.
1 #ifndef PREFLOW_PUSH_HH
2 #define PREFLOW_PUSH_HH
7 //#include "pf_hiba.hh"
8 //#include <marci_list_graph.hh>
9 //#include <marci_graph_traits.hh>
11 #include "reverse_bfs.hh"
17 template <typename graph_type, typename T>
21 typedef typename graph_type::NodeIt NodeIt;
22 typedef typename graph_type::EdgeIt EdgeIt;
23 typedef typename graph_type::EachNodeIt EachNodeIt;
24 typedef typename graph_type::EachEdgeIt EachEdgeIt;
25 typedef typename graph_type::OutEdgeIt OutEdgeIt;
26 typedef typename graph_type::InEdgeIt InEdgeIt;
27 typedef typename graph_type::SymEdgeIt SymEdgeIt;
32 typedef graph_traits<graph_type>::node_iterator node_iterator;
33 typedef graph_traits<graph_type>::EdgeIt EdgeIt;
34 typedef graph_traits<graph_type>::each_node_iterator each_node_iterator;
35 typedef graph_traits<graph_type>::each_EdgeIt each_EdgeIt;
36 typedef graph_traits<graph_type>::out_EdgeIt out_EdgeIt;
37 typedef graph_traits<graph_type>::InEdgeIt InEdgeIt;
38 typedef graph_traits<graph_type>::sym_EdgeIt sym_EdgeIt;
41 //---------------------------------------------
42 //Parameters of the algorithm
43 //---------------------------------------------
44 //Fully examine an active node until excess becomes 0
45 enum node_examination_t {examine_full, examine_to_relabel};
46 //No more implemented yet:, examine_only_one_edge};
47 node_examination_t node_examination;
48 //Which implementation to be used
49 enum implementation_t {impl_fifo, impl_highest_label};
50 //No more implemented yet:};
51 implementation_t implementation;
52 //---------------------------------------------
53 //Parameters of the algorithm
54 //---------------------------------------------
61 typename graph_type::EdgeMap<T> &capacity;
62 //typename graph_type::EdgeMap<T> &capacity;
64 //typename graph_type::EdgeMap<T>
65 typename graph_type::EdgeMap<T> preflow;
68 //auxiliary variables for computation
72 typename graph_type::NodeMap<int> level;
73 typename graph_type::NodeMap<T> excess;
74 //node_property_vector<graph_type, int> level;
75 //node_property_vector<graph_type, T> excess;
77 //Number of nodes on each level
78 vector<int> num_of_nodes_on_level;
80 //For the FIFO implementation
81 list<NodeIt> fifo_nodes;
82 //For 'highest label' implementation
84 //int second_highest_active;
85 vector< list<NodeIt> > active_nodes;
89 //Constructing the object using the graph, source, sink and capacity vector
94 typename graph_type::EdgeMap<T> & _capacity)
95 : G(_G), s(_s), t(_t),
98 //Counting the number of nodes
99 //number_of_nodes(count(G.first<EachNodeIt>())),
100 number_of_nodes(G.nodeNum()),
104 // Default constructor: active_nodes()
106 //Simplest parameter settings
107 node_examination = examine_full;//examine_to_relabel;//
108 //Which implementation to be usedexamine_full
109 implementation = impl_highest_label;//impl_fifo;
112 num_of_nodes_on_level.resize(2*number_of_nodes-1);
113 num_of_nodes_on_level.clear();
115 switch(implementation){
116 case impl_highest_label :{
117 active_nodes.resize(2*number_of_nodes-1);
118 active_nodes.clear();
127 //Returns the value of a maximal flow
130 typename graph_type::EdgeMap<T> getmaxflow(){
136 //For testing purposes only
137 //Lists the node_properties
138 void write_property_vector(typename graph_type::NodeMap<T> a,
139 //node_property_vector<graph_type, T> a,
140 char* prop_name="property"){
141 for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) {
142 cout<<"Node id.: "<<G.id(i)<<", "<<prop_name<<" value: "<<a.get(i)<<endl;
147 //Modifies the excess of the node and makes sufficient changes
148 void modify_excess(const NodeIt& a ,T v){
149 T old_value=excess.get(a);
150 excess.set(a,old_value+v);
153 //This private procedure is supposed to modify the preflow on edge j
154 //by value v (which can be positive or negative as well)
155 //and maintain the excess on the head and tail
156 //Here we do not check whether this is possible or not
157 void modify_preflow(EdgeIt j, const T& v){
163 old_value=preflow.get(j);
164 preflow.set(j,old_value+v);
168 modify_excess(G.head(j),v);
171 modify_excess(G.tail(j),-v);
175 //Gives the active node to work with
176 //(depending on the implementation to be used)
177 NodeIt get_active_node(){
178 //cout<<highest_active<<endl;
180 switch(implementation) {
181 case impl_highest_label : {
183 //First need to find the highest label for which there"s an active node
184 while( highest_active>=0 && active_nodes[highest_active].empty() ){
188 if( highest_active>=0) {
189 NodeIt a=active_nodes[highest_active].front();
190 active_nodes[highest_active].pop_front();
202 if( ! fifo_nodes.empty() ) {
203 NodeIt a=fifo_nodes.front();
204 fifo_nodes.pop_front();
217 //Puts node 'a' among the active nodes
218 void make_active(const NodeIt& a){
219 //s and t never become active
221 switch(implementation){
222 case impl_highest_label :
223 active_nodes[level.get(a)].push_back(a);
226 fifo_nodes.push_back(a);
232 //Update highest_active label
233 if (highest_active<level.get(a)){
234 highest_active=level.get(a);
239 //Changes the level of node a and make sufficent changes
240 void change_level_to(NodeIt a, int new_value){
241 int seged = level.get(a);
242 level.set(a,new_value);
243 --num_of_nodes_on_level[seged];
244 ++num_of_nodes_on_level[new_value];
247 //Collection of things useful (or necessary) to do before running
251 //---------------------------------------
252 //Initialize parameters
253 //---------------------------------------
255 //Setting starting preflow, level and excess values to zero
256 //This can be important, if the algorithm is run more then once
257 for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) {
260 for(OutEdgeIt j=G.template first<OutEdgeIt>(i); j.valid(); ++j)
263 num_of_nodes_on_level[0]=number_of_nodes;
265 //---------------------------------------
266 //Initialize parameters
267 //---------------------------------------
270 //------------------------------------
271 //This is the only part that uses BFS
272 //------------------------------------
273 //Setting starting level values using reverse bfs
274 reverse_bfs<graph_type> rev_bfs(G,t);
276 //write_property_vector(rev_bfs.dist,"rev_bfs");
277 for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) {
278 change_level_to(i,rev_bfs.dist(i));
279 //level.put(i,rev_bfs.dist.get(i));
281 //------------------------------------
282 //This is the only part that uses BFS
283 //------------------------------------
286 //Starting level of s
287 change_level_to(s,number_of_nodes);
288 //level.put(s,number_of_nodes);
291 //we push as much preflow from s as possible to start with
292 for(OutEdgeIt j=G.template first<OutEdgeIt>(s); j.valid(); ++j){
293 modify_preflow(j,capacity.get(j) );
294 make_active(G.head(j));
295 int lev=level.get(G.head(j));
296 if(highest_active<lev){
300 //cout<<highest_active<<endl;
304 //If the preflow is less than the capacity on the given edge
305 //then it is an edge in the residual graph
306 bool is_admissible_forward_edge(OutEdgeIt j, int& new_level){
307 if (capacity.get(j)>preflow.get(j)){
308 if(level.get(G.tail(j))==level.get(G.head(j))+1){
312 if (level.get(G.head(j)) < new_level)
313 new_level=level.get(G.head(j));
319 //If the preflow is greater than 0 on the given edge
320 //then the edge reversd is an edge in the residual graph
321 bool is_admissible_backward_edge(InEdgeIt j, int& new_level){
322 if (0<preflow.get(j)){
323 if(level.get(G.tail(j))==level.get(G.head(j))-1){
327 if (level.get(G.tail(j)) < new_level)
328 new_level=level.get(G.tail(j));
336 }; //class preflow_push
338 template<typename graph_type, typename T>
339 T preflow_push<graph_type, T>::run() {
345 while (a=get_active_node(), a.valid()){
346 //cout<<G.id(a)<<endl;
347 //write_property_vector(excess,"excess");
348 //write_property_vector(level,"level");
351 bool go_to_next_node=false;
353 while (!go_to_next_node){
355 //Initial value for the new level for the active node we are dealing with
356 int new_level=2*number_of_nodes;
357 //write_property_vector(excess,"excess");
358 //write_property_vector(level,"level");
359 //cout<<G.id(a)<<endl;
360 //Out edges from node a
362 OutEdgeIt j=G.template first<OutEdgeIt>(a);
363 while (j.valid() && e){
365 if (is_admissible_forward_edge(j,new_level)){
366 v=min(e,capacity.get(j) - preflow.get(j));
368 //New node might become active
369 if (excess.get(G.head(j))==0){
370 make_active(G.head(j));
379 InEdgeIt j=G.template first<InEdgeIt>(a);
380 while (j.valid() && e){
381 if (is_admissible_backward_edge(j,new_level)){
382 v=min(e,preflow.get(j));
384 //New node might become active
385 if (excess.get(G.tail(j))==0){
386 make_active(G.tail(j));
388 modify_preflow(j,-v);
394 //cout<<G.id(a)<<" "<<new_level<<endl;
398 go_to_next_node=true;
400 else{//If there is still excess in node a
402 //change_level_to(a,new_level+1);
404 //Level remains empty
405 if (num_of_nodes_on_level[level.get(a)]==1){
406 change_level_to(a,number_of_nodes);
407 //go_to_next_node=True;
410 change_level_to(a,new_level+1);
417 switch(node_examination){
418 case examine_to_relabel:
421 go_to_next_node = true;
432 maxflow_value = excess.get(t);
433 return maxflow_value;
439 #endif //PREFLOW_PUSH_HH