src/hugo/max_flow.h
author alpar
Thu, 05 Aug 2004 11:40:02 +0000
changeset 759 2d2d41010cb9
parent 757 8680351d0c28
child 761 58243a389464
permissions -rw-r--r--
New Doxygen module for path/flow algs.
     1 // -*- C++ -*-
     2 #ifndef HUGO_MAX_FLOW_H
     3 #define HUGO_MAX_FLOW_H
     4 
     5 #include <vector>
     6 #include <queue>
     7 
     8 #include <hugo/graph_wrapper.h>
     9 #include <hugo/invalid.h>
    10 #include <hugo/maps.h>
    11 
    12 /// \file
    13 /// \ingroup flowalgs
    14 
    15 namespace hugo {
    16 
    17   /// \addtogroup flowalgs
    18   /// @{                                                   
    19 
    20   ///Maximum flow algorithms class.
    21 
    22   ///This class provides various algorithms for finding a flow of
    23   ///maximum value in a directed graph. The \e source node, the \e
    24   ///target node, the \e capacity of the edges and the \e starting \e
    25   ///flow value of the edges should be passed to the algorithm through the
    26   ///constructor. It is possible to change these quantities using the
    27   ///functions \ref setSource, \ref setTarget, \ref setCap and
    28   ///\ref setFlow. Before any subsequent runs of any algorithm of
    29   ///the class \ref setFlow should be called. 
    30   ///
    31   ///After running an algorithm of the class, the actual flow value 
    32   ///can be obtained by calling \ref flowValue(). The minimum
    33   ///value cut can be written into a \c node map of \c bools by
    34   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
    35   ///the inclusionwise minimum and maximum of the minimum value
    36   ///cuts, resp.)
    37   ///
    38   ///\param Graph The directed graph type the algorithm runs on.
    39   ///\param Num The number type of the capacities and the flow values.
    40   ///\param CapMap The capacity map type.
    41   ///\param FlowMap The flow map type.
    42   ///
    43   ///\author Marton Makai, Jacint Szabo 
    44   template <typename Graph, typename Num,
    45 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    46             typename FlowMap=typename Graph::template EdgeMap<Num> >
    47   class MaxFlow {
    48   protected:
    49     typedef typename Graph::Node Node;
    50     typedef typename Graph::NodeIt NodeIt;
    51     typedef typename Graph::EdgeIt EdgeIt;
    52     typedef typename Graph::OutEdgeIt OutEdgeIt;
    53     typedef typename Graph::InEdgeIt InEdgeIt;
    54 
    55     typedef typename std::vector<Node> VecFirst;
    56     typedef typename Graph::template NodeMap<Node> NNMap;
    57     typedef typename std::vector<Node> VecNode;
    58 
    59     const Graph* g;
    60     Node s;
    61     Node t;
    62     const CapMap* capacity;
    63     FlowMap* flow;
    64     int n;      //the number of nodes of G
    65     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
    66     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    67     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    68     typedef typename ResGW::Edge ResGWEdge;
    69     typedef typename Graph::template NodeMap<int> ReachedMap;
    70 
    71 
    72     //level works as a bool map in augmenting path algorithms and is
    73     //used by bfs for storing reached information.  In preflow, it
    74     //shows the levels of nodes.     
    75     ReachedMap level;
    76 
    77     //excess is needed only in preflow
    78     typename Graph::template NodeMap<Num> excess;
    79 
    80     // constants used for heuristics
    81     static const int H0=20;
    82     static const int H1=1;
    83 
    84   public:
    85 
    86     ///Indicates the property of the starting flow.
    87 
    88     ///Indicates the property of the starting flow. The meanings are as follows:
    89     ///- \c ZERO_FLOW: constant zero flow
    90     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
    91     ///the sum of the out-flows in every node except the \e source and
    92     ///the \e target.
    93     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
    94     ///least the sum of the out-flows in every node except the \e source.
    95     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
    96     ///set to the constant zero flow in the beginning of the algorithm in this case.
    97     enum FlowEnum{
    98       ZERO_FLOW,
    99       GEN_FLOW,
   100       PRE_FLOW,
   101       NO_FLOW
   102     };
   103 
   104     enum StatusEnum {
   105       AFTER_NOTHING,
   106       AFTER_AUGMENTING,
   107       AFTER_FAST_AUGMENTING, 
   108       AFTER_PRE_FLOW_PHASE_1,      
   109       AFTER_PRE_FLOW_PHASE_2
   110     };
   111 
   112     /// Do not needle this flag only if necessary.
   113     StatusEnum status;
   114 
   115 //     int number_of_augmentations;
   116 
   117 
   118 //     template<typename IntMap>
   119 //     class TrickyReachedMap {
   120 //     protected:
   121 //       IntMap* map;
   122 //       int* number_of_augmentations;
   123 //     public:
   124 //       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
   125 // 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
   126 //       void set(const Node& n, bool b) {
   127 // 	if (b)
   128 // 	  map->set(n, *number_of_augmentations);
   129 // 	else 
   130 // 	  map->set(n, *number_of_augmentations-1);
   131 //       }
   132 //       bool operator[](const Node& n) const { 
   133 // 	return (*map)[n]==*number_of_augmentations; 
   134 //       }
   135 //     };
   136     
   137     ///Constructor
   138 
   139     ///\todo Document, please.
   140     ///
   141     MaxFlow(const Graph& _G, Node _s, Node _t,
   142 	    const CapMap& _capacity, FlowMap& _flow) :
   143       g(&_G), s(_s), t(_t), capacity(&_capacity),
   144       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   145       status(AFTER_NOTHING) { }
   146 
   147     ///Runs a maximum flow algorithm.
   148 
   149     ///Runs a preflow algorithm, which is the fastest maximum flow
   150     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
   151     ///\pre The starting flow must be
   152     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   153     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   154     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   155     /// - any map if \c fe is NO_FLOW.
   156     void run(FlowEnum fe=ZERO_FLOW) {
   157       preflow(fe);
   158     }
   159 
   160                                                                               
   161     ///Runs a preflow algorithm.  
   162 
   163     ///Runs a preflow algorithm. The preflow algorithms provide the
   164     ///fastest way to compute a maximum flow in a directed graph.
   165     ///\pre The starting flow must be
   166     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   167     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   168     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   169     /// - any map if \c fe is NO_FLOW.
   170     ///
   171     ///\todo NO_FLOW should be the default flow.
   172     void preflow(FlowEnum fe) {
   173       preflowPhase1(fe);
   174       preflowPhase2();
   175     }
   176     // Heuristics:
   177     //   2 phase
   178     //   gap
   179     //   list 'level_list' on the nodes on level i implemented by hand
   180     //   stack 'active' on the active nodes on level i                                                                                    
   181     //   runs heuristic 'highest label' for H1*n relabels
   182     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   183     //   Parameters H0 and H1 are initialized to 20 and 1.
   184 
   185     ///Runs the first phase of the preflow algorithm.
   186 
   187     ///The preflow algorithm consists of two phases, this method runs the
   188     ///first phase. After the first phase the maximum flow value and a
   189     ///minimum value cut can already be computed, though a maximum flow
   190     ///is not yet obtained. So after calling this method \ref flowValue
   191     ///and \ref actMinCut gives proper results.
   192     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
   193     ///give minimum value cuts unless calling \ref preflowPhase2.
   194     ///\pre The starting flow must be
   195     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   196     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   197     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   198     /// - any map if \c fe is NO_FLOW.
   199     void preflowPhase1(FlowEnum fe)
   200     {
   201 
   202       int heur0=(int)(H0*n);  //time while running 'bound decrease'
   203       int heur1=(int)(H1*n);  //time while running 'highest label'
   204       int heur=heur1;         //starting time interval (#of relabels)
   205       int numrelabel=0;
   206 
   207       bool what_heur=1;
   208       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   209 
   210       bool end=false;
   211       //Needed for 'bound decrease', true means no active nodes are above bound
   212       //b.
   213 
   214       int k=n-2;  //bound on the highest level under n containing a node
   215       int b=k;    //bound on the highest level under n of an active node
   216 
   217       VecFirst first(n, INVALID);
   218       NNMap next(*g, INVALID); //maybe INVALID is not needed
   219 
   220       NNMap left(*g, INVALID);
   221       NNMap right(*g, INVALID);
   222       VecNode level_list(n,INVALID);
   223       //List of the nodes in level i<n, set to n.
   224 
   225       preflowPreproc(fe, next, first, level_list, left, right);
   226       //End of preprocessing
   227 
   228       //Push/relabel on the highest level active nodes.
   229       while ( true ) {
   230 	if ( b == 0 ) {
   231 	  if ( !what_heur && !end && k > 0 ) {
   232 	    b=k;
   233 	    end=true;
   234 	  } else break;
   235 	}
   236 
   237 	if ( !g->valid(first[b]) ) --b;
   238 	else {
   239 	  end=false;
   240 	  Node w=first[b];
   241 	  first[b]=next[w];
   242 	  int newlevel=push(w, next, first);
   243 	  if ( excess[w] > 0 ) relabel(w, newlevel, next, first, level_list,
   244 				       left, right, b, k, what_heur);
   245 
   246 	  ++numrelabel;
   247 	  if ( numrelabel >= heur ) {
   248 	    numrelabel=0;
   249 	    if ( what_heur ) {
   250 	      what_heur=0;
   251 	      heur=heur0;
   252 	      end=false;
   253 	    } else {
   254 	      what_heur=1;
   255 	      heur=heur1;
   256 	      b=k;
   257 	    }
   258 	  }
   259 	}
   260       }
   261 
   262       status=AFTER_PRE_FLOW_PHASE_1;
   263     }
   264 
   265 
   266     ///Runs the second phase of the preflow algorithm.
   267 
   268     ///The preflow algorithm consists of two phases, this method runs
   269     ///the second phase. After calling \ref preflowPhase1 and then
   270     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
   271     ///\ref minMinCut and \ref maxMinCut give proper results.
   272     ///\pre \ref preflowPhase1 must be called before.
   273     void preflowPhase2()
   274     {
   275 
   276       int k=n-2;  //bound on the highest level under n containing a node
   277       int b=k;    //bound on the highest level under n of an active node
   278 
   279     
   280       VecFirst first(n, INVALID);
   281       NNMap next(*g, INVALID); //maybe INVALID is not needed
   282       level.set(s,0);
   283       std::queue<Node> bfs_queue;
   284       bfs_queue.push(s);
   285 
   286       while (!bfs_queue.empty()) {
   287 
   288 	Node v=bfs_queue.front();
   289 	bfs_queue.pop();
   290 	int l=level[v]+1;
   291 
   292 	InEdgeIt e;
   293 	for(g->first(e,v); g->valid(e); g->next(e)) {
   294 	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
   295 	  Node u=g->tail(e);
   296 	  if ( level[u] >= n ) {
   297 	    bfs_queue.push(u);
   298 	    level.set(u, l);
   299 	    if ( excess[u] > 0 ) {
   300 	      next.set(u,first[l]);
   301 	      first[l]=u;
   302 	    }
   303 	  }
   304 	}
   305 
   306 	OutEdgeIt f;
   307 	for(g->first(f,v); g->valid(f); g->next(f)) {
   308 	  if ( 0 >= (*flow)[f] ) continue;
   309 	  Node u=g->head(f);
   310 	  if ( level[u] >= n ) {
   311 	    bfs_queue.push(u);
   312 	    level.set(u, l);
   313 	    if ( excess[u] > 0 ) {
   314 	      next.set(u,first[l]);
   315 	      first[l]=u;
   316 	    }
   317 	  }
   318 	}
   319       }
   320       b=n-2;
   321 
   322       while ( true ) {
   323 
   324 	if ( b == 0 ) break;
   325 
   326 	if ( !g->valid(first[b]) ) --b;
   327 	else {
   328 
   329 	  Node w=first[b];
   330 	  first[b]=next[w];
   331 	  int newlevel=push(w,next, first/*active*/);
   332 
   333 	  //relabel
   334 	  if ( excess[w] > 0 ) {
   335 	    level.set(w,++newlevel);
   336 	    next.set(w,first[newlevel]);
   337 	    first[newlevel]=w;
   338 	    b=newlevel;
   339 	  }
   340 	} 
   341       } // while(true)
   342 
   343       status=AFTER_PRE_FLOW_PHASE_2;
   344     }
   345 
   346 
   347     /// Returns the maximum value of a flow.
   348 
   349     /// Returns the maximum value of a flow, by counting the 
   350     /// over-flow of the target node \ref t.
   351     /// It can be called already after running \ref preflowPhase1.
   352     Num flowValue() const {
   353       Num a=0;
   354       for(InEdgeIt e(*g,t);g->valid(e);g->next(e)) a+=(*flow)[e];
   355       for(OutEdgeIt e(*g,t);g->valid(e);g->next(e)) a-=(*flow)[e];
   356       return a;
   357       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
   358     }
   359 
   360 
   361     ///Returns a minimum value cut after calling \ref preflowPhase1.
   362 
   363     ///After the first phase of the preflow algorithm the maximum flow
   364     ///value and a minimum value cut can already be computed. This
   365     ///method can be called after running \ref preflowPhase1 for
   366     ///obtaining a minimum value cut.
   367     /// \warning Gives proper result only right after calling \ref
   368     /// preflowPhase1.
   369     /// \todo We have to make some status variable which shows the
   370     /// actual state
   371     /// of the class. This enables us to determine which methods are valid
   372     /// for MinCut computation
   373     template<typename _CutMap>
   374     void actMinCut(_CutMap& M) const {
   375       NodeIt v;
   376       switch (status) {
   377       case AFTER_PRE_FLOW_PHASE_1:
   378 	for(g->first(v); g->valid(v); g->next(v)) {
   379 	  if (level[v] < n) {
   380 	    M.set(v, false);
   381 	  } else {
   382 	    M.set(v, true);
   383 	  }
   384 	}
   385 	break;
   386       case AFTER_PRE_FLOW_PHASE_2:
   387       case AFTER_NOTHING:
   388       case AFTER_AUGMENTING:
   389       case AFTER_FAST_AUGMENTING:
   390 	minMinCut(M);
   391 	break;
   392       }
   393     }
   394 
   395     ///Returns the inclusionwise minimum of the minimum value cuts.
   396 
   397     ///Sets \c M to the characteristic vector of the minimum value cut
   398     ///which is inclusionwise minimum. It is computed by processing
   399     ///a bfs from the source node \c s in the residual graph.
   400     ///\pre M should be a node map of bools initialized to false.
   401     ///\pre \c flow must be a maximum flow.
   402     template<typename _CutMap>
   403     void minMinCut(_CutMap& M) const {
   404       std::queue<Node> queue;
   405 
   406       M.set(s,true);
   407       queue.push(s);
   408 
   409       while (!queue.empty()) {
   410         Node w=queue.front();
   411 	queue.pop();
   412 
   413 	OutEdgeIt e;
   414 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   415 	  Node v=g->head(e);
   416 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   417 	    queue.push(v);
   418 	    M.set(v, true);
   419 	  }
   420 	}
   421 
   422 	InEdgeIt f;
   423 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   424 	  Node v=g->tail(f);
   425 	  if (!M[v] && (*flow)[f] > 0 ) {
   426 	    queue.push(v);
   427 	    M.set(v, true);
   428 	  }
   429 	}
   430       }
   431     }
   432 
   433     ///Returns the inclusionwise maximum of the minimum value cuts.
   434 
   435     ///Sets \c M to the characteristic vector of the minimum value cut
   436     ///which is inclusionwise maximum. It is computed by processing a
   437     ///backward bfs from the target node \c t in the residual graph.
   438     ///\pre M should be a node map of bools initialized to false.
   439     ///\pre \c flow must be a maximum flow. 
   440     template<typename _CutMap>
   441     void maxMinCut(_CutMap& M) const {
   442 
   443       NodeIt v;
   444       for(g->first(v) ; g->valid(v); g->next(v)) {
   445 	M.set(v, true);
   446       }
   447 
   448       std::queue<Node> queue;
   449 
   450       M.set(t,false);
   451       queue.push(t);
   452 
   453       while (!queue.empty()) {
   454         Node w=queue.front();
   455 	queue.pop();
   456 
   457 	InEdgeIt e;
   458 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   459 	  Node v=g->tail(e);
   460 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   461 	    queue.push(v);
   462 	    M.set(v, false);
   463 	  }
   464 	}
   465 
   466 	OutEdgeIt f;
   467 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   468 	  Node v=g->head(f);
   469 	  if (M[v] && (*flow)[f] > 0 ) {
   470 	    queue.push(v);
   471 	    M.set(v, false);
   472 	  }
   473 	}
   474       }
   475     }
   476 
   477     ///Returns a minimum value cut.
   478 
   479     ///Sets \c M to the characteristic vector of a minimum value cut.
   480     ///\pre M should be a node map of bools initialized to false.
   481     ///\pre \c flow must be a maximum flow.    
   482     template<typename CutMap>
   483     void minCut(CutMap& M) const { minMinCut(M); }
   484 
   485     ///Sets the source node to \c _s.
   486 
   487     ///Sets the source node to \c _s.
   488     /// 
   489     void setSource(Node _s) { s=_s; status=AFTER_NOTHING; }
   490 
   491     ///Sets the target node to \c _t.
   492 
   493     ///Sets the target node to \c _t.
   494     ///
   495     void setTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
   496 
   497     /// Sets the edge map of the capacities to _cap.
   498 
   499     /// Sets the edge map of the capacities to _cap.
   500     /// 
   501     void setCap(const CapMap& _cap)
   502     { capacity=&_cap; status=AFTER_NOTHING; }
   503 
   504     /// Sets the edge map of the flows to _flow.
   505 
   506     /// Sets the edge map of the flows to _flow.
   507     /// 
   508     void setFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
   509 
   510 
   511   private:
   512 
   513     int push(Node w, NNMap& next, VecFirst& first) {
   514 
   515       int lev=level[w];
   516       Num exc=excess[w];
   517       int newlevel=n;       //bound on the next level of w
   518 
   519       OutEdgeIt e;
   520       for(g->first(e,w); g->valid(e); g->next(e)) {
   521 
   522 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   523 	Node v=g->head(e);
   524 
   525 	if( lev > level[v] ) { //Push is allowed now
   526 
   527 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   528 	    next.set(v,first[level[v]]);
   529 	    first[level[v]]=v;
   530 	  }
   531 
   532 	  Num cap=(*capacity)[e];
   533 	  Num flo=(*flow)[e];
   534 	  Num remcap=cap-flo;
   535 
   536 	  if ( remcap >= exc ) { //A nonsaturating push.
   537 
   538 	    flow->set(e, flo+exc);
   539 	    excess.set(v, excess[v]+exc);
   540 	    exc=0;
   541 	    break;
   542 
   543 	  } else { //A saturating push.
   544 	    flow->set(e, cap);
   545 	    excess.set(v, excess[v]+remcap);
   546 	    exc-=remcap;
   547 	  }
   548 	} else if ( newlevel > level[v] ) newlevel = level[v];
   549       } //for out edges wv
   550 
   551       if ( exc > 0 ) {
   552 	InEdgeIt e;
   553 	for(g->first(e,w); g->valid(e); g->next(e)) {
   554 
   555 	  if( (*flow)[e] <= 0 ) continue;
   556 	  Node v=g->tail(e);
   557 
   558 	  if( lev > level[v] ) { //Push is allowed now
   559 
   560 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   561 	      next.set(v,first[level[v]]);
   562 	      first[level[v]]=v;
   563 	    }
   564 
   565 	    Num flo=(*flow)[e];
   566 
   567 	    if ( flo >= exc ) { //A nonsaturating push.
   568 
   569 	      flow->set(e, flo-exc);
   570 	      excess.set(v, excess[v]+exc);
   571 	      exc=0;
   572 	      break;
   573 	    } else {  //A saturating push.
   574 
   575 	      excess.set(v, excess[v]+flo);
   576 	      exc-=flo;
   577 	      flow->set(e,0);
   578 	    }
   579 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   580 	} //for in edges vw
   581 
   582       } // if w still has excess after the out edge for cycle
   583 
   584       excess.set(w, exc);
   585 
   586       return newlevel;
   587     }
   588 
   589 
   590 
   591     void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first,
   592 			VecNode& level_list, NNMap& left, NNMap& right)
   593     {
   594       switch (fe) { //setting excess
   595 	case NO_FLOW: 
   596 	{
   597 	  EdgeIt e;
   598 	  for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
   599 	  
   600 	  NodeIt v;
   601 	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   602 	  break;
   603 	}
   604 	case ZERO_FLOW: 
   605 	{
   606 	  NodeIt v;
   607 	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   608 	  break;
   609 	}
   610 	case GEN_FLOW:
   611 	{
   612 	  NodeIt v;
   613 	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   614 
   615 	  Num exc=0;
   616 	  InEdgeIt e;
   617 	  for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   618 	  OutEdgeIt f;
   619 	  for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   620 	  excess.set(t,exc);
   621 	  break;
   622 	}
   623 	default: break;
   624       }
   625 
   626       NodeIt v;
   627       for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   628       //setting each node to level n
   629       
   630       std::queue<Node> bfs_queue;
   631 
   632 
   633       switch (fe) {
   634       case NO_FLOW:   //flow is already set to const zero
   635       case ZERO_FLOW:
   636 	{
   637 	  //Reverse_bfs from t, to find the starting level.
   638 	  level.set(t,0);
   639 	  bfs_queue.push(t);
   640 
   641 	  while (!bfs_queue.empty()) {
   642 
   643 	    Node v=bfs_queue.front();
   644 	    bfs_queue.pop();
   645 	    int l=level[v]+1;
   646 
   647 	    InEdgeIt e;
   648 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   649 	      Node w=g->tail(e);
   650 	      if ( level[w] == n && w != s ) {
   651 		bfs_queue.push(w);
   652 		Node z=level_list[l];
   653 		if ( g->valid(z) ) left.set(z,w);
   654 		right.set(w,z);
   655 		level_list[l]=w;
   656 		level.set(w, l);
   657 	      }
   658 	    }
   659 	  }
   660 
   661 	  //the starting flow
   662 	  OutEdgeIt e;
   663 	  for(g->first(e,s); g->valid(e); g->next(e))
   664 	    {
   665 	      Num c=(*capacity)[e];
   666 	      if ( c <= 0 ) continue;
   667 	      Node w=g->head(e);
   668 	      if ( level[w] < n ) {
   669 		if ( excess[w] <= 0 && w!=t ) //putting into the stack
   670 		  { 
   671 		    next.set(w,first[level[w]]);
   672 		    first[level[w]]=w;
   673 		  }
   674 		flow->set(e, c);
   675 		excess.set(w, excess[w]+c);
   676 	      }
   677 	    }
   678 	  break;
   679 	}
   680 
   681       case GEN_FLOW:
   682 	{
   683 	  //Reverse_bfs from t in the residual graph,
   684 	  //to find the starting level.
   685 	  level.set(t,0);
   686 	  bfs_queue.push(t);
   687 
   688 	  while (!bfs_queue.empty()) {
   689 
   690 	    Node v=bfs_queue.front();
   691 	    bfs_queue.pop();
   692 	    int l=level[v]+1;
   693 
   694 	    InEdgeIt e;
   695 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   696 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   697 	      Node w=g->tail(e);
   698 	      if ( level[w] == n && w != s ) {
   699 		bfs_queue.push(w);
   700 		Node z=level_list[l];
   701 		if ( g->valid(z) ) left.set(z,w);
   702 		right.set(w,z);
   703 		level_list[l]=w;
   704 		level.set(w, l);
   705 	      }
   706 	    }
   707 
   708 	    OutEdgeIt f;
   709 	    for(g->first(f,v); g->valid(f); g->next(f)) {
   710 	      if ( 0 >= (*flow)[f] ) continue;
   711 	      Node w=g->head(f);
   712 	      if ( level[w] == n && w != s ) {
   713 		bfs_queue.push(w);
   714 		Node z=level_list[l];
   715 		if ( g->valid(z) ) left.set(z,w);
   716 		right.set(w,z);
   717 		level_list[l]=w;
   718 		level.set(w, l);
   719 	      }
   720 	    }
   721 	  }
   722 
   723 	  //the starting flow
   724 	  OutEdgeIt e;
   725 	  for(g->first(e,s); g->valid(e); g->next(e))
   726 	    {
   727 	      Num rem=(*capacity)[e]-(*flow)[e];
   728 	      if ( rem <= 0 ) continue;
   729 	      Node w=g->head(e);
   730 	      if ( level[w] < n ) {
   731 		if ( excess[w] <= 0 && w!=t ) //putting into the stack
   732 		  {
   733 		    next.set(w,first[level[w]]);
   734 		    first[level[w]]=w;
   735 		  }   
   736 		flow->set(e, (*capacity)[e]);
   737 		excess.set(w, excess[w]+rem);
   738 	      }
   739 	    }
   740 
   741 	  InEdgeIt f;
   742 	  for(g->first(f,s); g->valid(f); g->next(f))
   743 	    {
   744 	      if ( (*flow)[f] <= 0 ) continue;
   745 	      Node w=g->tail(f);
   746 	      if ( level[w] < n ) {
   747 		if ( excess[w] <= 0 && w!=t )
   748 		  {
   749 		    next.set(w,first[level[w]]);
   750 		    first[level[w]]=w;
   751 		  }  
   752 		excess.set(w, excess[w]+(*flow)[f]);
   753 		flow->set(f, 0);
   754 	      }
   755 	    }
   756 	  break;
   757 	} //case GEN_FLOW
   758     
   759       case PRE_FLOW:
   760 	{
   761 	  //Reverse_bfs from t in the residual graph,
   762 	  //to find the starting level.
   763 	  level.set(t,0);
   764 	  bfs_queue.push(t);
   765 
   766 	  while (!bfs_queue.empty()) {
   767 
   768 	    Node v=bfs_queue.front();
   769 	    bfs_queue.pop();
   770 	    int l=level[v]+1;
   771 
   772 	    InEdgeIt e;
   773 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   774 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   775 	      Node w=g->tail(e);
   776 	      if ( level[w] == n && w != s ) {
   777 		bfs_queue.push(w);
   778 		Node z=level_list[l];
   779 		if ( g->valid(z) ) left.set(z,w);
   780 		right.set(w,z);
   781 		level_list[l]=w;
   782 		level.set(w, l);
   783 	      }
   784 	    }
   785 
   786 	    OutEdgeIt f;
   787 	    for(g->first(f,v); g->valid(f); g->next(f)) {
   788 	      if ( 0 >= (*flow)[f] ) continue;
   789 	      Node w=g->head(f);
   790 	      if ( level[w] == n && w != s ) {
   791 		bfs_queue.push(w);
   792 		Node z=level_list[l];
   793 		if ( g->valid(z) ) left.set(z,w);
   794 		right.set(w,z);
   795 		level_list[l]=w;
   796 		level.set(w, l);
   797 	      }
   798 	    }
   799 	  }
   800 
   801 
   802 	  //the starting flow
   803 	  OutEdgeIt e;
   804 	  for(g->first(e,s); g->valid(e); g->next(e))
   805 	    {
   806 	      Num rem=(*capacity)[e]-(*flow)[e];
   807 	      if ( rem <= 0 ) continue;
   808 	      Node w=g->head(e);
   809 	      if ( level[w] < n ) {
   810 		flow->set(e, (*capacity)[e]);
   811 		excess.set(w, excess[w]+rem);
   812 	      }
   813 	    }
   814 
   815 	  InEdgeIt f;
   816 	  for(g->first(f,s); g->valid(f); g->next(f))
   817 	    {
   818 	      if ( (*flow)[f] <= 0 ) continue;
   819 	      Node w=g->tail(f);
   820 	      if ( level[w] < n ) {
   821 		excess.set(w, excess[w]+(*flow)[f]);
   822 		flow->set(f, 0);
   823 	      }
   824 	    }
   825 	  
   826 	  NodeIt w; //computing the excess
   827 	  for(g->first(w); g->valid(w); g->next(w)) {
   828 	    Num exc=0;
   829 
   830 	    InEdgeIt e;
   831 	    for(g->first(e,w); g->valid(e); g->next(e)) exc+=(*flow)[e];
   832 	    OutEdgeIt f;
   833 	    for(g->first(f,w); g->valid(f); g->next(f)) exc-=(*flow)[f];
   834 
   835 	    excess.set(w,exc);
   836 
   837 	    //putting the active nodes into the stack
   838 	    int lev=level[w];
   839 	    if ( exc > 0 && lev < n && w != t ) 
   840 	      {
   841 		next.set(w,first[lev]);
   842 		first[lev]=w;
   843 	      }
   844 	  }
   845 	  break;
   846 	} //case PRE_FLOW
   847       }
   848     } //preflowPreproc
   849 
   850 
   851     void relabel(Node w, int newlevel, NNMap& next, VecFirst& first,
   852 		 VecNode& level_list, NNMap& left,
   853 		 NNMap& right, int& b, int& k, bool what_heur )
   854     {
   855 
   856       Num lev=level[w];
   857 
   858       Node right_n=right[w];
   859       Node left_n=left[w];
   860 
   861       //unlacing starts
   862       if ( g->valid(right_n) ) {
   863 	if ( g->valid(left_n) ) {
   864 	  right.set(left_n, right_n);
   865 	  left.set(right_n, left_n);
   866 	} else {
   867 	  level_list[lev]=right_n;
   868 	  left.set(right_n, INVALID);
   869 	}
   870       } else {
   871 	if ( g->valid(left_n) ) {
   872 	  right.set(left_n, INVALID);
   873 	} else {
   874 	  level_list[lev]=INVALID;
   875 	}
   876       }
   877       //unlacing ends
   878 
   879       if ( !g->valid(level_list[lev]) ) {
   880 
   881 	//gapping starts
   882 	for (int i=lev; i!=k ; ) {
   883 	  Node v=level_list[++i];
   884 	  while ( g->valid(v) ) {
   885 	    level.set(v,n);
   886 	    v=right[v];
   887 	  }
   888 	  level_list[i]=INVALID;
   889 	  if ( !what_heur ) first[i]=INVALID;
   890 	}
   891 
   892 	level.set(w,n);
   893 	b=lev-1;
   894 	k=b;
   895 	//gapping ends
   896 
   897       } else {
   898 
   899 	if ( newlevel == n ) level.set(w,n);
   900 	else {
   901 	  level.set(w,++newlevel);
   902 	  next.set(w,first[newlevel]);
   903 	  first[newlevel]=w;
   904 	  if ( what_heur ) b=newlevel;
   905 	  if ( k < newlevel ) ++k;      //now k=newlevel
   906 	  Node z=level_list[newlevel];
   907 	  if ( g->valid(z) ) left.set(z,w);
   908 	  right.set(w,z);
   909 	  left.set(w,INVALID);
   910 	  level_list[newlevel]=w;
   911 	}
   912       }
   913     } //relabel
   914 
   915     void printexcess() {////
   916       std::cout << "Excesses:" <<std::endl;
   917 
   918       NodeIt v;
   919       for(g->first(v); g->valid(v); g->next(v)) {
   920 	std::cout << 1+(g->id(v)) << ":" << excess[v]<<std::endl; 
   921       }
   922     }
   923 
   924  void printlevel() {////
   925       std::cout << "Levels:" <<std::endl;
   926 
   927       NodeIt v;
   928       for(g->first(v); g->valid(v); g->next(v)) {
   929 	std::cout << 1+(g->id(v)) << ":" << level[v]<<std::endl; 
   930       }
   931     }
   932 
   933 void printactive() {////
   934       std::cout << "Levels:" <<std::endl;
   935 
   936       NodeIt v;
   937       for(g->first(v); g->valid(v); g->next(v)) {
   938 	std::cout << 1+(g->id(v)) << ":" << level[v]<<std::endl; 
   939       }
   940     }
   941 
   942 
   943   };  //class MaxFlow
   944 } //namespace hugo
   945 
   946 #endif //HUGO_MAX_FLOW_H
   947 
   948 
   949 
   950