   438       t.stamp();
   439       return _running?t-start_time:start_time;
   440     }
   441 
   442 
   443     ///@}
   444   };
   445 
   446   ///Same as \ref Timer but prints a report on destruction.
   447 
   448   ///Same as \ref Timer but prints a report on destruction.
   449   ///This example shows its usage.
   450   ///\code
   451   ///  void myAlg(ListGraph &g,int n)
   452   ///  {
   453   ///    TimeReport tr("Running time of myAlg: ");
   454   ///    ... //Here comes the algorithm
   455   ///  }
   456   ///\endcode
   457   ///
   458   ///\sa Timer
   459   ///\sa NoTimeReport
   460   ///\todo There is no test case for this
   461   class TimeReport : public Timer 
   462   {
   463     std::string _title;
   464     std::ostream &_os;
   465   public:
   466     ///\e
   467 
   468     ///\param title This text will be printed before the ellapsed time.
   469     ///\param os The stream to print the report to.
   470     ///\param run Sets whether the timer should start immediately.
   471 
   472     TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true) 
   473       : Timer(run), _title(title), _os(os){}
   474     ///\e Prints the ellapsed time on destruction.
   475     ~TimeReport() 
   476     {
   477       _os << _title << *this << std::endl;
   478     }
   479   };
   480       
   481   ///'Do nothing' version of \ref TimeReport
   482 
   483   ///\sa TimeReport
   484   ///
   485   class NoTimeReport
   486   {
   487   public:
   488     ///\e
   489     NoTimeReport(std::string,std::ostream &,bool) {}
   490     ///\e
   491     NoTimeReport(std::string,std::ostream &) {}
   492     ///\e
   493     NoTimeReport(std::string) {}
   494     ///\e Do nothing.
   495     ~NoTimeReport() {}
   496 
   497     operator TimeStamp () const { return TimeStamp(); }
   498     void reset() {}
   499     void start() {}
   500     void stop() {}
   501     void halt() {} 
   502     int running() { return 0; }
   503     void restart() {}
   504     double userTime() const { return 0; }
   505     double systemTime() const { return 0; }
   506     double cUserTime() const { return 0; }
   507     double cSystemTime() const { return 0; }
   508     double realTime() const { return 0; }
   509   };
   510       
   511   ///Tool to measure the running time more exactly.
   512   
   513   ///This function calls \c f several times and returns the average
   514   ///running time. The number of the executions will be choosen in such a way
   515   ///that the full real running time will be roughly between \c min_time
   516   ///and <tt>2*min_time</tt>.
   517   ///\param f the function object to be measured.
   518   ///\param min_time the minimum total running time.
   519   ///\retval num if it is not \c NULL, then the actual
   520   ///        number of execution of \c f will be written into <tt>*num</tt>.
   521   ///\retval full_time if it is not \c NULL, then the actual
   522   ///        total running time will be written into <tt>*full_time</tt>.
   523   ///\return The average running time of \c f.
   524   
   525   template<class F>
   526   TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL,
   527                             TimeStamp *full_time=NULL)
   528   {
   529     TimeStamp full;
   530     unsigned int total=0;
   531     Timer t;
   532     for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) {
   533       for(;total<tn;total++) f();
   534       full=t;
   535     }
   536     if(num) *num=total;
   537     if(full_time) *full_time=full;
   538     return full/total;
   539   }
   540   
   541   /// @}  
   542 
   543 
   544 } //namespace lemon
   545 
   546 #endif //LEMON_TIME_MEASURE_H