Fix VPATH builds.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_GOLDBERG_TARJAN_H
20 #define LEMON_GOLDBERG_TARJAN_H
25 #include <lemon/error.h>
26 #include <lemon/bits/invalid.h>
27 #include <lemon/tolerance.h>
28 #include <lemon/maps.h>
29 #include <lemon/graph_utils.h>
30 #include <lemon/dynamic_tree.h>
35 /// \brief Implementation of the preflow algorithm.
39 /// \brief Default traits class of GoldbergTarjan class.
41 /// Default traits class of GoldbergTarjan class.
42 /// \param _Graph Graph type.
43 /// \param _CapacityMap Type of capacity map.
44 template <typename _Graph, typename _CapacityMap>
45 struct GoldbergTarjanDefaultTraits {
47 /// \brief The graph type the algorithm runs on.
50 /// \brief The type of the map that stores the edge capacities.
52 /// The type of the map that stores the edge capacities.
53 /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
54 typedef _CapacityMap CapacityMap;
56 /// \brief The type of the length of the edges.
57 typedef typename CapacityMap::Value Value;
59 /// \brief The map type that stores the flow values.
61 /// The map type that stores the flow values.
62 /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
63 typedef typename Graph::template EdgeMap<Value> FlowMap;
65 /// \brief Instantiates a FlowMap.
67 /// This function instantiates a \ref FlowMap.
68 /// \param graph The graph, to which we would like to define the flow map.
69 static FlowMap* createFlowMap(const Graph& graph) {
70 return new FlowMap(graph);
73 /// \brief The eleavator type used by GoldbergTarjan algorithm.
75 /// The elevator type used by GoldbergTarjan algorithm.
78 /// \sa LinkedElevator
79 typedef LinkedElevator<Graph, typename Graph::Node> Elevator;
81 /// \brief Instantiates an Elevator.
83 /// This function instantiates a \ref Elevator.
84 /// \param graph The graph, to which we would like to define the elevator.
85 /// \param max_level The maximum level of the elevator.
86 static Elevator* createElevator(const Graph& graph, int max_level) {
87 return new Elevator(graph, max_level);
90 /// \brief The tolerance used by the algorithm
92 /// The tolerance used by the algorithm to handle inexact computation.
93 typedef Tolerance<Value> Tolerance;
98 /// \brief Goldberg-Tarjan algorithms class.
100 /// This class provides an implementation of the \e GoldbergTarjan
101 /// \e algorithm producing a flow of maximum value in a directed
102 /// graph. The GoldbergTarjan algorithm is a theoretical improvement
103 /// of the Goldberg's \ref Preflow "preflow" algorithm by using the \ref
104 /// DynamicTree "dynamic tree" data structure of Sleator and Tarjan.
106 /// The original preflow algorithm with \e highest \e label
107 /// heuristic has \f$O(n^2\sqrt{e})\f$ or with \e FIFO heuristic has
108 /// \f$O(n^3)\f$ time complexity. The current algorithm improved
109 /// this complexity to \f$O(nm\log(\frac{n^2}{m}))\f$. The algorithm
110 /// builds limited size dynamic trees on the residual graph, which
111 /// can be used to make multilevel push operations and gives a
112 /// better bound on the number of non-saturating pushes.
114 /// \param Graph The directed graph type the algorithm runs on.
115 /// \param CapacityMap The capacity map type.
116 /// \param _Traits Traits class to set various data types used by
117 /// the algorithm. The default traits class is \ref
118 /// GoldbergTarjanDefaultTraits. See \ref
119 /// GoldbergTarjanDefaultTraits for the documentation of a
120 /// Goldberg-Tarjan traits class.
122 /// \author Tamas Hamori and Balazs Dezso
124 template <typename _Graph, typename _CapacityMap, typename _Traits>
126 template <typename _Graph,
127 typename _CapacityMap = typename _Graph::template EdgeMap<int>,
129 GoldbergTarjanDefaultTraits<_Graph, _CapacityMap> >
131 class GoldbergTarjan {
134 typedef _Traits Traits;
135 typedef typename Traits::Graph Graph;
136 typedef typename Traits::CapacityMap CapacityMap;
137 typedef typename Traits::Value Value;
139 typedef typename Traits::FlowMap FlowMap;
140 typedef typename Traits::Elevator Elevator;
141 typedef typename Traits::Tolerance Tolerance;
145 GRAPH_TYPEDEFS(typename Graph);
147 typedef typename Graph::template NodeMap<Node> NodeNodeMap;
148 typedef typename Graph::template NodeMap<int> IntNodeMap;
150 typedef typename Graph::template NodeMap<Edge> EdgeNodeMap;
151 typedef typename Graph::template EdgeMap<Edge> EdgeEdgeMap;
153 typedef typename std::vector<Node> VecNode;
155 typedef DynamicTree<Value,IntNodeMap,Tolerance> DynTree;
158 const CapacityMap* _capacity;
159 int _node_num; //the number of nodes of G
170 typedef typename Graph::template NodeMap<Value> ExcessMap;
173 Tolerance _tolerance;
177 // constant for treesize
178 static const double _tree_bound = 2;
181 //tags for the dynamic tree
183 //datastructure of dyanamic tree
184 IntNodeMap *_dt_index;
185 //datastrucure for solution of the communication between the two class
186 EdgeNodeMap *_dt_edges;
187 //nodeMap for storing the outgoing edge from the node in the tree
189 //max of the type Value
190 const Value _max_value;
194 typedef GoldbergTarjan Create;
196 ///\name Named template parameters
200 template <typename _FlowMap>
201 struct DefFlowMapTraits : public Traits {
202 typedef _FlowMap FlowMap;
203 static FlowMap *createFlowMap(const Graph&) {
204 throw UninitializedParameter();
208 /// \brief \ref named-templ-param "Named parameter" for setting
211 /// \ref named-templ-param "Named parameter" for setting FlowMap
213 template <typename _FlowMap>
215 : public GoldbergTarjan<Graph, CapacityMap,
216 DefFlowMapTraits<_FlowMap> > {
217 typedef GoldbergTarjan<Graph, CapacityMap,
218 DefFlowMapTraits<_FlowMap> > Create;
221 template <typename _Elevator>
222 struct DefElevatorTraits : public Traits {
223 typedef _Elevator Elevator;
224 static Elevator *createElevator(const Graph&, int) {
225 throw UninitializedParameter();
229 /// \brief \ref named-templ-param "Named parameter" for setting
232 /// \ref named-templ-param "Named parameter" for setting Elevator
234 template <typename _Elevator>
236 : public GoldbergTarjan<Graph, CapacityMap,
237 DefElevatorTraits<_Elevator> > {
238 typedef GoldbergTarjan<Graph, CapacityMap,
239 DefElevatorTraits<_Elevator> > Create;
242 template <typename _Elevator>
243 struct DefStandardElevatorTraits : public Traits {
244 typedef _Elevator Elevator;
245 static Elevator *createElevator(const Graph& graph, int max_level) {
246 return new Elevator(graph, max_level);
250 /// \brief \ref named-templ-param "Named parameter" for setting
253 /// \ref named-templ-param "Named parameter" for setting Elevator
254 /// type. The Elevator should be standard constructor interface, ie.
255 /// the graph and the maximum level should be passed to it.
256 template <typename _Elevator>
257 struct DefStandardElevator
258 : public GoldbergTarjan<Graph, CapacityMap,
259 DefStandardElevatorTraits<_Elevator> > {
260 typedef GoldbergTarjan<Graph, CapacityMap,
261 DefStandardElevatorTraits<_Elevator> > Create;
265 ///\ref Exception for the case when s=t.
267 ///\ref Exception for the case when the source equals the target.
268 class InvalidArgument : public lemon::LogicError {
270 virtual const char* what() const throw() {
271 return "lemon::GoldbergTarjan::InvalidArgument";
281 /// \brief The constructor of the class.
283 /// The constructor of the class.
284 /// \param graph The directed graph the algorithm runs on.
285 /// \param capacity The capacity of the edges.
286 /// \param source The source node.
287 /// \param target The target node.
288 /// Except the graph, all of these parameters can be reset by
289 /// calling \ref source, \ref target, \ref capacityMap and \ref
291 GoldbergTarjan(const Graph& graph, const CapacityMap& capacity,
292 Node source, Node target)
293 : _graph(graph), _capacity(&capacity),
294 _node_num(), _source(source), _target(target),
295 _flow(0), _local_flow(false),
296 _level(0), _local_level(false),
297 _excess(0), _tolerance(),
298 _phase(), _max_tree_size(),
299 _dt(0), _dt_index(0), _dt_edges(0),
300 _max_value(std::numeric_limits<Value>::max()) {
301 if (_source == _target) throw InvalidArgument();
304 /// \brief Destrcutor.
311 /// \brief Sets the capacity map.
313 /// Sets the capacity map.
314 /// \return \c (*this)
315 GoldbergTarjan& capacityMap(const CapacityMap& map) {
320 /// \brief Sets the flow map.
322 /// Sets the flow map.
323 /// \return \c (*this)
324 GoldbergTarjan& flowMap(FlowMap& map) {
333 /// \brief Returns the flow map.
335 /// \return The flow map.
336 const FlowMap& flowMap() {
340 /// \brief Sets the elevator.
342 /// Sets the elevator.
343 /// \return \c (*this)
344 GoldbergTarjan& elevator(Elevator& elevator) {
347 _local_level = false;
353 /// \brief Returns the elevator.
355 /// \return The elevator.
356 const Elevator& elevator() {
360 /// \brief Sets the source node.
362 /// Sets the source node.
363 /// \return \c (*this)
364 GoldbergTarjan& source(const Node& node) {
369 /// \brief Sets the target node.
371 /// Sets the target node.
372 /// \return \c (*this)
373 GoldbergTarjan& target(const Node& node) {
378 /// \brief Sets the tolerance used by algorithm.
380 /// Sets the tolerance used by algorithm.
381 GoldbergTarjan& tolerance(const Tolerance& tolerance) const {
382 _tolerance = tolerance;
384 _dt->tolerance(_tolerance);
389 /// \brief Returns the tolerance used by algorithm.
391 /// Returns the tolerance used by algorithm.
392 const Tolerance& tolerance() const {
399 void createStructures() {
400 _node_num = countNodes(_graph);
402 _max_tree_size = int((double(_node_num) * double(_node_num)) /
403 double(countEdges(_graph)));
406 _flow = Traits::createFlowMap(_graph);
410 _level = Traits::createElevator(_graph, _node_num);
414 _excess = new ExcessMap(_graph);
416 if (!_dt_index && !_dt) {
417 _dt_index = new IntNodeMap(_graph);
418 _dt = new DynTree(*_dt_index, _tolerance);
421 _dt_edges = new EdgeNodeMap(_graph);
425 void destroyStructures() {
446 bool sendOut(Node n, Value& excess) {
448 Node w = _dt->findRoot(n);
453 Node u = _dt->findCost(n, rem);
455 if (_tolerance.positive(rem) && !_level->active(w) && w != _target) {
459 if (!_tolerance.less(rem, excess)) {
460 _dt->addCost(n, - excess);
461 _excess->set(w, (*_excess)[w] + excess);
467 _dt->addCost(n, - rem);
470 _excess->set(w, (*_excess)[w] + rem);
473 _dt->addCost(u, _max_value);
475 Edge e = (*_dt_edges)[u];
476 _dt_edges->set(u, INVALID);
478 if (u == _graph.source(e)) {
479 _flow->set(e, (*_capacity)[e]);
484 w = _dt->findRoot(n);
489 bool sendIn(Node n, Value& excess) {
491 Node w = _dt->findRoot(n);
496 Node u = _dt->findCost(n, rem);
498 if (_tolerance.positive(rem) && !_level->active(w) && w != _source) {
502 if (!_tolerance.less(rem, excess)) {
503 _dt->addCost(n, - excess);
504 _excess->set(w, (*_excess)[w] + excess);
510 _dt->addCost(n, - rem);
513 _excess->set(w, (*_excess)[w] + rem);
516 _dt->addCost(u, _max_value);
518 Edge e = (*_dt_edges)[u];
519 _dt_edges->set(u, INVALID);
521 if (u == _graph.source(e)) {
522 _flow->set(e, (*_capacity)[e]);
527 w = _dt->findRoot(n);
532 void cutChildren(Node n) {
534 for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
536 Node v = _graph.target(e);
538 if ((*_dt_edges)[v] != INVALID && (*_dt_edges)[v] == e) {
540 _dt_edges->set(v, INVALID);
542 _dt->findCost(v, rem);
543 _dt->addCost(v, - rem);
544 _dt->addCost(v, _max_value);
550 for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
552 Node v = _graph.source(e);
554 if ((*_dt_edges)[v] != INVALID && (*_dt_edges)[v] == e) {
556 _dt_edges->set(v, INVALID);
558 _dt->findCost(v, rem);
559 _dt->addCost(v, - rem);
560 _dt->addCost(v, _max_value);
561 _flow->set(e, (*_capacity)[e] - rem);
567 void extractTrees() {
568 for (NodeIt n(_graph); n != INVALID; ++n) {
570 Node w = _dt->findRoot(n);
575 Node u = _dt->findCost(n, rem);
578 _dt->addCost(u, - rem);
579 _dt->addCost(u, _max_value);
581 Edge e = (*_dt_edges)[u];
582 _dt_edges->set(u, INVALID);
584 if (u == _graph.source(e)) {
585 _flow->set(e, (*_capacity)[e] - rem);
590 w = _dt->findRoot(n);
597 /// \name Execution control The simplest way to execute the
598 /// algorithm is to use one of the member functions called \c
601 /// If you need more control on initial solution or
602 /// execution then you have to call one \ref init() function and then
603 /// the startFirstPhase() and if you need the startSecondPhase().
607 /// \brief Initializes the internal data structures.
609 /// Initializes the internal data structures.
614 for (NodeIt n(_graph); n != INVALID; ++n) {
618 for (EdgeIt e(_graph); e != INVALID; ++e) {
623 for (NodeIt v(_graph); v != INVALID; ++v) {
624 (*_dt_edges)[v] = INVALID;
626 _dt->addCost(v, _max_value);
629 typename Graph::template NodeMap<bool> reached(_graph, false);
632 _level->initAddItem(_target);
634 std::vector<Node> queue;
635 reached.set(_source, true);
637 queue.push_back(_target);
638 reached.set(_target, true);
639 while (!queue.empty()) {
640 _level->initNewLevel();
641 std::vector<Node> nqueue;
642 for (int i = 0; i < int(queue.size()); ++i) {
644 for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
645 Node u = _graph.source(e);
646 if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
647 reached.set(u, true);
648 _level->initAddItem(u);
655 _level->initFinish();
657 for (OutEdgeIt e(_graph, _source); e != INVALID; ++e) {
658 if (_tolerance.positive((*_capacity)[e])) {
659 Node u = _graph.target(e);
660 if ((*_level)[u] == _level->maxLevel()) continue;
661 _flow->set(e, (*_capacity)[e]);
662 _excess->set(u, (*_excess)[u] + (*_capacity)[e]);
663 if (u != _target && !_level->active(u)) {
670 /// \brief Starts the first phase of the preflow algorithm.
672 /// The preflow algorithm consists of two phases, this method runs
673 /// the first phase. After the first phase the maximum flow value
674 /// and a minimum value cut can already be computed, although a
675 /// maximum flow is not yet obtained. So after calling this method
676 /// \ref flowValue() returns the value of a maximum flow and \ref
677 /// minCut() returns a minimum cut.
678 /// \pre One of the \ref init() functions should be called.
679 void startFirstPhase() {
683 while ((n = _level->highestActive()) != INVALID) {
684 Value excess = (*_excess)[n];
685 int level = _level->highestActiveLevel();
686 int new_level = _level->maxLevel();
688 if (_dt->findRoot(n) != n) {
689 if (sendOut(n, excess)) goto no_more_push;
692 for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
693 Value rem = (*_capacity)[e] - (*_flow)[e];
694 Node v = _graph.target(e);
696 if (!_tolerance.positive(rem) && (*_dt_edges)[v] != e) continue;
698 if ((*_level)[v] < level) {
700 if (_dt->findSize(n) + _dt->findSize(v) <
701 _tree_bound * _max_tree_size) {
702 _dt->addCost(n, -_max_value);
703 _dt->addCost(n, rem);
705 _dt_edges->set(n, e);
706 if (sendOut(n, excess)) goto no_more_push;
708 if (!_level->active(v) && v != _target) {
711 if (!_tolerance.less(rem, excess)) {
712 _flow->set(e, (*_flow)[e] + excess);
713 _excess->set(v, (*_excess)[v] + excess);
718 _excess->set(v, (*_excess)[v] + rem);
719 _flow->set(e, (*_capacity)[e]);
722 } else if (new_level > (*_level)[v]) {
723 new_level = (*_level)[v];
727 for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
728 Value rem = (*_flow)[e];
729 Node v = _graph.source(e);
730 if (!_tolerance.positive(rem) && (*_dt_edges)[v] != e) continue;
732 if ((*_level)[v] < level) {
734 if (_dt->findSize(n) + _dt->findSize(v) <
735 _tree_bound * _max_tree_size) {
736 _dt->addCost(n, - _max_value);
737 _dt->addCost(n, rem);
739 _dt_edges->set(n, e);
740 if (sendOut(n, excess)) goto no_more_push;
742 if (!_level->active(v) && v != _target) {
745 if (!_tolerance.less(rem, excess)) {
746 _flow->set(e, (*_flow)[e] - excess);
747 _excess->set(v, (*_excess)[v] + excess);
752 _excess->set(v, (*_excess)[v] + rem);
756 } else if (new_level > (*_level)[v]) {
757 new_level = (*_level)[v];
763 _excess->set(n, excess);
767 if (new_level + 1 < _level->maxLevel()) {
768 _level->liftHighestActive(new_level + 1);
770 _level->liftHighestActiveToTop();
772 if (_level->emptyLevel(level)) {
773 _level->liftToTop(level);
776 _level->deactivate(n);
782 /// \brief Starts the second phase of the preflow algorithm.
784 /// The preflow algorithm consists of two phases, this method runs
785 /// the second phase. After calling \ref init() and \ref
786 /// startFirstPhase() and then \ref startSecondPhase(), \ref
787 /// flowMap() return a maximum flow, \ref flowValue() returns the
788 /// value of a maximum flow, \ref minCut() returns a minimum cut
789 /// \pre The \ref init() and startFirstPhase() functions should be
791 void startSecondPhase() {
794 typename Graph::template NodeMap<bool> reached(_graph, false);
795 for (NodeIt n(_graph); n != INVALID; ++n) {
796 reached.set(n, (*_level)[n] < _level->maxLevel());
800 _level->initAddItem(_source);
802 std::vector<Node> queue;
803 queue.push_back(_source);
804 reached.set(_source, true);
806 while (!queue.empty()) {
807 _level->initNewLevel();
808 std::vector<Node> nqueue;
809 for (int i = 0; i < int(queue.size()); ++i) {
811 for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
812 Node v = _graph.target(e);
813 if (!reached[v] && _tolerance.positive((*_flow)[e])) {
814 reached.set(v, true);
815 _level->initAddItem(v);
819 for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
820 Node u = _graph.source(e);
822 _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
823 reached.set(u, true);
824 _level->initAddItem(u);
831 _level->initFinish();
833 for (NodeIt n(_graph); n != INVALID; ++n) {
835 _level->markToBottom(n);
836 } else if ((*_excess)[n] > 0 && _target != n) {
843 while ((n = _level->highestActive()) != INVALID) {
844 Value excess = (*_excess)[n];
845 int level = _level->highestActiveLevel();
846 int new_level = _level->maxLevel();
848 if (_dt->findRoot(n) != n) {
849 if (sendIn(n, excess)) goto no_more_push;
852 for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
853 Value rem = (*_capacity)[e] - (*_flow)[e];
854 Node v = _graph.target(e);
856 if (!_tolerance.positive(rem) && (*_dt_edges)[v] != e) continue;
858 if ((*_level)[v] < level) {
860 if (_dt->findSize(n) + _dt->findSize(v) <
861 _tree_bound * _max_tree_size) {
862 _dt->addCost(n, -_max_value);
863 _dt->addCost(n, rem);
865 _dt_edges->set(n, e);
866 if (sendIn(n, excess)) goto no_more_push;
868 if (!_level->active(v) && v != _source) {
871 if (!_tolerance.less(rem, excess)) {
872 _flow->set(e, (*_flow)[e] + excess);
873 _excess->set(v, (*_excess)[v] + excess);
878 _excess->set(v, (*_excess)[v] + rem);
879 _flow->set(e, (*_capacity)[e]);
882 } else if (new_level > (*_level)[v]) {
883 new_level = (*_level)[v];
887 for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
888 Value rem = (*_flow)[e];
889 Node v = _graph.source(e);
890 if (!_tolerance.positive(rem) && (*_dt_edges)[v] != e) continue;
892 if ((*_level)[v] < level) {
894 if (_dt->findSize(n) + _dt->findSize(v) <
895 _tree_bound * _max_tree_size) {
896 _dt->addCost(n, - _max_value);
897 _dt->addCost(n, rem);
899 _dt_edges->set(n, e);
900 if (sendIn(n, excess)) goto no_more_push;
902 if (!_level->active(v) && v != _source) {
905 if (!_tolerance.less(rem, excess)) {
906 _flow->set(e, (*_flow)[e] - excess);
907 _excess->set(v, (*_excess)[v] + excess);
912 _excess->set(v, (*_excess)[v] + rem);
916 } else if (new_level > (*_level)[v]) {
917 new_level = (*_level)[v];
923 _excess->set(n, excess);
927 if (new_level + 1 < _level->maxLevel()) {
928 _level->liftHighestActive(new_level + 1);
930 _level->liftHighestActiveToTop();
932 if (_level->emptyLevel(level)) {
933 _level->liftToTop(level);
936 _level->deactivate(n);
942 /// \brief Runs the Goldberg-Tarjan algorithm.
944 /// Runs the Goldberg-Tarjan algorithm.
945 /// \note pf.run() is just a shortcut of the following code.
948 /// pf.startFirstPhase();
949 /// pf.startSecondPhase();
957 /// \brief Runs the Goldberg-Tarjan algorithm to compute the minimum cut.
959 /// Runs the Goldberg-Tarjan algorithm to compute the minimum cut.
960 /// \note pf.runMinCut() is just a shortcut of the following code.
963 /// pf.startFirstPhase();
972 /// \name Query Functions
973 /// The result of the Goldberg-Tarjan algorithm can be obtained
974 /// using these functions.
976 /// Before the use of these functions, either run() or start() must
981 /// \brief Returns the value of the maximum flow.
983 /// Returns the value of the maximum flow by returning the excess
984 /// of the target node \c t. This value equals to the value of
985 /// the maximum flow already after the first phase.
986 Value flowValue() const {
987 return (*_excess)[_target];
990 /// \brief Returns true when the node is on the source side of minimum cut.
992 /// Returns true when the node is on the source side of minimum
993 /// cut. This method can be called both after running \ref
994 /// startFirstPhase() and \ref startSecondPhase().
995 bool minCut(const Node& node) const {
996 return ((*_level)[node] == _level->maxLevel()) == _phase;
999 /// \brief Returns a minimum value cut.
1001 /// Sets the \c cutMap to the characteristic vector of a minimum value
1002 /// cut. This method can be called both after running \ref
1003 /// startFirstPhase() and \ref startSecondPhase(). The result after second
1004 /// phase could be changed slightly if inexact computation is used.
1005 /// \pre The \c cutMap should be a bool-valued node-map.
1006 template <typename CutMap>
1007 void minCutMap(CutMap& cutMap) const {
1008 for (NodeIt n(_graph); n != INVALID; ++n) {
1009 cutMap.set(n, minCut(n));
1013 /// \brief Returns the flow on the edge.
1015 /// Sets the \c flowMap to the flow on the edges. This method can
1016 /// be called after the second phase of algorithm.
1017 Value flow(const Edge& edge) const {
1018 return (*_flow)[edge];