src/work/marci/graph_concept.h
author alpar
Fri, 23 Jul 2004 17:13:23 +0000
changeset 737 2d867176d10e
parent 651 a56e043aeab1
child 826 056fbb112b30
permissions -rw-r--r--
Several changes in Kruskal alg.
- Input object interface was changed to an STL compatible one.
- template parameters of class KruskalPairVec has been simplified.
- (the most of) the names meet the naming conventions.
- a lot of (but still not enough) documentation has been added.
- class KruskalMapVec has been commented out.
     1 // -*- c++ -*-
     2 #ifndef HUGO_GRAPH_H
     3 #define HUGO_GRAPH_H
     4 
     5 ///\file
     6 ///\brief Declaration of GraphConcept.
     7 
     8 #include <hugo/invalid.h>
     9 
    10 namespace hugo {
    11 
    12   /// @defgroup empty_graph The GraphConcept class
    13   /// @{
    14 
    15   /// An empty graph class.
    16   
    17   /// This class provides all the common features of a graph structure,
    18   /// however completely without implementations and real data structures
    19   /// behind the interface.
    20   /// All graph algorithms should compile with this class, but it will not
    21   /// run properly, of course.
    22   ///
    23   /// It can be used for checking the interface compatibility,
    24   /// or it can serve as a skeleton of a new graph structure.
    25   /// 
    26   /// Also, you will find here the full documentation of a certain graph
    27   /// feature, the documentation of a real graph imlementation
    28   /// like @ref ListGraph or
    29   /// @ref SmartGraph will just refer to this structure.
    30   class GraphConcept
    31   {
    32   public:
    33     /// Defalult constructor.
    34     GraphConcept() { }
    35 
    36     /// \brief Copy consructor.
    37     /// 
    38     /// \todo It is not clear, what we expect from a copy constructor.
    39     /// E.g. How to assign the nodes/edges to each other? What about maps?
    40     GraphConcept(const GraphConcept&) { }
    41 
    42     /// \brief The base type of the node iterators.
    43     ///
    44     /// This is the base type of each node iterators,
    45     /// thus each kind of node iterator will convert to this.
    46     /// Sometimes it is said to be a trivial iterator.
    47     class Node {
    48     public:
    49       /// @warning The default constructor sets the iterator
    50       /// to an undefined value.
    51       Node() { }   //FIXME
    52 
    53       // /// Copy constructor.
    54       // Node(const Node&) { }
    55 
    56       /// \brief Invalid constructor \& conversion.
    57       /// 
    58       /// This constructor initializes the iterator to be invalid.
    59       /// \sa Invalid for more details.
    60       Node(const Invalid&) { }
    61       
    62       /// Two iterators are equal if and only if they point to the
    63       /// same object or both are invalid.
    64       bool operator==(Node n) const { return true; }
    65 
    66       /// \sa \ref operator==(Node n)
    67       ///
    68       bool operator!=(Node n) const { return true; }
    69 
    70       bool operator<(Node n) const { return true; }
    71     };
    72     
    73     /// The base type of the edge iterators.
    74     class Edge {
    75     public:
    76       /// @warning The default constructor sets the iterator
    77       /// to an undefined value.
    78       Edge() { }   //FIXME
    79 
    80       // /// Copy constructor.
    81       // Edge(const Edge&) { }
    82 
    83       /// Initialize the iterator to be invalid
    84       Edge(const Invalid&) { }
    85       /// Two iterators are equal if and only if they point to the
    86       /// same object or both are invalid.
    87       bool operator==(Edge n) const { return true; }
    88       bool operator!=(Edge n) const { return true; }
    89       bool operator<(Edge n) const { return true; }
    90     };
    91     
    92     //  class SymEdgeIt : public Edge {};
    93 
    94 
    95     //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
    96 
    97 //     Node getNext(Node) const {}
    98 //     InEdgeIt getNext(InEdgeIt) const {}
    99 //     OutEdgeIt getNext(OutEdgeIt) const {}
   100 //     //SymEdgeIt getNext(SymEdgeIt) const {}
   101 //     EdgeIt getNext(EdgeIt) const {}
   102 
   103     //SymEdgeIt &next(SymEdgeIt &) const {}
   104 
   105 
   106     /// Gives back the head node of an edge.
   107     Node head(const Edge&) const { return INVALID; }
   108     /// Gives back the tail node of an edge.
   109     Node tail(const Edge&) const { return INVALID; }
   110   
   111     //   Node aNode(SymEdgeIt) const {}
   112     //   Node bNode(SymEdgeIt) const {}
   113 
   114     /// \brief Checks if a node iterator is valid
   115     /// 
   116     /// \todo Maybe, it would be better if iterator converted to
   117     /// bool directly, as Jacint prefers.
   118     bool valid(const Node&) const { return true; }
   119     /// \brief Checks if an edge iterator is valid
   120     /// 
   121     /// \todo Maybe, it would be better if iterator converted to
   122     /// bool directly, as Jacint prefers.
   123     bool valid(const Edge&) const { return true; }
   124 
   125     /// \brief Gives back the \e id of a node.
   126     /// 
   127     /// \warning Not all graph structures provide this feature.
   128     ///
   129     int id(const Node&) const { return 0; }
   130     /// \brief Gives back the \e id of an edge.
   131     ///
   132     /// \warning Not all graph structures provide this feature.
   133     ///
   134     int id(const Edge&) const { return 0; }
   135 
   136     //void setInvalid(Node &) const {};
   137     //void setInvalid(Edge &) const {};
   138   
   139     /// \brief Add a new node to the graph.
   140     ///
   141     /// \return the new node.
   142     Node addNode() { return INVALID; }
   143     /// \brief Add a new edge to the graph.
   144     ///
   145     /// Add a new edge to the graph with tail node \c tail
   146     /// and head node \c head.
   147     /// \return the new edge.
   148     Edge addEdge(const Node& tail, const Node& head) { return INVALID; }
   149     
   150     /// \brief Resets the graph.
   151     /// 
   152     /// This function deletes all edges and nodes of the graph.
   153     /// It also frees the memory allocated to store them.
   154     /// \todo What happens with the maps?
   155     void clear() { }
   156 
   157     /// Read/write/reference map of the nodes to type \c T.
   158 
   159     /// Read/write/reference map of the nodes to type \c T.
   160     /// \sa MemoryMapConcept
   161     /// \todo We may need copy constructor
   162     /// \todo We may need conversion from other nodetype
   163     /// \todo We may need operator=
   164     /// \warning Making maps that can handle bool type (NodeMap<bool>)
   165     /// needs extra attention!
   166 
   167     template<class T> class NodeMap
   168     {
   169     public:
   170       typedef T ValueType;
   171       typedef Node KeyType;
   172 
   173       NodeMap(const GraphConcept& g) { }
   174       NodeMap(const GraphConcept& g, T t) { }
   175 
   176       template<typename TT> NodeMap(const NodeMap<TT>& m) { }
   177 
   178       /// Sets the value of a node.
   179 
   180       /// Sets the value associated with node \c i to the value \c t.
   181       ///
   182       void set(Node i, T t) {}
   183       /// Gets the value of a node.
   184       T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary
   185       T &operator[](Node i) {return *(T*)0;}
   186       const T &operator[](Node i) const {return *(T*)0;}
   187 
   188       /// Updates the map if the graph has been changed
   189 
   190       /// \todo Do we need this?
   191       ///
   192       void update() { }
   193       //void update(T a) { }   //FIXME: Is it necessary
   194     };
   195 
   196     ///Read/write/reference map of the edges to type \c T.
   197 
   198     /// Read/write/reference map of the edges to type \c T.
   199     /// It behaves exactly in the same way as \ref NodeMap.
   200     /// \sa NodeMap
   201     /// \sa MemoryMapConcept
   202     /// \todo We may need copy constructor
   203     /// \todo We may need conversion from other edgetype
   204     /// \todo We may need operator=
   205     template<class T> class EdgeMap
   206     {
   207     public:
   208       typedef T ValueType;
   209       typedef Edge KeyType;
   210 
   211       EdgeMap(const GraphConcept& g) {}
   212       EdgeMap(const GraphConcept& g, T t) {}
   213     
   214       void set(Edge i, T t) {}
   215       T get(Edge i) const {return *(T*)0;}
   216       T &operator[](Edge i) {return *(T*)0;}
   217     
   218       void update() { }
   219       //void update(T a) { }   //FIXME: Is it necessary
   220     };
   221   };
   222 
   223 
   224   /// \brief Node-iterable graph concept.
   225   ///
   226   /// A graph class which provides functions to 
   227   /// iterate on its nodes.
   228   class NodeIterableGraphConcept : virtual public GraphConcept
   229   {
   230   public:
   231 
   232     /// \brief This iterator goes trough the nodes of the graph.
   233     ///
   234     /// This iterator goes trough the \e nodes of the graph.
   235     /// Its usage is quite simple, for example you can count the number
   236     /// of nodes in graph \c g of type \c Graph as follows.
   237     /// \code
   238     /// int count=0;
   239     /// for(Graph::NodeIt n(g); g.valid(n); g.next(n)) ++count;
   240     /// \endcode
   241     class NodeIt : public Node {
   242     public:
   243       /// @warning The default constructor sets the iterator.
   244       /// to an undefined value.
   245       NodeIt() { }
   246       // /// Copy constructor
   247       //NodeIt(const NodeIt& n) { }
   248       /// Initialize the iterator to be invalid.
   249       NodeIt(const Invalid&) { }
   250       /// \brief This constructor sets the iterator to first node.
   251       ///
   252       /// This constructor set the iterator to the first 
   253       /// node of the graph \c g.
   254       ///
   255       ///@param g the graph
   256       NodeIt(const GraphConcept& g) { }
   257     };
   258 
   259     /// The first node.
   260     NodeIt &first(NodeIt &i) const { return i; }
   261 
   262     /// Go to the next node.
   263     NodeIt &next(NodeIt &i) const { return i; }
   264   };
   265 
   266 
   267   /// \brief Edge-iterable graph concept.
   268   ///
   269   /// A graph class which provides functions to 
   270   /// iterate on its edges.
   271   class EdgeIterableGraphConcept : virtual public GraphConcept
   272   {
   273   public:
   274 
   275     /// \brief This iterator goes trough the edges of the graph.
   276     ///
   277     /// This iterator goes trough the \e edges of the graph.
   278     /// Its usage is quite simple, for example you can count the number
   279     /// of edges in graph \c g of type \c Graph as follows.
   280     /// \code
   281     /// int count=0;
   282     /// for(Graph::EdgeIt e(g); g.valid(e); g.next(e)) ++count;
   283     /// \endcode
   284     class EdgeIt : public Edge {
   285     public:
   286       /// @warning The default constructor sets the iterator.
   287       /// to an undefined value.
   288       EdgeIt() { }
   289       // /// Copy constructor
   290       // EdgeIt(const EdgeIt&) { }
   291       /// Initialize the iterator to be invalid.
   292       EdgeIt(const Invalid&) { }
   293       /// \brief This constructor sets the iterator to first edge.
   294       ///
   295       /// This constructor set the iterator to the first 
   296       /// edge of the graph \c g.
   297       ///
   298       ///@param g the graph
   299       EdgeIt(const GraphConcept& g) { }
   300     };
   301 
   302     /// The first edge.
   303     EdgeIt &first(EdgeIt &i) const { return i; }
   304 
   305     /// Go to the next edge.
   306     EdgeIt &next(EdgeIt &i) const { return i; }
   307   };
   308 
   309 
   310   /// \brief Out-edge-iterable graph concept.
   311   ///
   312   /// A graph class which provides functions to 
   313   /// iterate on out-edges of any node.
   314   class OutEdgeIterableGraphConcept : virtual public GraphConcept
   315   {
   316   public:
   317 
   318     /// \brief This iterator goes trough the outgoing edges of a node.
   319     ///
   320     /// This iterator goes trough the \e outgoing edges of a certain node
   321     /// of a graph.
   322     /// Its usage is quite simple, for example you can count the number
   323     /// of outgoing edges of a node \c n
   324     /// in graph \c g of type \c Graph as follows.
   325     /// \code
   326     /// int count=0;
   327     /// for(Graph::OutEdgeIt e(g, n); g.valid(e); g.next(e)) ++count;
   328     /// \endcode
   329     class OutEdgeIt : public Edge {
   330     public:
   331       /// @warning The default constructor sets the iterator.
   332       /// to an undefined value.
   333       OutEdgeIt() { }
   334       /// Initialize the iterator to be invalid.
   335       OutEdgeIt(const Invalid&) { }
   336       /// \brief This constructor sets the iterator to first outgoing edge.
   337       ///
   338       /// This constructor set the iterator to the first outgoing edge of
   339       /// node
   340       ///@param n the node
   341       ///@param g the graph
   342       OutEdgeIt(const GraphConcept& g, const Node& n) { }
   343     };
   344 
   345     /// The first outgoing edge.
   346     OutEdgeIt &first(OutEdgeIt &i, const Node& n) const { return i; }
   347 
   348     /// Go to the next outgoing edge.
   349     OutEdgeIt &next(OutEdgeIt &i) const { return i; }
   350 
   351     Node aNode(const OutEdgeIt&) const { return Node(); }
   352     Node bNode(const OutEdgeIt&) const { return Node(); }
   353   };
   354 
   355 
   356   /// \brief In-edge-iterable graph concept.
   357   ///
   358   /// A Graph class which provides a function to 
   359   /// iterate on in-edges of any node.
   360   class InEdgeIterableGraphConcept : virtual public GraphConcept
   361   {
   362   public:
   363 
   364     /// \brief This iterator goes trough the incoming edges of a node.
   365     /// 
   366     /// This iterator goes trough the \e incoming edges of a certain node
   367     /// of a graph.
   368     /// Its usage is quite simple, for example you can count the number
   369     /// of incoming edges of a node \c n
   370     /// in graph \c g of type \c Graph as follows.
   371     /// \code
   372     /// int count=0;
   373     /// for(Graph::InEdgeIt e(g, n); g.valid(e); g.next(e)) ++count;
   374     /// \endcode
   375     class InEdgeIt : public Edge {
   376     public:
   377       /// @warning The default constructor sets the iterator
   378       /// to an undefined value.
   379       InEdgeIt() { }
   380       /// Initialize the iterator to be invalid
   381       InEdgeIt(const Invalid&) { }
   382       /// \brief This constructor sets the iterator to first incomig edge.
   383       /// 
   384       /// This constructor set the iterator to the first incomig edge of
   385       /// node
   386       ///@param n the node
   387       ///@param g the graph
   388       InEdgeIt(const GraphConcept& g, const Node& n) { }
   389     };
   390 
   391     /// The first incoming edge.
   392     InEdgeIt &first(InEdgeIt &i, const Node& n) const { return i; }
   393 
   394     /// Go to the next incoming edge.
   395     InEdgeIt &next(InEdgeIt &i) const { return i; }
   396 
   397     Node aNode(const InEdgeIt&) const { return Node(); }
   398     Node bNode(const InEdgeIt&) const { return Node(); }
   399   };
   400 
   401 
   402   /// \brief Node-eraseable graph concept.
   403   ///
   404   /// A graph class which provides a function to 
   405   /// delete any of its nodes.
   406   class NodeEraseableGraphConcept : virtual public GraphConcept
   407   {
   408   public:
   409     /// Deletes a node.
   410     void erase(const Node& n) { }
   411   };
   412 
   413 
   414   /// \brief Edge-eraseable graph concept.
   415   /// 
   416   /// A graph class which provides a function to delete any 
   417   /// of its edges.
   418   class EdgeEraseableGraphConcept : virtual public GraphConcept
   419   {
   420   public:
   421     /// Deletes a node.
   422     void erase(const Edge& n) { }
   423   };
   424 
   425 
   426   /// \brief An empty graph class which provides a function to 
   427   /// get the number of its nodes.
   428   /// 
   429   /// This graph class provides a function for getting the number of its 
   430   /// nodes. 
   431   /// Clearly, for physical graph structures it can be expected to have such a 
   432   /// function. For wrappers or graphs which are given in an implicit way, 
   433   /// the implementation can be circumstantial, that is why this composes a 
   434   /// separate concept.
   435   class NodeCountingGraphConcept : virtual public GraphConcept
   436   {
   437   public:
   438     /// Returns the number of nodes.
   439     int nodeNum() const { return 0; }
   440   };
   441 
   442 
   443   /// \brief An empty graph class which provides a function to 
   444   /// get the number of its edges.
   445   /// 
   446   /// This graph class provides a function for getting the number of its 
   447   /// edges. 
   448   /// Clearly, for physical graph structures it can be expected to have such a 
   449   /// function. For wrappers or graphs which are given in an implicit way, 
   450   /// the implementation can be circumstantial, that is why this composes a 
   451   /// separate concept.
   452   class EdgeCountingGraphConcept : virtual public GraphConcept
   453   {
   454   public:
   455     /// Returns the number of edges.
   456     int edgeNum() const { return 0; }
   457   };
   458 
   459   class FullFeatureGraphConcept : virtual public NodeIterableGraphConcept,
   460 				  virtual public EdgeIterableGraphConcept, 
   461 				  virtual public OutEdgeIterableGraphConcept, 
   462 				  virtual public InEdgeIterableGraphConcept, 
   463 				  virtual public NodeCountingGraphConcept {
   464   public:
   465     FullFeatureGraphConcept() { }
   466     using EdgeIterableGraphConcept::next;
   467     using NodeIterableGraphConcept::next;
   468     using OutEdgeIterableGraphConcept::next;    
   469     using InEdgeIterableGraphConcept::next;
   470   };
   471   
   472   /// @}
   473 
   474 } //namespace hugo
   475 
   476 
   477 
   478 // class EmptyBipGraph : public Graph Concept
   479 // {
   480 //   class ANode {};
   481 //   class BNode {};
   482 
   483 //   ANode &next(ANode &) {}
   484 //   BNode &next(BNode &) {}
   485 
   486 //   ANode &getFirst(ANode &) const {}
   487 //   BNode &getFirst(BNode &) const {}
   488 
   489 //   enum NodeClass { A = 0, B = 1 };
   490 //   NodeClass getClass(Node n) {}
   491 
   492 // }
   493 
   494 #endif // HUGO_GRAPH_H