Docs.
2 #ifndef HUGO_MINLENGTHPATHS_H
3 #define HUGO_MINLENGTHPATHS_H
7 ///\brief An algorithm for finding k paths of minimal total length.
11 #include <graph_wrapper.h>
21 ///\brief Implementation of an algorithm for finding k paths between 2 nodes
22 /// of minimal total length
24 /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements
25 /// an algorithm which finds k edge-disjoint paths
26 /// from a given source node to a given target node in an
27 /// edge-weighted directed graph having minimal total weigth (length).
29 ///\author Attila Bernath
30 template <typename Graph, typename LengthMap>
31 class MinLengthPaths {
33 typedef typename LengthMap::ValueType Length;
35 typedef typename Graph::Node Node;
36 typedef typename Graph::NodeIt NodeIt;
37 typedef typename Graph::Edge Edge;
38 typedef typename Graph::OutEdgeIt OutEdgeIt;
39 typedef typename Graph::EdgeMap<int> EdgeIntMap;
41 typedef ConstMap<Edge,int> ConstMap;
43 typedef ResGraphWrapper<const Graph,int,ConstMap,EdgeIntMap> ResGraphType;
47 typedef typename ResGraphType::NodeMap<Length> NodeMap;
48 const ResGraphType& G;
49 const EdgeIntMap& rev;
53 typedef typename LengthMap::KeyType KeyType;
54 typedef typename LengthMap::ValueType ValueType;
56 ValueType operator[](typename ResGraphType::Edge e) const {
57 //if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){
58 // std::cout<<"Negative length!!"<<std::endl;
60 return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);
63 ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev,
64 const LengthMap &o, const NodeMap &p) :
65 G(_G), rev(_rev), ol(o), pot(p){};
70 const LengthMap& length;
74 //The value is 1 iff the edge is reversed.
75 //If the algorithm has finished, the edges of the seeked paths are
76 //exactly those that are reversed
79 //Container to store found paths
80 std::vector< std::vector<Edge> > paths;
85 MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G),
86 length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ }
89 ///Runs the algorithm.
91 ///Runs the algorithm.
92 ///Returns k if there are at least k edge-disjoint paths from s to t.
93 ///Otherwise it returns the number of found edge-disjoint paths from s to t.
94 int run(Node s, Node t, int k) {
95 ConstMap const1map(1);
97 //We need a residual graph, in which some of the edges are reversed
98 ResGraphType res_graph(G, const1map, reversed);
100 //Initialize the copy of the Dijkstra potential to zero
101 typename ResGraphType::NodeMap<Length> dijkstra_dist(res_graph);
102 ModLengthMap mod_length(res_graph, reversed, length, dijkstra_dist);
104 Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
109 if (!dijkstra.reached(t)){
110 //There are no k paths from s to t
115 //We have to copy the potential
116 typename ResGraphType::NodeIt n;
117 for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
118 dijkstra_dist[n] += dijkstra.distMap()[n];
123 //Reversing the sortest path
127 e = dijkstra.pred(n);
128 n = dijkstra.predNode(n);
129 reversed[e] = 1-reversed[e];
135 //Let's find the paths
136 //We put the paths into vectors (just for now). In the meantime we lose
137 //the information stored in 'reversed'
138 //We suppose the lengths to be positive now.
141 for (int j=0; j<i; ++j){
150 while (!reversed[e]){
154 paths[j].push_back(e);
155 reversed[e] = 1-reversed[e];
164 }; //class MinLengthPaths
170 #endif //HUGO_MINLENGTHPATHS_H