src/hugo/unionfind.h
author alpar
Tue, 06 Jul 2004 10:07:48 +0000
changeset 694 2d87cefb35b2
parent 542 69bde1d90c04
child 774 4297098d9677
permissions -rw-r--r--
I moved run() into the body of class Dijkstra, because Doxygen handles
external member function definitions very poorly.
     1 // -*- c++ -*- //
     2 #ifndef HUGO_UNION_FIND_H
     3 #define HUGO_UNION_FIND_H
     4 
     5 //!\ingroup auxdat
     6 //!\file
     7 //!\brief Union-Find data structures.
     8 
     9 
    10 #include <vector>
    11 #include <list>
    12 #include <utility>
    13 #include <algorithm>
    14 
    15 #include <hugo/invalid.h>
    16 
    17 namespace hugo {
    18 
    19   //! \addtogroup auxdat
    20   //! @{
    21 
    22   /**
    23    * \brief A \e Union-Find data structure implementation
    24    *
    25    * The class implements the \e Union-Find data structure. 
    26    * The union operation uses rank heuristic, while
    27    * the find operation uses path compression.
    28    * This is a very simple but efficient implementation, providing 
    29    * only four methods: join (union), find, insert and size.
    30    * For more features see the \ref UnionFindEnum class.
    31    *
    32    * \pre The elements are automatically added only if the map 
    33    * given to the constructor was filled with -1's. Otherwise you
    34    * need to add all the elements by the \ref insert() method.
    35    */
    36 
    37   template <typename T, typename TIntMap>
    38   class UnionFind {
    39     
    40   public:
    41     typedef T ElementType;
    42     typedef std::pair<int,int> PairType;
    43 
    44   private:
    45     std::vector<PairType> data;
    46     TIntMap& map;
    47 
    48   public:
    49     UnionFind(TIntMap& m) : map(m) {}
    50 
    51     /**
    52      * \brief Returns the index of the element's component.
    53      *
    54      * The method returns the index of the element's component.
    55      * This is an integer between zero and the number of inserted elements.
    56      */
    57 
    58     int find(T a)
    59     {
    60       int comp0 = map[a];
    61       if (comp0 < 0) {
    62 	return insert(a);
    63       }
    64       int comp = comp0;
    65       int next;
    66       while ( (next = data[comp].first) != comp) {
    67 	comp = next;
    68       }
    69       while ( (next = data[comp0].first) != comp) {
    70 	data[comp0].first = comp;
    71 	comp0 = next;
    72       }
    73 
    74       return comp;
    75     }
    76 
    77     /**
    78      * \brief Insert a new element into the structure.
    79      *
    80      * This method inserts a new element into the data structure. 
    81      *
    82      * It is not required to use this method:
    83      * if the map given to the constructor was filled 
    84      * with -1's then it is called automatically
    85      * on the first \ref find or \ref join.
    86      *
    87      * The method returns the index of the new component.
    88      */
    89 
    90     int insert(T a)
    91     {
    92       int n = data.size();
    93       data.push_back(std::make_pair(n, 1));
    94       map.set(a,n);
    95       return n;
    96     }
    97 
    98     /**
    99      * \brief Joining the components of element \e a and element \e b.
   100      *
   101      * This is the \e union operation of the Union-Find structure. 
   102      * Joins the component of elemenent \e a and component of
   103      * element \e b. If \e a and \e b are in the same component then
   104      * it returns false otherwise it returns true.
   105      */
   106 
   107     bool join(T a, T b)
   108     {
   109       int ca = find(a);
   110       int cb = find(b);
   111 
   112       if ( ca == cb ) 
   113 	return false;
   114 
   115       if ( data[ca].second > data[cb].second ) {
   116 	data[cb].first = ca;
   117 	data[ca].second += data[cb].second;
   118       }
   119       else {
   120 	data[ca].first = cb;
   121 	data[cb].second += data[ca].second;
   122       }
   123       return true;
   124     }
   125 
   126     /**
   127      * \brief Returns the size of the component of element \e a.
   128      *
   129      * Returns the size of the component of element \e a.
   130      */
   131 
   132     int size(T a)
   133     {
   134       int ca = find(a);
   135       return data[ca].second;
   136     }
   137 
   138   };
   139 
   140 
   141 
   142 
   143   /*******************************************************/
   144 
   145 
   146 #ifdef DEVELOPMENT_DOCS
   147 
   148   /**
   149    * \brief The auxiliary class for the \ref UnionFindEnum class.
   150    *
   151    * In the \ref UnionFindEnum class all components are represented as
   152    * a std::list. 
   153    * Items of these lists are UnionFindEnumItem structures.
   154    *
   155    * The class has four fields:
   156    *  - T me - the actual element 
   157    *  - IIter parent - the parent of the element in the union-find structure
   158    *  - int size - the size of the component of the element. 
   159    *            Only valid if the element
   160    *            is the leader of the component.
   161    *  - CIter my_class - pointer into the list of components 
   162    *            pointing to the component of the element.
   163    *            Only valid if the element is the leader of the component.
   164    */
   165 
   166 #endif
   167 
   168   template <typename T>
   169   struct UnionFindEnumItem {
   170 
   171     typedef std::list<UnionFindEnumItem> ItemList;
   172     typedef std::list<ItemList> ClassList;
   173     typedef typename ItemList::iterator IIter;
   174     typedef typename ClassList::iterator CIter;
   175 
   176     T me;
   177     IIter parent;
   178     int size;
   179     CIter my_class;
   180 
   181     UnionFindEnumItem() {}
   182     UnionFindEnumItem(const T &_me, CIter _my_class): 
   183       me(_me), size(1), my_class(_my_class) {}
   184   };
   185 
   186 
   187   /**
   188    * \brief A \e Union-Find data structure implementation which
   189    * is able to enumerate the components.
   190    *
   191    * The class implements a \e Union-Find data structure
   192    * which is able to enumerate the components and the items in
   193    * a component. If you don't need this feature then perhaps it's
   194    * better to use the \ref UnionFind class which is more efficient.
   195    *
   196    * The union operation uses rank heuristic, while
   197    * the find operation uses path compression.
   198    *
   199    * \pre You
   200    * need to add all the elements by the \ref insert() method.
   201    */
   202 
   203 
   204   template <typename T, template <typename Item> class Map>
   205   class UnionFindEnum {
   206 
   207     typedef std::list<UnionFindEnumItem<T> > ItemList;
   208     typedef std::list<ItemList> ClassList;
   209     typedef typename ItemList::iterator IIter;
   210     typedef typename ItemList::const_iterator IcIter;
   211     typedef typename ClassList::iterator CIter;
   212     typedef typename ClassList::const_iterator CcIter;
   213 
   214   public:
   215     typedef T ElementType;
   216     typedef UnionFindEnumItem<T> ItemType;
   217     typedef Map< IIter > MapType;
   218 
   219   private:
   220     MapType& m;
   221     ClassList classes;
   222 
   223     IIter _find(IIter a) const {
   224       IIter comp = a;
   225       IIter next;
   226       while( (next = comp->parent) != comp ) {
   227 	comp = next;
   228       }
   229 
   230       IIter comp1 = a;
   231       while( (next = comp1->parent) != comp ) {
   232 	comp1->parent = comp->parent;
   233 	comp1 = next;
   234       }
   235       return comp;
   236     }
   237 
   238   public:
   239     UnionFindEnum(MapType& _m) : m(_m) {}
   240 
   241 
   242     /**
   243      * \brief Insert the given element into a new component.
   244      *
   245      * This method creates a new component consisting only of the
   246      * given element.
   247      */
   248 
   249     void insert(const T &a)
   250     {
   251 
   252 
   253       classes.push_back(ItemList());
   254       CIter aclass = classes.end();
   255       --aclass;
   256 
   257       ItemList &alist = *aclass;
   258       alist.push_back(ItemType(a, aclass));
   259       IIter ai = alist.begin();
   260 
   261       ai->parent = ai;
   262       m.set(a, ai);
   263 
   264     }
   265 
   266     /**
   267      * \brief Insert the given element into the component of the others.
   268      *
   269      * This methods insert the element \e a into the component of the
   270      * element \e comp. 
   271      */
   272 
   273     void insert(const T &a, const T &comp) {
   274       
   275       IIter clit = _find(m[comp]);
   276       ItemList &c = *clit->my_class;
   277       c.push_back(ItemType(a,0));
   278       IIter ai = c.end();
   279       --ai;
   280       ai->parent = clit;
   281       m.set(a, ai);
   282       ++clit->size;
   283     }
   284 
   285 
   286     /**
   287      * \brief Find the leader of the component of the given element.
   288      *
   289      * The method returns the leader of the component of the given element.
   290      */
   291 
   292     T find(const T &a) const {
   293       return _find(m[a])->me;
   294     }
   295 
   296 
   297     /**
   298      * \brief Joining the component of element \e a and element \e b.
   299      *
   300      * This is the \e union operation of the Union-Find structure. 
   301      * Joins the component of elemenent \e a and component of
   302      * element \e b. If \e a and \e b are in the same component then
   303      * returns false else returns true.
   304      */
   305 
   306     bool join(T a, T b) {
   307 
   308       IIter ca = _find(m[a]);
   309       IIter cb = _find(m[b]);
   310 
   311       if ( ca == cb ) {
   312 	return false;
   313       }
   314 
   315       if ( ca->size > cb->size ) {
   316 
   317 	cb->parent = ca->parent;
   318 	ca->size += cb->size;
   319 	
   320 	ItemList &alist = *ca->my_class;
   321 	alist.splice(alist.end(),*cb->my_class);
   322 
   323 	classes.erase(cb->my_class);
   324 	cb->my_class = 0;
   325       }
   326       else {
   327 
   328 	ca->parent = cb->parent;
   329 	cb->size += ca->size;
   330 	
   331 	ItemList &blist = *cb->my_class;
   332 	blist.splice(blist.end(),*ca->my_class);
   333 
   334 	classes.erase(ca->my_class);
   335 	ca->my_class = 0;
   336       }
   337 
   338       return true;
   339     }
   340 
   341 
   342     /**
   343      * \brief Returns the size of the component of element \e a.
   344      *
   345      * Returns the size of the component of element \e a.
   346      */
   347 
   348     int size(const T &a) const {
   349       return _find(m[a])->size;
   350     }
   351 
   352 
   353     /**
   354      * \brief Split up the component of the element. 
   355      *
   356      * Splitting the component of the element into sigleton
   357      * components (component of size one).
   358      */
   359 
   360     void split(const T &a) {
   361 
   362       IIter ca = _find(m[a]);
   363  
   364       if ( ca->size == 1 )
   365 	return;
   366       
   367       CIter aclass = ca->my_class;
   368 
   369       for(IIter curr = ca; ++curr != aclass->end(); curr=ca) {
   370 	classes.push_back(ItemList());
   371 	CIter nl = --classes.end();
   372 	nl->splice(nl->end(), *aclass, curr);
   373 
   374 	curr->size=1;
   375 	curr->parent=curr;
   376 	curr->my_class = nl;
   377       }
   378 
   379       ca->size=1;
   380       return;
   381     }
   382 
   383 
   384     /**
   385      * \brief Set the given element to the leader element of its component.
   386      *
   387      * Set the given element to the leader element of its component.
   388      */
   389 
   390     void makeRep(const T &a) {
   391 
   392       IIter ia = m[a];
   393       IIter la = _find(ia);
   394       if (la == ia) return;
   395 
   396       ia->my_class = la->my_class;
   397       la->my_class = 0;
   398 
   399       ia->size = la->size;
   400 
   401       CIter l = ia->my_class;
   402       l->splice(l->begin(),*l,ia);
   403 
   404       ia->parent = ia;
   405       la->parent = ia;
   406     }
   407 
   408     /**
   409      * \brief Move the given element to an other component.
   410      *
   411      * This method moves the element \e a from its component
   412      * to the component of \e comp.
   413      * If \e a and \e comp are in the same component then
   414      * it returns false otherwise it returns true.
   415      */
   416 
   417     bool move(const T &a, const T &comp) {
   418 
   419       IIter ai = m[a];
   420       IIter lai = _find(ai);
   421       IIter clit = _find(m[comp]);
   422 
   423       if (lai == clit)
   424 	return false;
   425 
   426       ItemList &c = *clit->my_class;
   427 
   428       bool is_leader = (lai == ai);
   429       bool singleton = false;
   430 
   431       if (is_leader) {
   432 	++lai;
   433       }
   434 
   435       c.splice(c.end(), *lai->my_class, ai);
   436 
   437       if (is_leader) {
   438 	if (ai->size == 1) {
   439 	  classes.erase(ai->my_class);
   440 	  singleton = true;
   441 	}
   442 	else {
   443 	  lai->size = ai->size; 
   444 	  lai->my_class = ai->my_class;	
   445 	}
   446       }
   447       if (!singleton) {
   448 	for (IIter i = lai; i != lai->my_class->end(); ++i)
   449 	  i->parent = lai;
   450 	--lai->size;
   451       }
   452 
   453       ai->parent = clit;
   454       ai->my_class = 0;
   455       ++clit->size;
   456 
   457       return true;
   458     }
   459 
   460 
   461     /**
   462      * \brief Remove the given element from the structure.
   463      *
   464      * Remove the given element from the structure.
   465      *
   466      * Removes the element from its component and if the component becomes
   467      * empty then removes that component from the component list.
   468      */
   469     void erase(const T &a) {
   470 
   471       IIter ma = m[a];
   472       if (ma == 0) return;
   473 
   474       IIter la = _find(ma);
   475       if (la == ma) {
   476 	if (ma -> size == 1){
   477 	  classes.erase(ma->my_class);
   478 	  m.set(a,0);
   479 	  return;
   480 	}
   481 	++la;
   482 	la->size = ma->size; 
   483 	la->my_class = ma->my_class;	
   484       }
   485 
   486       for (IIter i = la; i != la->my_class->end(); ++i) {
   487 	i->parent = la;
   488       }
   489 
   490       la->size--;
   491       la->my_class->erase(ma);
   492       m.set(a,0);
   493     }
   494 
   495     /**
   496      * \brief Removes the component of the given element from the structure.
   497      *
   498      * Removes the component of the given element from the structure.
   499      */
   500 
   501     void eraseClass(const T &a) {
   502       IIter ma = m[a];
   503       if (ma == 0) return;
   504 #     ifdef DEBUG
   505       CIter c = _find(ma)->my_class;
   506       for (IIter i=c->begin(); i!=c->end(); ++i)
   507 	m.set(i->me, 0);
   508 #     endif
   509       classes.erase(_find(ma)->my_class);
   510     }
   511 
   512 
   513     class ClassIt {
   514       friend class UnionFindEnum;
   515 
   516       CcIter i;
   517     public:
   518       ClassIt(Invalid): i(0) {}
   519       ClassIt() {}
   520       
   521       operator const T& () const { 
   522 	ItemList const &ll = *i;
   523 	return (ll.begin())->me; }
   524       bool operator == (ClassIt it) const {
   525 	return (i == it.i);
   526       }
   527       bool operator != (ClassIt it) const {
   528 	return (i != it.i);
   529       }
   530       bool operator < (ClassIt it) const {
   531 	return (i < it.i);
   532       }
   533 
   534       bool valid() const { return i != 0; }
   535     private:
   536       void first(const ClassList &l) { i = l.begin(); validate(l); }
   537       void next(const ClassList &l) {
   538 	++i; 
   539 	validate(l);
   540       }
   541       void validate(const ClassList &l) {
   542 	if ( i == l.end() ) 
   543 	  i = 0;
   544       }
   545     };
   546 
   547     /**
   548      * \brief Sets the iterator to point to the first component.
   549      * 
   550      * Sets the iterator to point to the first component.
   551      *
   552      * With the \ref first, \ref valid and \ref next methods you can
   553      * iterate through the components. For example:
   554      * \code
   555      * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
   556      * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
   557      * UnionFindEnum<Graph::Node, Graph::NodeMap>::ClassIt iter;
   558      *  for (U.first(iter); U.valid(iter); U.next(iter)) {
   559      *    // iter is convertible to Graph::Node
   560      *    cout << iter << endl;
   561      *  }
   562      * \endcode
   563      */
   564 
   565     ClassIt& first(ClassIt& it) const {
   566       it.first(classes);
   567       return it;
   568     }
   569 
   570     /**
   571      * \brief Returns whether the iterator is valid.
   572      *
   573      * Returns whether the iterator is valid.
   574      *
   575      * With the \ref first, \ref valid and \ref next methods you can
   576      * iterate through the components. See the example here: \ref first.
   577      */
   578 
   579     bool valid(ClassIt const &it) const {
   580       return it.valid(); 
   581     }
   582 
   583     /**
   584      * \brief Steps the iterator to the next component. 
   585      *
   586      * Steps the iterator to the next component.
   587      *
   588      * With the \ref first, \ref valid and \ref next methods you can
   589      * iterate through the components. See the example here: \ref first.
   590      */
   591 
   592     ClassIt& next(ClassIt& it) const {
   593       it.next(classes);
   594       return it;
   595     }
   596 
   597 
   598     class ItemIt {
   599       friend class UnionFindEnum;
   600 
   601       IcIter i;
   602       const ItemList *l;
   603     public:
   604       ItemIt(Invalid): i(0) {}
   605       ItemIt() {}
   606       
   607       operator const T& () const { return i->me; }
   608       bool operator == (ItemIt it) const {
   609 	return (i == it.i);
   610       }
   611       bool operator != (ItemIt it) const {
   612 	return (i != it.i);
   613       }
   614       bool operator < (ItemIt it) const {
   615 	return (i < it.i);
   616       }
   617 
   618       bool valid() const { return i != 0; }
   619     private:
   620       void first(const ItemList &il) { l=&il; i = l->begin(); validate(); }
   621       void next() {
   622 	++i; 
   623 	validate();
   624       }
   625       void validate() {
   626 	if ( i == l->end() ) 
   627 	  i = 0;
   628       }
   629     };
   630 
   631 
   632 
   633     /**
   634      * \brief Sets the iterator to point to the first element of the component.
   635      * 
   636      * \anchor first2 
   637      * Sets the iterator to point to the first element of the component.
   638      *
   639      * With the \ref first2 "first", \ref valid2 "valid" 
   640      * and \ref next2 "next" methods you can
   641      * iterate through the elements of a component. For example
   642      * (iterating through the component of the node \e node):
   643      * \code
   644      * Graph::Node node = ...;
   645      * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
   646      * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
   647      * UnionFindEnum<Graph::Node, Graph::NodeMap>::ItemIt iiter;
   648      *   for (U.first(iiter, node); U.valid(iiter); U.next(iiter)) {
   649      *     // iiter is convertible to Graph::Node
   650      *     cout << iiter << endl;
   651      *   }
   652      * \endcode
   653      */
   654     
   655     ItemIt& first(ItemIt& it, const T& a) const {
   656       it.first( * _find(m[a])->my_class );
   657       return it;
   658     }
   659 
   660     /**
   661      * \brief Returns whether the iterator is valid.
   662      *
   663      * \anchor valid2
   664      * Returns whether the iterator is valid.
   665      *
   666      * With the \ref first2 "first", \ref valid2 "valid" 
   667      * and \ref next2 "next" methods you can
   668      * iterate through the elements of a component.
   669      * See the example here: \ref first2 "first".
   670      */
   671 
   672     bool valid(ItemIt const &it) const {
   673       return it.valid(); 
   674     }
   675 
   676     /**
   677      * \brief Steps the iterator to the next component. 
   678      *
   679      * \anchor next2
   680      * Steps the iterator to the next component.
   681      *
   682      * With the \ref first2 "first", \ref valid2 "valid" 
   683      * and \ref next2 "next" methods you can
   684      * iterate through the elements of a component.
   685      * See the example here: \ref first2 "first".
   686      */
   687 
   688     ItemIt& next(ItemIt& it) const {
   689       it.next();
   690       return it;
   691     }
   692     
   693   };
   694 
   695 
   696   //! @}
   697 
   698 } //namespace hugo
   699 
   700 #endif //HUGO_UNION_FIND_H