lemon/cycle_canceling.h
author alpar
Thu, 23 Oct 2008 16:49:06 +0000
changeset 2626 324cfbf66a12
parent 2620 8f41a3129746
child 2629 84354c78b068
permissions -rw-r--r--
Adapt the doc generation to the hg repo
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CYCLE_CANCELING_H
    20 #define LEMON_CYCLE_CANCELING_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief Cycle-canceling algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <lemon/graph_adaptor.h>
    29 #include <lemon/path.h>
    30 
    31 #include <lemon/circulation.h>
    32 #include <lemon/bellman_ford.h>
    33 #include <lemon/min_mean_cycle.h>
    34 
    35 namespace lemon {
    36 
    37   /// \addtogroup min_cost_flow
    38   /// @{
    39 
    40   /// \brief Implementation of a cycle-canceling algorithm for
    41   /// finding a minimum cost flow.
    42   ///
    43   /// \ref CycleCanceling implements a cycle-canceling algorithm for
    44   /// finding a minimum cost flow.
    45   ///
    46   /// \tparam Graph The directed graph type the algorithm runs on.
    47   /// \tparam LowerMap The type of the lower bound map.
    48   /// \tparam CapacityMap The type of the capacity (upper bound) map.
    49   /// \tparam CostMap The type of the cost (length) map.
    50   /// \tparam SupplyMap The type of the supply map.
    51   ///
    52   /// \warning
    53   /// - Edge capacities and costs should be \e non-negative \e integers.
    54   /// - Supply values should be \e signed \e integers.
    55   /// - The value types of the maps should be convertible to each other.
    56   /// - \c CostMap::Value must be signed type.
    57   ///
    58   /// \note By default the \ref BellmanFord "Bellman-Ford" algorithm is
    59   /// used for negative cycle detection with limited iteration number.
    60   /// However \ref CycleCanceling also provides the "Minimum Mean
    61   /// Cycle-Canceling" algorithm, which is \e strongly \e polynomial,
    62   /// but rather slower in practice.
    63   /// To use this version of the algorithm, call \ref run() with \c true
    64   /// parameter.
    65   ///
    66   /// \author Peter Kovacs
    67   template < typename Graph,
    68              typename LowerMap = typename Graph::template EdgeMap<int>,
    69              typename CapacityMap = typename Graph::template EdgeMap<int>,
    70              typename CostMap = typename Graph::template EdgeMap<int>,
    71              typename SupplyMap = typename Graph::template NodeMap<int> >
    72   class CycleCanceling
    73   {
    74     GRAPH_TYPEDEFS(typename Graph);
    75 
    76     typedef typename CapacityMap::Value Capacity;
    77     typedef typename CostMap::Value Cost;
    78     typedef typename SupplyMap::Value Supply;
    79     typedef typename Graph::template EdgeMap<Capacity> CapacityEdgeMap;
    80     typedef typename Graph::template NodeMap<Supply> SupplyNodeMap;
    81 
    82     typedef ResGraphAdaptor< const Graph, Capacity,
    83                              CapacityEdgeMap, CapacityEdgeMap > ResGraph;
    84     typedef typename ResGraph::Node ResNode;
    85     typedef typename ResGraph::NodeIt ResNodeIt;
    86     typedef typename ResGraph::Edge ResEdge;
    87     typedef typename ResGraph::EdgeIt ResEdgeIt;
    88 
    89   public:
    90 
    91     /// The type of the flow map.
    92     typedef typename Graph::template EdgeMap<Capacity> FlowMap;
    93     /// The type of the potential map.
    94     typedef typename Graph::template NodeMap<Cost> PotentialMap;
    95 
    96   private:
    97 
    98     /// \brief Map adaptor class for handling residual edge costs.
    99     ///
   100     /// Map adaptor class for handling residual edge costs.
   101     class ResidualCostMap : public MapBase<ResEdge, Cost>
   102     {
   103     private:
   104 
   105       const CostMap &_cost_map;
   106 
   107     public:
   108 
   109       ///\e
   110       ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {}
   111 
   112       ///\e
   113       Cost operator[](const ResEdge &e) const {
   114         return ResGraph::forward(e) ? _cost_map[e] : -_cost_map[e];
   115       }
   116 
   117     }; //class ResidualCostMap
   118 
   119   private:
   120 
   121     // The maximum number of iterations for the first execution of the
   122     // Bellman-Ford algorithm. It should be at least 2.
   123     static const int BF_FIRST_LIMIT  = 2;
   124     // The iteration limit for the Bellman-Ford algorithm is multiplied
   125     // by BF_LIMIT_FACTOR/100 in every round.
   126     static const int BF_LIMIT_FACTOR = 150;
   127 
   128   private:
   129 
   130     // The directed graph the algorithm runs on
   131     const Graph &_graph;
   132     // The original lower bound map
   133     const LowerMap *_lower;
   134     // The modified capacity map
   135     CapacityEdgeMap _capacity;
   136     // The original cost map
   137     const CostMap &_cost;
   138     // The modified supply map
   139     SupplyNodeMap _supply;
   140     bool _valid_supply;
   141 
   142     // Edge map of the current flow
   143     FlowMap *_flow;
   144     bool _local_flow;
   145     // Node map of the current potentials
   146     PotentialMap *_potential;
   147     bool _local_potential;
   148 
   149     // The residual graph
   150     ResGraph *_res_graph;
   151     // The residual cost map
   152     ResidualCostMap _res_cost;
   153 
   154   public:
   155 
   156     /// \brief General constructor (with lower bounds).
   157     ///
   158     /// General constructor (with lower bounds).
   159     ///
   160     /// \param graph The directed graph the algorithm runs on.
   161     /// \param lower The lower bounds of the edges.
   162     /// \param capacity The capacities (upper bounds) of the edges.
   163     /// \param cost The cost (length) values of the edges.
   164     /// \param supply The supply values of the nodes (signed).
   165     CycleCanceling( const Graph &graph,
   166                     const LowerMap &lower,
   167                     const CapacityMap &capacity,
   168                     const CostMap &cost,
   169                     const SupplyMap &supply ) :
   170       _graph(graph), _lower(&lower), _capacity(graph), _cost(cost),
   171       _supply(graph), _flow(NULL), _local_flow(false),
   172       _potential(NULL), _local_potential(false), _res_graph(NULL),
   173       _res_cost(_cost)
   174     {
   175       // Removing non-zero lower bounds
   176       _capacity = subMap(capacity, lower);
   177       Supply sum = 0;
   178       for (NodeIt n(_graph); n != INVALID; ++n) {
   179         Supply s = supply[n];
   180         for (InEdgeIt e(_graph, n); e != INVALID; ++e)
   181           s += lower[e];
   182         for (OutEdgeIt e(_graph, n); e != INVALID; ++e)
   183           s -= lower[e];
   184         sum += (_supply[n] = s);
   185       }
   186       _valid_supply = sum == 0;
   187     }
   188 
   189     /// \brief General constructor (without lower bounds).
   190     ///
   191     /// General constructor (without lower bounds).
   192     ///
   193     /// \param graph The directed graph the algorithm runs on.
   194     /// \param capacity The capacities (upper bounds) of the edges.
   195     /// \param cost The cost (length) values of the edges.
   196     /// \param supply The supply values of the nodes (signed).
   197     CycleCanceling( const Graph &graph,
   198                     const CapacityMap &capacity,
   199                     const CostMap &cost,
   200                     const SupplyMap &supply ) :
   201       _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost),
   202       _supply(supply), _flow(NULL), _local_flow(false),
   203       _potential(NULL), _local_potential(false), _res_graph(NULL),
   204       _res_cost(_cost)
   205     {
   206       // Checking the sum of supply values
   207       Supply sum = 0;
   208       for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
   209       _valid_supply = sum == 0;
   210     }
   211 
   212     /// \brief Simple constructor (with lower bounds).
   213     ///
   214     /// Simple constructor (with lower bounds).
   215     ///
   216     /// \param graph The directed graph the algorithm runs on.
   217     /// \param lower The lower bounds of the edges.
   218     /// \param capacity The capacities (upper bounds) of the edges.
   219     /// \param cost The cost (length) values of the edges.
   220     /// \param s The source node.
   221     /// \param t The target node.
   222     /// \param flow_value The required amount of flow from node \c s
   223     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   224     CycleCanceling( const Graph &graph,
   225                     const LowerMap &lower,
   226                     const CapacityMap &capacity,
   227                     const CostMap &cost,
   228                     Node s, Node t,
   229                     Supply flow_value ) :
   230       _graph(graph), _lower(&lower), _capacity(graph), _cost(cost),
   231       _supply(graph), _flow(NULL), _local_flow(false),
   232       _potential(NULL), _local_potential(false), _res_graph(NULL),
   233       _res_cost(_cost)
   234     {
   235       // Removing non-zero lower bounds
   236       _capacity = subMap(capacity, lower);
   237       for (NodeIt n(_graph); n != INVALID; ++n) {
   238         Supply sum = 0;
   239         if (n == s) sum =  flow_value;
   240         if (n == t) sum = -flow_value;
   241         for (InEdgeIt e(_graph, n); e != INVALID; ++e)
   242           sum += lower[e];
   243         for (OutEdgeIt e(_graph, n); e != INVALID; ++e)
   244           sum -= lower[e];
   245         _supply[n] = sum;
   246       }
   247       _valid_supply = true;
   248     }
   249 
   250     /// \brief Simple constructor (without lower bounds).
   251     ///
   252     /// Simple constructor (without lower bounds).
   253     ///
   254     /// \param graph The directed graph the algorithm runs on.
   255     /// \param capacity The capacities (upper bounds) of the edges.
   256     /// \param cost The cost (length) values of the edges.
   257     /// \param s The source node.
   258     /// \param t The target node.
   259     /// \param flow_value The required amount of flow from node \c s
   260     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   261     CycleCanceling( const Graph &graph,
   262                     const CapacityMap &capacity,
   263                     const CostMap &cost,
   264                     Node s, Node t,
   265                     Supply flow_value ) :
   266       _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost),
   267       _supply(graph, 0), _flow(NULL), _local_flow(false),
   268       _potential(NULL), _local_potential(false), _res_graph(NULL),
   269       _res_cost(_cost)
   270     {
   271       _supply[s] =  flow_value;
   272       _supply[t] = -flow_value;
   273       _valid_supply = true;
   274     }
   275 
   276     /// Destructor.
   277     ~CycleCanceling() {
   278       if (_local_flow) delete _flow;
   279       if (_local_potential) delete _potential;
   280       delete _res_graph;
   281     }
   282 
   283     /// \brief Set the flow map.
   284     ///
   285     /// Set the flow map.
   286     ///
   287     /// \return \c (*this)
   288     CycleCanceling& flowMap(FlowMap &map) {
   289       if (_local_flow) {
   290         delete _flow;
   291         _local_flow = false;
   292       }
   293       _flow = &map;
   294       return *this;
   295     }
   296 
   297     /// \brief Set the potential map.
   298     ///
   299     /// Set the potential map.
   300     ///
   301     /// \return \c (*this)
   302     CycleCanceling& potentialMap(PotentialMap &map) {
   303       if (_local_potential) {
   304         delete _potential;
   305         _local_potential = false;
   306       }
   307       _potential = &map;
   308       return *this;
   309     }
   310 
   311     /// \name Execution control
   312 
   313     /// @{
   314 
   315     /// \brief Run the algorithm.
   316     ///
   317     /// Run the algorithm.
   318     ///
   319     /// \param min_mean_cc Set this parameter to \c true to run the
   320     /// "Minimum Mean Cycle-Canceling" algorithm, which is strongly
   321     /// polynomial, but rather slower in practice.
   322     ///
   323     /// \return \c true if a feasible flow can be found.
   324     bool run(bool min_mean_cc = false) {
   325       return init() && start(min_mean_cc);
   326     }
   327 
   328     /// @}
   329 
   330     /// \name Query Functions
   331     /// The result of the algorithm can be obtained using these
   332     /// functions.\n
   333     /// \ref lemon::CycleCanceling::run() "run()" must be called before
   334     /// using them.
   335 
   336     /// @{
   337 
   338     /// \brief Return a const reference to the edge map storing the
   339     /// found flow.
   340     ///
   341     /// Return a const reference to the edge map storing the found flow.
   342     ///
   343     /// \pre \ref run() must be called before using this function.
   344     const FlowMap& flowMap() const {
   345       return *_flow;
   346     }
   347 
   348     /// \brief Return a const reference to the node map storing the
   349     /// found potentials (the dual solution).
   350     ///
   351     /// Return a const reference to the node map storing the found
   352     /// potentials (the dual solution).
   353     ///
   354     /// \pre \ref run() must be called before using this function.
   355     const PotentialMap& potentialMap() const {
   356       return *_potential;
   357     }
   358 
   359     /// \brief Return the flow on the given edge.
   360     ///
   361     /// Return the flow on the given edge.
   362     ///
   363     /// \pre \ref run() must be called before using this function.
   364     Capacity flow(const Edge& edge) const {
   365       return (*_flow)[edge];
   366     }
   367 
   368     /// \brief Return the potential of the given node.
   369     ///
   370     /// Return the potential of the given node.
   371     ///
   372     /// \pre \ref run() must be called before using this function.
   373     Cost potential(const Node& node) const {
   374       return (*_potential)[node];
   375     }
   376 
   377     /// \brief Return the total cost of the found flow.
   378     ///
   379     /// Return the total cost of the found flow. The complexity of the
   380     /// function is \f$ O(e) \f$.
   381     ///
   382     /// \pre \ref run() must be called before using this function.
   383     Cost totalCost() const {
   384       Cost c = 0;
   385       for (EdgeIt e(_graph); e != INVALID; ++e)
   386         c += (*_flow)[e] * _cost[e];
   387       return c;
   388     }
   389 
   390     /// @}
   391 
   392   private:
   393 
   394     /// Initialize the algorithm.
   395     bool init() {
   396       if (!_valid_supply) return false;
   397 
   398       // Initializing flow and potential maps
   399       if (!_flow) {
   400         _flow = new FlowMap(_graph);
   401         _local_flow = true;
   402       }
   403       if (!_potential) {
   404         _potential = new PotentialMap(_graph);
   405         _local_potential = true;
   406       }
   407 
   408       _res_graph = new ResGraph(_graph, _capacity, *_flow);
   409 
   410       // Finding a feasible flow using Circulation
   411       Circulation< Graph, ConstMap<Edge, Capacity>, CapacityEdgeMap,
   412                    SupplyMap >
   413         circulation( _graph, constMap<Edge>(Capacity(0)), _capacity,
   414                      _supply );
   415       return circulation.flowMap(*_flow).run();
   416     }
   417 
   418     bool start(bool min_mean_cc) {
   419       if (min_mean_cc)
   420         startMinMean();
   421       else
   422         start();
   423 
   424       // Handling non-zero lower bounds
   425       if (_lower) {
   426         for (EdgeIt e(_graph); e != INVALID; ++e)
   427           (*_flow)[e] += (*_lower)[e];
   428       }
   429       return true;
   430     }
   431 
   432     /// \brief Execute the algorithm using \ref BellmanFord.
   433     ///
   434     /// Execute the algorithm using the \ref BellmanFord
   435     /// "Bellman-Ford" algorithm for negative cycle detection with
   436     /// successively larger limit for the number of iterations.
   437     void start() {
   438       typename BellmanFord<ResGraph, ResidualCostMap>::PredMap pred(*_res_graph);
   439       typename ResGraph::template NodeMap<int> visited(*_res_graph);
   440       std::vector<ResEdge> cycle;
   441       int node_num = countNodes(_graph);
   442 
   443       int length_bound = BF_FIRST_LIMIT;
   444       bool optimal = false;
   445       while (!optimal) {
   446         BellmanFord<ResGraph, ResidualCostMap> bf(*_res_graph, _res_cost);
   447         bf.predMap(pred);
   448         bf.init(0);
   449         int iter_num = 0;
   450         bool cycle_found = false;
   451         while (!cycle_found) {
   452           int curr_iter_num = iter_num + length_bound <= node_num ?
   453                               length_bound : node_num - iter_num;
   454           iter_num += curr_iter_num;
   455           int real_iter_num = curr_iter_num;
   456           for (int i = 0; i < curr_iter_num; ++i) {
   457             if (bf.processNextWeakRound()) {
   458               real_iter_num = i;
   459               break;
   460             }
   461           }
   462           if (real_iter_num < curr_iter_num) {
   463             // Optimal flow is found
   464             optimal = true;
   465             // Setting node potentials
   466             for (NodeIt n(_graph); n != INVALID; ++n)
   467               (*_potential)[n] = bf.dist(n);
   468             break;
   469           } else {
   470             // Searching for node disjoint negative cycles
   471             for (ResNodeIt n(*_res_graph); n != INVALID; ++n)
   472               visited[n] = 0;
   473             int id = 0;
   474             for (ResNodeIt n(*_res_graph); n != INVALID; ++n) {
   475               if (visited[n] > 0) continue;
   476               visited[n] = ++id;
   477               ResNode u = pred[n] == INVALID ?
   478                           INVALID : _res_graph->source(pred[n]);
   479               while (u != INVALID && visited[u] == 0) {
   480                 visited[u] = id;
   481                 u = pred[u] == INVALID ?
   482                     INVALID : _res_graph->source(pred[u]);
   483               }
   484               if (u != INVALID && visited[u] == id) {
   485                 // Finding the negative cycle
   486                 cycle_found = true;
   487                 cycle.clear();
   488                 ResEdge e = pred[u];
   489                 cycle.push_back(e);
   490                 Capacity d = _res_graph->rescap(e);
   491                 while (_res_graph->source(e) != u) {
   492                   cycle.push_back(e = pred[_res_graph->source(e)]);
   493                   if (_res_graph->rescap(e) < d)
   494                     d = _res_graph->rescap(e);
   495                 }
   496 
   497                 // Augmenting along the cycle
   498                 for (int i = 0; i < int(cycle.size()); ++i)
   499                   _res_graph->augment(cycle[i], d);
   500               }
   501             }
   502           }
   503 
   504           if (!cycle_found)
   505             length_bound = length_bound * BF_LIMIT_FACTOR / 100;
   506         }
   507       }
   508     }
   509 
   510     /// \brief Execute the algorithm using \ref MinMeanCycle.
   511     ///
   512     /// Execute the algorithm using \ref MinMeanCycle for negative
   513     /// cycle detection.
   514     void startMinMean() {
   515       typedef Path<ResGraph> ResPath;
   516       MinMeanCycle<ResGraph, ResidualCostMap> mmc(*_res_graph, _res_cost);
   517       ResPath cycle;
   518 
   519       mmc.cyclePath(cycle).init();
   520       if (mmc.findMinMean()) {
   521         while (mmc.cycleLength() < 0) {
   522           // Finding the cycle
   523           mmc.findCycle();
   524 
   525           // Finding the largest flow amount that can be augmented
   526           // along the cycle
   527           Capacity delta = 0;
   528           for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e) {
   529             if (delta == 0 || _res_graph->rescap(e) < delta)
   530               delta = _res_graph->rescap(e);
   531           }
   532 
   533           // Augmenting along the cycle
   534           for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e)
   535             _res_graph->augment(e, delta);
   536 
   537           // Finding the minimum cycle mean for the modified residual
   538           // graph
   539           mmc.reset();
   540           if (!mmc.findMinMean()) break;
   541         }
   542       }
   543 
   544       // Computing node potentials
   545       BellmanFord<ResGraph, ResidualCostMap> bf(*_res_graph, _res_cost);
   546       bf.init(0); bf.start();
   547       for (NodeIt n(_graph); n != INVALID; ++n)
   548         (*_potential)[n] = bf.dist(n);
   549     }
   550 
   551   }; //class CycleCanceling
   552 
   553   ///@}
   554 
   555 } //namespace lemon
   556 
   557 #endif //LEMON_CYCLE_CANCELING_H