src/work/athos/minlengthpaths.h
author marci
Wed, 07 Apr 2004 11:02:00 +0000
changeset 313 30c5179f296b
parent 306 4d15193e3a5d
child 314 eabbe162e32e
permissions -rw-r--r--
marci makes makefile
     1 // -*- c++ -*-
     2 #ifndef HUGO_MINLENGTHPATHS_H
     3 #define HUGO_MINLENGTHPATHS_H
     4 
     5 ///\file
     6 ///\brief An algorithm for finding k paths of minimal total length.
     7 
     8 #include <iostream>
     9 #include <dijkstra.h>
    10 #include <graph_wrapper.h>
    11 #include <maps.h>
    12 
    13 namespace hugo {
    14 
    15 
    16   ///\brief Implementation of an algorithm for finding k paths between 2 nodes 
    17   /// of minimal total length 
    18   ///
    19   /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements
    20   /// an algorithm which finds k edge-disjoint paths
    21   /// from a given source node to a given target node in an
    22   /// edge-weighted directed graph having minimal total weigth (length).
    23 
    24   template <typename Graph, typename LengthMap>
    25   class MinLengthPaths {
    26 
    27     typedef typename LengthMap::ValueType Length;
    28 
    29     typedef typename Graph::Node Node;
    30     typedef typename Graph::NodeIt NodeIt;
    31     typedef typename Graph::Edge Edge;
    32     typedef typename Graph::OutEdgeIt OutEdgeIt;
    33     typedef typename Graph::EdgeMap<int> EdgeIntMap;
    34 
    35     typedef ConstMap<Edge,int> ConstMap;
    36 
    37     typedef ResGraphWrapper<const Graph,int,EdgeIntMap,ConstMap> ResGraphType;
    38 
    39 
    40     class ModLengthMap {   
    41       typedef typename ResGraphType::NodeMap<Length> NodeMap;
    42       const ResGraphType& G;
    43       const EdgeIntMap& rev;
    44       const LengthMap &ol;
    45       const NodeMap &pot;
    46     public :
    47       typedef typename LengthMap::KeyType KeyType;
    48       typedef typename LengthMap::ValueType ValueType;
    49 
    50       ValueType operator[](typename ResGraphType::Edge e) const {     
    51 	if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){
    52 	  ///\TODO This has to be removed
    53 	  std::cout<<"Negative length!!"<<std::endl;
    54 	}
    55 	return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    56       }     
    57 
    58       ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev, 
    59 		   const LengthMap &o,  const NodeMap &p) : 
    60 	G(_G), rev(_rev), ol(o), pot(p){}; 
    61     };
    62     
    63 
    64     const Graph& G;
    65     const LengthMap& length;
    66 
    67     //auxiliary variable
    68     //The value is 1 iff the edge is reversed
    69     EdgeIntMap reversed; 
    70 
    71     
    72   public :
    73 
    74 
    75     MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), 
    76       length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ }
    77 
    78     ///Runs the algorithm
    79     
    80     ///Runs the algorithm
    81     ///Returns k if there are at least k edge-disjoint paths from s to t.
    82     ///Otherwise it returns the number of edge-disjoint paths from s to t.
    83     int run(Node s, Node t, int k) {
    84       ConstMap const1map(1);
    85 
    86       ResGraphType res_graph(G, reversed, const1map);
    87 
    88       //Initialize the copy of the Dijkstra potential to zero
    89       typename ResGraphType::NodeMap<Length> dijkstra_dist(res_graph);
    90       ModLengthMap mod_length(res_graph, reversed, length, dijkstra_dist);
    91 
    92       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
    93       
    94       for (int i=0; i<k; ++i){
    95 	dijkstra.run(s);
    96 	if (!dijkstra.reached(t)){
    97 	  //There is no k path from s to t
    98 	  /// \TODO mit keresett itt ez a ++?
    99 	  return i;
   100 	};
   101 	
   102 	{
   103 	  //We have to copy the potential
   104 	  typename ResGraphType::NodeIt n;
   105 	  for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
   106 	      dijkstra_dist[n] += dijkstra.distMap()[n];
   107 	  }
   108 	}
   109 
   110 
   111 	//Reversing the sortest path
   112 	Node n=t;
   113 	Edge e;
   114 	while (n!=s){
   115 	  e = dijkstra.pred(n);
   116 	  n = dijkstra.predNode(n);
   117 	  reversed[e] = 1-reversed[e];
   118 	}
   119 
   120 	  
   121       }
   122       return k;
   123     }
   124 
   125 
   126 
   127 
   128 
   129   }; //class MinLengthPaths
   130 
   131 
   132 } //namespace hugo
   133 
   134 #endif //HUGO_MINLENGTHPATHS_H