src/work/athos/preflow_push.hh
author marci
Wed, 18 Feb 2004 12:45:44 +0000
changeset 95 3322fbf254d2
parent 36 7d539ea6ad26
child 105 a3c73e9b9b2e
permissions -rw-r--r--
.
     1 #ifndef PREFLOW_PUSH_HH
     2 #define PREFLOW_PUSH_HH
     3 
     4 #include <algorithm>
     5 #include <list>
     6 #include <vector>
     7 //#include "pf_hiba.hh"
     8 //#include <marci_list_graph.hh>
     9 //#include <marci_graph_traits.hh>
    10 
    11 #include "reverse_bfs.hh"
    12 
    13 using namespace std;
    14 
    15 namespace marci {
    16 
    17   template <typename graph_type, typename T>
    18   class preflow_push {
    19 
    20     //Hasznos typedef-ek
    21     typedef typename graph_type::NodeIt NodeIt;
    22     typedef typename graph_type::EdgeIt EdgeIt;
    23     typedef typename graph_type::EachNodeIt EachNodeIt;
    24     typedef typename graph_type::EachEdgeIt EachEdgeIt;
    25     typedef typename graph_type::OutEdgeIt OutEdgeIt;
    26     typedef typename graph_type::InEdgeIt InEdgeIt;
    27     typedef typename graph_type::SymEdgeIt SymEdgeIt;
    28 
    29 
    30 
    31     /*
    32     typedef graph_traits<graph_type>::node_iterator node_iterator;
    33     typedef graph_traits<graph_type>::EdgeIt EdgeIt;
    34     typedef graph_traits<graph_type>::each_node_iterator each_node_iterator;
    35     typedef graph_traits<graph_type>::each_EdgeIt each_EdgeIt;
    36     typedef graph_traits<graph_type>::out_EdgeIt out_EdgeIt;
    37     typedef graph_traits<graph_type>::InEdgeIt InEdgeIt;
    38     typedef graph_traits<graph_type>::sym_EdgeIt sym_EdgeIt;
    39     */
    40 
    41     //---------------------------------------------
    42     //Parameters of the algorithm
    43     //---------------------------------------------
    44     //Fully examine an active node until excess becomes 0
    45     enum node_examination_t {examine_full, examine_to_relabel};
    46     //No more implemented yet:, examine_only_one_edge};
    47     node_examination_t node_examination;
    48     //Which implementation to be used
    49     enum implementation_t {impl_fifo, impl_highest_label};
    50     //No more implemented yet:};
    51     implementation_t implementation;
    52     //---------------------------------------------
    53     //Parameters of the algorithm
    54     //---------------------------------------------
    55  
    56   private:
    57     //input
    58     graph_type& G;
    59     NodeIt s;
    60     NodeIt t;
    61     typename graph_type::EdgeMap<T> &capacity;
    62     //typename graph_type::EdgeMap<T>  &capacity;
    63     //output
    64     //typename graph_type::EdgeMap<T>  
    65     typename graph_type::EdgeMap<T> preflow;
    66     T maxflow_value;
    67   
    68     //auxiliary variables for computation
    69     int number_of_nodes;
    70     
    71     
    72     typename graph_type::NodeMap<int> level;
    73     typename graph_type::NodeMap<T> excess;
    74     //node_property_vector<graph_type, int> level;
    75     //node_property_vector<graph_type, T> excess;
    76     
    77     //Number of nodes on each level
    78     vector<int> num_of_nodes_on_level;
    79     
    80     //For the FIFO implementation
    81     list<NodeIt> fifo_nodes;
    82     //For 'highest label' implementation
    83     int highest_active;
    84     //int second_highest_active;
    85     vector< list<NodeIt> > active_nodes;
    86 
    87   public:
    88   
    89     //Constructing the object using the graph, source, sink and capacity vector
    90     preflow_push(
    91 		      graph_type& _G, 
    92 		      NodeIt _s, 
    93 		      NodeIt _t, 
    94 		      typename graph_type::EdgeMap<T> & _capacity)
    95       : G(_G), s(_s), t(_t), 
    96 	capacity(_capacity), 
    97 	preflow(_G),
    98 	//Counting the number of nodes
    99 	//number_of_nodes(count(G.first<EachNodeIt>())),
   100 	number_of_nodes(G.nodeNum()),
   101 
   102 	level(_G),
   103 	excess(_G)//,
   104         // Default constructor: active_nodes()
   105     { 
   106       //Simplest parameter settings
   107       node_examination = examine_full;//examine_to_relabel;//
   108       //Which implementation to be usedexamine_full
   109       implementation = impl_highest_label;//impl_fifo;
   110  
   111       //
   112       num_of_nodes_on_level.resize(2*number_of_nodes-1);
   113       num_of_nodes_on_level.clear();
   114 
   115       switch(implementation){
   116       case impl_highest_label :{
   117 	active_nodes.resize(2*number_of_nodes-1);
   118 	active_nodes.clear();
   119 	break;
   120       }
   121       default:
   122 	break;
   123       }
   124 
   125     }
   126 
   127     //Returns the value of a maximal flow 
   128     T run();
   129   
   130     typename graph_type::EdgeMap<T>  getmaxflow(){
   131       return preflow;
   132     }
   133 
   134 
   135   private:
   136     //For testing purposes only
   137     //Lists the node_properties
   138     void write_property_vector(typename graph_type::NodeMap<T> a,
   139 			       //node_property_vector<graph_type, T> a, 
   140 			       char* prop_name="property"){
   141       for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) {
   142 	cout<<"Node id.: "<<G.id(i)<<", "<<prop_name<<" value: "<<a.get(i)<<endl;
   143       }
   144       cout<<endl;
   145     }
   146 
   147     //Modifies the excess of the node and makes sufficient changes
   148     void modify_excess(const NodeIt& a ,T v){
   149 	T old_value=excess.get(a);
   150 	excess.set(a,old_value+v);
   151     }
   152   
   153     //This private procedure is supposed to modify the preflow on edge j
   154     //by value v (which can be positive or negative as well) 
   155     //and maintain the excess on the head and tail
   156     //Here we do not check whether this is possible or not
   157     void modify_preflow(EdgeIt j, const T& v){
   158 
   159       //Auxiliary variable
   160       T old_value;
   161 	
   162       //Modifiyng the edge
   163       old_value=preflow.get(j);
   164       preflow.set(j,old_value+v);
   165 
   166 
   167       //Modifiyng the head
   168       modify_excess(G.head(j),v);
   169 	
   170       //Modifiyng the tail
   171       modify_excess(G.tail(j),-v);
   172 
   173     }
   174 
   175     //Gives the active node to work with 
   176     //(depending on the implementation to be used)
   177     NodeIt get_active_node(){
   178       //cout<<highest_active<<endl;
   179 
   180       switch(implementation) {
   181       case impl_highest_label : {
   182 
   183 	//First need to find the highest label for which there"s an active node
   184 	while( highest_active>=0 && active_nodes[highest_active].empty() ){ 
   185 	  --highest_active;
   186 	}
   187 
   188 	if( highest_active>=0) {
   189 	  NodeIt a=active_nodes[highest_active].front();
   190 	  active_nodes[highest_active].pop_front();
   191 	  return a;
   192 	}
   193 	else {
   194 	  return NodeIt();
   195 	}
   196 	
   197 	break;
   198 	
   199       }
   200       case impl_fifo : {
   201 
   202 	if( ! fifo_nodes.empty() ) {
   203 	  NodeIt a=fifo_nodes.front();
   204 	  fifo_nodes.pop_front();
   205 	  return a;
   206 	}
   207 	else {
   208 	  return NodeIt();
   209 	}
   210 	break;
   211       }
   212       }
   213       //
   214       return NodeIt();
   215     }
   216 
   217     //Puts node 'a' among the active nodes
   218     void make_active(const NodeIt& a){
   219       //s and t never become active
   220       if (a!=s && a!= t){
   221 	switch(implementation){
   222 	case impl_highest_label :
   223 	  active_nodes[level.get(a)].push_back(a);
   224 	  break;
   225 	case impl_fifo :
   226 	  fifo_nodes.push_back(a);
   227 	  break;
   228 	}
   229 
   230       }
   231 
   232       //Update highest_active label
   233       if (highest_active<level.get(a)){
   234 	highest_active=level.get(a);
   235       }
   236 
   237     }
   238 
   239     //Changes the level of node a and make sufficent changes
   240     void change_level_to(NodeIt a, int new_value){
   241       int seged = level.get(a);
   242       level.set(a,new_value);
   243       --num_of_nodes_on_level[seged];
   244       ++num_of_nodes_on_level[new_value];
   245     }
   246 
   247     //Collection of things useful (or necessary) to do before running
   248 
   249     void preprocess(){
   250 
   251       //---------------------------------------
   252       //Initialize parameters
   253       //---------------------------------------
   254 
   255       //Setting starting preflow, level and excess values to zero
   256       //This can be important, if the algorithm is run more then once
   257       for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) {
   258         level.set(i,0);
   259         excess.set(i,0);
   260 	for(OutEdgeIt j=G.template first<OutEdgeIt>(i); j.valid(); ++j) 
   261 	  preflow.set(j, 0);
   262       }
   263       num_of_nodes_on_level[0]=number_of_nodes;
   264       highest_active=0;
   265       //---------------------------------------
   266       //Initialize parameters
   267       //---------------------------------------
   268 
   269       
   270       //------------------------------------
   271       //This is the only part that uses BFS
   272       //------------------------------------
   273       //Setting starting level values using reverse bfs
   274       reverse_bfs<graph_type> rev_bfs(G,t);
   275       rev_bfs.run();
   276       //write_property_vector(rev_bfs.dist,"rev_bfs");
   277       for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) {
   278         change_level_to(i,rev_bfs.dist(i));
   279 	//level.put(i,rev_bfs.dist.get(i));
   280       }
   281       //------------------------------------
   282       //This is the only part that uses BFS
   283       //------------------------------------
   284       
   285       
   286       //Starting level of s
   287       change_level_to(s,number_of_nodes);
   288       //level.put(s,number_of_nodes);
   289       
   290       
   291       //we push as much preflow from s as possible to start with
   292       for(OutEdgeIt j=G.template first<OutEdgeIt>(s); j.valid(); ++j){ 
   293 	modify_preflow(j,capacity.get(j) );
   294 	make_active(G.head(j));
   295 	int lev=level.get(G.head(j));
   296 	if(highest_active<lev){
   297 	  highest_active=lev;
   298 	}
   299       }
   300       //cout<<highest_active<<endl;
   301     } 
   302 
   303     
   304     //If the preflow is less than the capacity on the given edge
   305     //then it is an edge in the residual graph
   306     bool is_admissible_forward_edge(OutEdgeIt j, int& new_level){
   307       if (capacity.get(j)>preflow.get(j)){
   308 	if(level.get(G.tail(j))==level.get(G.head(j))+1){
   309 	  return true;
   310 	}
   311 	else{
   312 	  if (level.get(G.head(j)) < new_level)
   313 	    new_level=level.get(G.head(j));
   314 	}
   315       }
   316       return false;
   317     }
   318 
   319     //If the preflow is greater than 0 on the given edge
   320     //then the edge reversd is an edge in the residual graph
   321     bool is_admissible_backward_edge(InEdgeIt j, int& new_level){
   322       if (0<preflow.get(j)){
   323 	if(level.get(G.tail(j))==level.get(G.head(j))-1){
   324 	  return true;
   325 	}
   326 	else{
   327 	  if (level.get(G.tail(j)) < new_level)
   328 	    new_level=level.get(G.tail(j));
   329 	}
   330 	
   331       }
   332       return false;
   333     }
   334 
   335  
   336   };  //class preflow_push  
   337 
   338   template<typename graph_type, typename T>
   339     T preflow_push<graph_type, T>::run() {
   340     
   341     preprocess();
   342     
   343     T e,v;
   344     NodeIt a;
   345     while (a=get_active_node(), a.valid()){
   346       //cout<<G.id(a)<<endl;
   347       //write_property_vector(excess,"excess");
   348       //write_property_vector(level,"level");
   349 
   350 
   351       bool go_to_next_node=false;
   352       e = excess.get(a);
   353       while (!go_to_next_node){
   354 
   355 	//Initial value for the new level for the active node we are dealing with
   356 	int new_level=2*number_of_nodes;
   357 	//write_property_vector(excess,"excess");
   358 	//write_property_vector(level,"level");
   359 	//cout<<G.id(a)<<endl;
   360 	//Out edges from node a
   361 	{
   362 	  OutEdgeIt j=G.template first<OutEdgeIt>(a);
   363 	  while (j.valid() && e){
   364 
   365 	    if (is_admissible_forward_edge(j,new_level)){
   366 	      v=min(e,capacity.get(j) - preflow.get(j));
   367 	      e -= v;
   368 	      //New node might become active
   369 	      if (excess.get(G.head(j))==0){
   370 		make_active(G.head(j));
   371 	      }
   372 	      modify_preflow(j,v);
   373 	    }
   374 	    ++j;
   375 	  }
   376 	}
   377 	//In edges to node a
   378 	{
   379 	  InEdgeIt j=G.template first<InEdgeIt>(a);
   380 	  while (j.valid() && e){
   381 	    if (is_admissible_backward_edge(j,new_level)){
   382 	      v=min(e,preflow.get(j));
   383 	      e -= v;
   384 	      //New node might become active
   385 	      if (excess.get(G.tail(j))==0){
   386 		make_active(G.tail(j));
   387 	      }
   388 	      modify_preflow(j,-v);
   389 	    }
   390 	    ++j;
   391 	  }
   392 	}
   393 
   394 	//cout<<G.id(a)<<" "<<new_level<<endl;
   395 
   396 	if (0==e){
   397 	  //Saturating push
   398 	  go_to_next_node=true;
   399 	}
   400 	else{//If there is still excess in node a
   401 	  
   402 	  //change_level_to(a,new_level+1);
   403 	  
   404 	  //Level remains empty
   405 	  if (num_of_nodes_on_level[level.get(a)]==1){
   406 	    change_level_to(a,number_of_nodes);
   407 	    //go_to_next_node=True;
   408 	  }
   409 	  else{
   410 	    change_level_to(a,new_level+1);
   411 	    //increase_level(a);
   412 	  }
   413 	  
   414     
   415 	  
   416 
   417 	  switch(node_examination){
   418 	  case examine_to_relabel:
   419 	    make_active(a);
   420 
   421 	    go_to_next_node = true;
   422 	    break;
   423 	  default:
   424 	    break;
   425 	  }
   426 	  
   427     
   428 	
   429 	}//if (0==e)
   430       }
   431     }
   432     maxflow_value = excess.get(t);
   433     return maxflow_value;
   434   }//run
   435 
   436 
   437 }//namespace marci
   438 
   439 #endif //PREFLOW_PUSH_HH