src/lemon/maps.h
author alpar
Sun, 06 Feb 2005 14:38:00 +0000
changeset 1127 2dea256cb988
parent 1070 6aa1520a0f2f
child 1164 80bb73097736
permissions -rw-r--r--
Document state_enum
     1 /* -*- C++ -*-
     2  * src/lemon/maps.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_MAPS_H
    18 #define LEMON_MAPS_H
    19 
    20 #include<math.h>
    21 
    22 ///\file
    23 ///\ingroup maps
    24 ///\brief Miscellaneous property maps
    25 ///
    26 ///\todo This file has the same name as the concept file in concept/,
    27 /// and this is not easily detectable in docs...
    28 
    29 #include <map>
    30 
    31 namespace lemon {
    32 
    33   /// \addtogroup maps
    34   /// @{
    35 
    36   /// Base class of maps.
    37 
    38   /// Base class of maps.
    39   /// It provides the necessary <tt>typedef</tt>s required by the map concept.
    40   template<typename K, typename T>
    41   class MapBase
    42   {
    43   public:
    44     ///\e
    45     typedef K Key;
    46     ///\e
    47     typedef T Value;
    48   };
    49 
    50   /// Null map. (a.k.a. DoNothingMap)
    51 
    52   /// If you have to provide a map only for its type definitions,
    53   /// or if you have to provide a writable map, but
    54   /// data written to it will sent to <tt>/dev/null</tt>...
    55   template<typename K, typename T>
    56   class NullMap : public MapBase<K,T>
    57   {
    58   public:
    59 
    60     /// Gives back a default constructed element.
    61     T operator[](const K&) const { return T(); }
    62     /// Absorbs the value.
    63     void set(const K&, const T&) {}
    64   };
    65 
    66 
    67   /// Constant map.
    68 
    69   /// This is a readable map which assigns a specified value to each key.
    70   /// In other aspects it is equivalent to the \ref NullMap.
    71   /// \todo set could be used to set the value.
    72   template<typename K, typename T>
    73   class ConstMap : public MapBase<K,T>
    74   {
    75     T v;
    76   public:
    77 
    78     /// Default constructor
    79 
    80     /// The value of the map will be uninitialized. 
    81     /// (More exactly it will be default constructed.)
    82     ConstMap() {}
    83     ///\e
    84 
    85     /// \param _v The initial value of the map.
    86     ///
    87     ConstMap(const T &_v) : v(_v) {}
    88 
    89     T operator[](const K&) const { return v; }
    90     void set(const K&, const T&) {}
    91 
    92     template<typename T1>
    93     struct rebind {
    94       typedef ConstMap<K,T1> other;
    95     };
    96 
    97     template<typename T1>
    98     ConstMap(const ConstMap<K,T1> &, const T &_v) : v(_v) {}
    99   };
   100 
   101   ///Returns a \ref ConstMap class
   102 
   103   ///This function just returns a \ref ConstMap class.
   104   ///\relates ConstMap
   105   template<class V,class K> 
   106   inline ConstMap<V,K> constMap(const K &k) 
   107   {
   108     return ConstMap<V,K>(k);
   109   }
   110 
   111 
   112   //to document later
   113   template<typename T, T v>
   114   struct Const { };
   115   //to document later
   116   template<typename K, typename V, V v>
   117   class ConstMap<K, Const<V, v> > : public MapBase<K, V>
   118   {
   119   public:
   120     ConstMap() { }
   121     V operator[](const K&) const { return v; }
   122     void set(const K&, const V&) { }
   123   };
   124 
   125   /// \c std::map wrapper
   126 
   127   /// This is essentially a wrapper for \c std::map. With addition that
   128   /// you can specify a default value different from \c Value() .
   129   ///
   130   /// \todo Provide allocator parameter...
   131   template <typename K, typename T, typename Compare = std::less<K> >
   132   class StdMap : public std::map<K,T,Compare> {
   133     typedef std::map<K,T,Compare> parent;
   134     T v;
   135     typedef typename parent::value_type PairType;
   136 
   137   public:
   138     typedef K Key;
   139     typedef T Value;
   140     typedef T& Reference;
   141     typedef const T& ConstReference;
   142 
   143 
   144     StdMap() : v() {}
   145     /// Constructor with specified default value
   146     StdMap(const T& _v) : v(_v) {}
   147 
   148     /// \brief Constructs the map from an appropriate std::map.
   149     ///
   150     /// \warning Inefficient: copies the content of \c m !
   151     StdMap(const parent &m) : parent(m) {}
   152     /// \brief Constructs the map from an appropriate std::map, and explicitly
   153     /// specifies a default value.
   154     ///
   155     /// \warning Inefficient: copies the content of \c m !
   156     StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
   157     
   158     template<typename T1, typename Comp1>
   159     StdMap(const StdMap<Key,T1,Comp1> &m, const T &_v) { 
   160       //FIXME; 
   161     }
   162 
   163     Reference operator[](const Key &k) {
   164       return insert(PairType(k,v)).first -> second;
   165     }
   166     ConstReference operator[](const Key &k) const {
   167       typename parent::iterator i = lower_bound(k);
   168       if (i == parent::end() || parent::key_comp()(k, (*i).first))
   169 	return v;
   170       return (*i).second;
   171     }
   172     void set(const Key &k, const T &t) {
   173       parent::operator[](k) = t;
   174     }
   175 
   176     /// Changes the default value of the map.
   177     /// \return Returns the previous default value.
   178     ///
   179     /// \warning The value of some keys (which has already been queried, but
   180     /// the value has been unchanged from the default) may change!
   181     T setDefault(const T &_v) { T old=v; v=_v; return old; }
   182 
   183     template<typename T1>
   184     struct rebind {
   185       typedef StdMap<Key,T1,Compare> other;
   186     };
   187   };
   188 
   189 
   190   ///Sum of two maps
   191 
   192   ///This \ref concept::ReadMap "read only map" returns the sum of the two
   193   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   194   ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
   195 
   196   template<class M1,class M2> 
   197   class AddMap
   198   {
   199     const M1 &m1;
   200     const M2 &m2;
   201   public:
   202     typedef typename M1::Key Key;
   203     typedef typename M1::Value Value;
   204 
   205     ///Constructor
   206 
   207     ///\e
   208     ///
   209     AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   210     Value operator[](Key k) const {return m1[k]+m2[k];}
   211   };
   212   
   213   ///Returns an \ref AddMap class
   214 
   215   ///This function just returns an \ref AddMap class.
   216   ///\todo How to call these type of functions?
   217   ///
   218   ///\relates AddMap
   219   ///\todo Wrong scope in Doxygen when \c \\relates is used
   220   template<class M1,class M2> 
   221   inline AddMap<M1,M2> addMap(const M1 &m1,const M2 &m2) 
   222   {
   223     return AddMap<M1,M2>(m1,m2);
   224   }
   225 
   226   ///Shift a maps with a constant.
   227 
   228   ///This \ref concept::ReadMap "read only map" returns the sum of the
   229   ///given map and a constant value.
   230   ///Its \c Key and \c Value is inherited from \c M.
   231   ///
   232   ///Actually,
   233   ///\code
   234   ///  ShiftMap<X> sh(x,v);
   235   ///\endcode
   236   ///it is equivalent with
   237   ///\code
   238   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   239   ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   240   ///\endcode
   241   template<class M> 
   242   class ShiftMap
   243   {
   244     const M &m;
   245     typename M::Value v;
   246   public:
   247     typedef typename M::Key Key;
   248     typedef typename M::Value Value;
   249 
   250     ///Constructor
   251 
   252     ///Constructor
   253     ///\param _m is the undelying map
   254     ///\param _v is the shift value
   255     ShiftMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
   256     Value operator[](Key k) const {return m[k]+v;}
   257   };
   258   
   259   ///Returns an \ref ShiftMap class
   260 
   261   ///This function just returns an \ref ShiftMap class.
   262   ///\relates ShiftMap
   263   ///\todo A better name is required.
   264   template<class M> 
   265   inline ShiftMap<M> shiftMap(const M &m,const typename M::Value &v) 
   266   {
   267     return ShiftMap<M>(m,v);
   268   }
   269 
   270   ///Difference of two maps
   271 
   272   ///This \ref concept::ReadMap "read only map" returns the difference
   273   ///of the values returned by the two
   274   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   275   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   276 
   277   template<class M1,class M2> 
   278   class SubMap
   279   {
   280     const M1 &m1;
   281     const M2 &m2;
   282   public:
   283     typedef typename M1::Key Key;
   284     typedef typename M1::Value Value;
   285 
   286     ///Constructor
   287 
   288     ///\e
   289     ///
   290     SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   291     Value operator[](Key k) const {return m1[k]-m2[k];}
   292   };
   293   
   294   ///Returns a \ref SubMap class
   295 
   296   ///This function just returns a \ref SubMap class.
   297   ///
   298   ///\relates SubMap
   299   template<class M1,class M2> 
   300   inline SubMap<M1,M2> subMap(const M1 &m1,const M2 &m2) 
   301   {
   302     return SubMap<M1,M2>(m1,m2);
   303   }
   304 
   305   ///Product of two maps
   306 
   307   ///This \ref concept::ReadMap "read only map" returns the product of the
   308   ///values returned by the two
   309   ///given
   310   ///maps. Its \c Key and \c Value will be inherited from \c M1.
   311   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   312 
   313   template<class M1,class M2> 
   314   class MulMap
   315   {
   316     const M1 &m1;
   317     const M2 &m2;
   318   public:
   319     typedef typename M1::Key Key;
   320     typedef typename M1::Value Value;
   321 
   322     ///Constructor
   323 
   324     ///\e
   325     ///
   326     MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   327     Value operator[](Key k) const {return m1[k]*m2[k];}
   328   };
   329   
   330   ///Returns a \ref MulMap class
   331 
   332   ///This function just returns a \ref MulMap class.
   333   ///\relates MulMap
   334   template<class M1,class M2> 
   335   inline MulMap<M1,M2> mulMap(const M1 &m1,const M2 &m2) 
   336   {
   337     return MulMap<M1,M2>(m1,m2);
   338   }
   339  
   340   ///Scale a maps with a constant.
   341 
   342   ///This \ref concept::ReadMap "read only map" returns the value of the
   343   ///given map multipied with a constant value.
   344   ///Its \c Key and \c Value is inherited from \c M.
   345   ///
   346   ///Actually,
   347   ///\code
   348   ///  ScaleMap<X> sc(x,v);
   349   ///\endcode
   350   ///it is equivalent with
   351   ///\code
   352   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   353   ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
   354   ///\endcode
   355   template<class M> 
   356   class ScaleMap
   357   {
   358     const M &m;
   359     typename M::Value v;
   360   public:
   361     typedef typename M::Key Key;
   362     typedef typename M::Value Value;
   363 
   364     ///Constructor
   365 
   366     ///Constructor
   367     ///\param _m is the undelying map
   368     ///\param _v is the scaling value
   369     ScaleMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
   370     Value operator[](Key k) const {return m[k]*v;}
   371   };
   372   
   373   ///Returns an \ref ScaleMap class
   374 
   375   ///This function just returns an \ref ScaleMap class.
   376   ///\relates ScaleMap
   377   ///\todo A better name is required.
   378   template<class M> 
   379   inline ScaleMap<M> scaleMap(const M &m,const typename M::Value &v) 
   380   {
   381     return ScaleMap<M>(m,v);
   382   }
   383 
   384   ///Quotient of two maps
   385 
   386   ///This \ref concept::ReadMap "read only map" returns the quotient of the
   387   ///values returned by the two
   388   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   389   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   390 
   391   template<class M1,class M2> 
   392   class DivMap
   393   {
   394     const M1 &m1;
   395     const M2 &m2;
   396   public:
   397     typedef typename M1::Key Key;
   398     typedef typename M1::Value Value;
   399 
   400     ///Constructor
   401 
   402     ///\e
   403     ///
   404     DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   405     Value operator[](Key k) const {return m1[k]/m2[k];}
   406   };
   407   
   408   ///Returns a \ref DivMap class
   409 
   410   ///This function just returns a \ref DivMap class.
   411   ///\relates DivMap
   412   template<class M1,class M2> 
   413   inline DivMap<M1,M2> divMap(const M1 &m1,const M2 &m2) 
   414   {
   415     return DivMap<M1,M2>(m1,m2);
   416   }
   417   
   418   ///Composition of two maps
   419 
   420   ///This \ref concept::ReadMap "read only map" returns the composition of
   421   ///two
   422   ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
   423   ///of \c M2,
   424   ///then for
   425   ///\code
   426   ///  ComposeMap<M1,M2> cm(m1,m2);
   427   ///\endcode
   428   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
   429   ///
   430   ///Its \c Key is inherited from \c M2 and its \c Value is from
   431   ///\c M1.
   432   ///The \c M2::Value must be convertible to \c M1::Key.
   433   ///\todo Check the requirements.
   434 
   435   template<class M1,class M2> 
   436   class ComposeMap
   437   {
   438     const M1 &m1;
   439     const M2 &m2;
   440   public:
   441     typedef typename M2::Key Key;
   442     typedef typename M1::Value Value;
   443 
   444     ///Constructor
   445 
   446     ///\e
   447     ///
   448     ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   449     Value operator[](Key k) const {return m1[m2[k]];}
   450   };
   451   
   452   ///Returns a \ref ComposeMap class
   453 
   454   ///This function just returns a \ref ComposeMap class.
   455   ///\relates ComposeMap
   456   template<class M1,class M2> 
   457   inline ComposeMap<M1,M2> composeMap(const M1 &m1,const M2 &m2) 
   458   {
   459     return ComposeMap<M1,M2>(m1,m2);
   460   }
   461 
   462   ///Negative value of a map
   463 
   464   ///This \ref concept::ReadMap "read only map" returns the negative
   465   ///value of the
   466   ///value returned by the
   467   ///given map. Its \c Key and \c Value will be inherited from \c M.
   468   ///The unary \c - operator must be defined for \c Value, of course.
   469 
   470   template<class M> 
   471   class NegMap
   472   {
   473     const M &m;
   474   public:
   475     typedef typename M::Key Key;
   476     typedef typename M::Value Value;
   477 
   478     ///Constructor
   479 
   480     ///\e
   481     ///
   482     NegMap(const M &_m) : m(_m) {};
   483     Value operator[](Key k) const {return -m[k];}
   484   };
   485   
   486   ///Returns a \ref NegMap class
   487 
   488   ///This function just returns a \ref NegMap class.
   489   ///\relates NegMap
   490   template<class M> 
   491   inline NegMap<M> negMap(const M &m) 
   492   {
   493     return NegMap<M>(m);
   494   }
   495 
   496 
   497   ///Absolute value of a map
   498 
   499   ///This \ref concept::ReadMap "read only map" returns the absolute value
   500   ///of the
   501   ///value returned by the
   502   ///given map. Its \c Key and \c Value will be inherited
   503   ///from <tt>M</tt>. <tt>Value</tt>
   504   ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
   505   ///operator must be defined for it, of course.
   506   ///
   507   ///\bug We need a unified way to handle the situation below:
   508   ///\code
   509   ///  struct _UnConvertible {};
   510   ///  template<class A> inline A t_abs(A a) {return _UnConvertible();}
   511   ///  template<> inline int t_abs<>(int n) {return abs(n);}
   512   ///  template<> inline long int t_abs<>(long int n) {return labs(n);}
   513   ///  template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
   514   ///  template<> inline float t_abs<>(float n) {return fabsf(n);}
   515   ///  template<> inline double t_abs<>(double n) {return fabs(n);}
   516   ///  template<> inline long double t_abs<>(long double n) {return fabsl(n);}
   517   ///\endcode
   518   
   519 
   520   template<class M> 
   521   class AbsMap
   522   {
   523     const M &m;
   524   public:
   525     typedef typename M::Key Key;
   526     typedef typename M::Value Value;
   527 
   528     ///Constructor
   529 
   530     ///\e
   531     ///
   532     AbsMap(const M &_m) : m(_m) {};
   533     Value operator[](Key k) const {Value tmp=m[k]; return tmp>=0?tmp:-tmp;}
   534   };
   535   
   536   ///Returns a \ref AbsMap class
   537 
   538   ///This function just returns a \ref AbsMap class.
   539   ///\relates AbsMap
   540   template<class M> 
   541   inline AbsMap<M> absMap(const M &m) 
   542   {
   543     return AbsMap<M>(m);
   544   }
   545 
   546   ///Converts an STL style functor to a a map
   547 
   548   ///This \ref concept::ReadMap "read only map" returns the value
   549   ///of a
   550   ///given map.
   551   ///
   552   ///Template parameters \c K and \c V will become its
   553   ///\c Key and \c Value. They must be given explicitely
   554   ///because a functor does not provide such typedefs.
   555   ///
   556   ///Parameter \c F is the type of the used functor.
   557   
   558 
   559   template<class K,class V,class F> 
   560   class FunctorMap
   561   {
   562     const F &f;
   563   public:
   564     typedef K Key;
   565     typedef V Value;
   566 
   567     ///Constructor
   568 
   569     ///\e
   570     ///
   571     FunctorMap(const F &_f) : f(_f) {};
   572     Value operator[](Key k) const {return f(k);}
   573   };
   574   
   575   ///Returns a \ref FunctorMap class
   576 
   577   ///This function just returns a \ref FunctorMap class.
   578   ///
   579   ///The third template parameter isn't necessary to be given.
   580   ///\relates FunctorMap
   581   template<class K,class V, class F>
   582   inline FunctorMap<K,V,F> functorMap(const F &f) 
   583   {
   584     return FunctorMap<K,V,F>(f);
   585   }
   586 
   587   ///Converts a map to an STL style functor
   588 
   589   ///This class Converts a map to an STL style functor.
   590   ///that is it provides an <tt>operator()</tt> to read its values.
   591   ///
   592   ///For the sake of convenience it also works as a ususal map, i.e
   593   ///<tt>operator[]</tt> and the \c Key and \c Valu typedefs also exist.
   594 
   595   template<class M> 
   596   class MapFunctor
   597   {
   598     const M &m;
   599   public:
   600     typedef typename M::Key Key;
   601     typedef typename M::Value Value;
   602 
   603     ///Constructor
   604 
   605     ///\e
   606     ///
   607     MapFunctor(const M &_m) : m(_m) {};
   608     ///Returns a value of the map
   609     
   610     ///\e
   611     ///
   612     Value operator()(Key k) const {return m[k];}
   613     ///\e
   614     ///
   615     Value operator[](Key k) const {return m[k];}
   616   };
   617   
   618   ///Returns a \ref MapFunctor class
   619 
   620   ///This function just returns a \ref MapFunctor class.
   621   ///\relates MapFunctor
   622   template<class M> 
   623   inline MapFunctor<M> mapFunctor(const M &m) 
   624   {
   625     return MapFunctor<M>(m);
   626   }
   627 
   628 
   629   /// @}
   630   
   631 }
   632 
   633 
   634 #endif // LEMON_MAPS_H