src/include/dijkstra.h
author deba
Thu, 22 Apr 2004 16:36:57 +0000
changeset 377 33fe0ee01dc5
parent 335 999eb3cd7b49
child 385 d7ebbae96025
permissions -rw-r--r--
(none)
     1 // -*- C++ -*-
     2 
     3 #ifndef HUGO_DIJKSTRA_H
     4 #define HUGO_DIJKSTRA_H
     5 
     6 ///\file
     7 ///\brief Dijkstra algorithm.
     8 
     9 #include <fib_heap.h>
    10 #include <bin_heap.h>
    11 #include <invalid.h>
    12 
    13 namespace hugo {
    14   
    15   ///%Dijkstra algorithm class.
    16 
    17   ///This class provides an efficient implementation of %Dijkstra algorithm.
    18   ///The edge lengths are passed to the algorithm using a
    19   ///\ref ReadMapSkeleton "readable map",
    20   ///so it is easy to change it to any kind of length.
    21   ///
    22   ///The type of the length is determined by the \c ValueType of the length map.
    23   ///
    24   ///It is also possible to change the underlying priority heap.
    25   ///
    26   ///\param Graph The graph type the algorithm runs on.  
    27   ///\param LengthMap This read-only EdgeMap determines the lengths of
    28   ///the edges. It is read once for each edge, so the map may involve
    29   ///in relatively time consuming process to compute the edge length
    30   ///if it is necessary. The default map type is \ref
    31   ///GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
    32   ///\param Heap The heap type used by the %Dijkstra algorithm. The
    33   ///default is using \ref BinHeap "binary heap".
    34   
    35 #ifdef DOXYGEN
    36   template <typename Graph,
    37 	    typename LengthMap,
    38 	    typename Heap>
    39 #else
    40   template <typename Graph,
    41 	    typename LengthMap=typename Graph::EdgeMap<int>,
    42 	    template <class,class,class> class Heap = BinHeap >
    43 #endif
    44   class Dijkstra{
    45   public:
    46     typedef typename Graph::Node Node;
    47     typedef typename Graph::NodeIt NodeIt;
    48     typedef typename Graph::Edge Edge;
    49     typedef typename Graph::OutEdgeIt OutEdgeIt;
    50     
    51     typedef typename LengthMap::ValueType ValueType;
    52     typedef typename Graph::NodeMap<Edge> PredMap;
    53     typedef typename Graph::NodeMap<Node> PredNodeMap;
    54     typedef typename Graph::NodeMap<ValueType> DistMap;
    55 
    56   private:
    57     const Graph& G;
    58     const LengthMap& length;
    59     PredMap predecessor;
    60     PredNodeMap pred_node;
    61     DistMap distance;
    62     
    63   public :
    64     
    65     Dijkstra(Graph& _G, LengthMap& _length) :
    66       G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { }
    67     
    68     void run(Node s);
    69     
    70     ///The distance of a node from the source.
    71 
    72     ///Returns the distance of a node from the source.
    73     ///\pre \ref run() must be called before using this function.
    74     ///\warning If node \c v in unreachable from the source the return value
    75     ///of this funcion is undefined.
    76     ValueType dist(Node v) const { return distance[v]; }
    77 
    78     ///Returns the edges of the shortest path tree.
    79 
    80     ///For a node \c v it returns the last edge of the shortest path
    81     ///from the source to \c v or INVALID if \c v is unreachable
    82     ///from the source.
    83     ///\pre \ref run() must be called before using this function.
    84     Edge pred(Node v) const { return predecessor[v]; }
    85 
    86     ///Returns the nodes of the shortest paths.
    87 
    88     ///For a node \c v it returns the last but one node of the shortest path
    89     ///from the source to \c v or INVALID if \c v is unreachable
    90     ///from the source.
    91     ///\pre \ref run() must be called before using this function.
    92     Node predNode(Node v) const { return pred_node[v]; }
    93     
    94     ///Returns a reference to the NodeMap of distances.
    95 
    96     ///\pre \ref run() must be called before using this function.
    97     ///
    98     const DistMap &distMap() const { return distance;}
    99     
   100     ///Returns a reference to the shortest path tree map.
   101 
   102     ///Returns a reference to the NodeMap of the edges of the
   103     ///shortest path tree.
   104     ///\pre \ref run() must be called before using this function.
   105     const PredMap &predMap() const { return predecessor;}
   106     
   107     ///Returns a reference to the map of nodes of  shortest paths.
   108 
   109     ///Returns a reference to the NodeMap of the last but one nodes of the
   110     ///shortest paths.
   111     ///\pre \ref run() must be called before using this function.
   112     const PredNodeMap &predNodeMap() const { return pred_node;}
   113 
   114     ///Checks if a node is reachable from the source.
   115 
   116     ///Returns \c true if \c v is reachable from the source.
   117     ///\warning the source node is reported to be unreached!
   118     ///\todo Is this what we want?
   119     ///\pre \ref run() must be called before using this function.
   120     bool reached(Node v) { return G.valid(predecessor[v]); }
   121     
   122   };
   123   
   124 
   125   // **********************************************************************
   126   //  IMPLEMENTATIONS
   127   // **********************************************************************
   128 
   129   ///Runs %Dijkstra algorithm from source node \c s.
   130 
   131   ///This method runs the %Dijkstra algorithm from a source node \c s
   132   ///in order to compute the shortest path to each node. The algorithm
   133   ///computes - The shortest path tree.  - The distance of each node
   134   ///from the source.
   135   template <typename Graph, typename LengthMap,
   136 	    template<class,class,class> class Heap >
   137   void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
   138     
   139     NodeIt u;
   140     for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
   141       predecessor.set(u,INVALID);
   142       pred_node.set(u,INVALID);
   143     }
   144     
   145     typename Graph::NodeMap<int> heap_map(G,-1);
   146     
   147     Heap<Node,ValueType,typename Graph::NodeMap<int> > heap(heap_map);
   148     heap.push(s,0); 
   149     
   150     while ( !heap.empty() ) {
   151       
   152       Node v=heap.top(); 
   153       ValueType oldvalue=heap[v];
   154       heap.pop();
   155       distance.set(v, oldvalue);
   156 	
   157       { //FIXME this bracket is for e to be local
   158 	OutEdgeIt e;
   159 	for(G.first(e, v); G.valid(e); G.next(e)) {
   160 	  Node w=G.head(e); 
   161 	  
   162 	  switch(heap.state(w)) {
   163 	  case heap.PRE_HEAP:
   164 	    heap.push(w,oldvalue+length[e]); 
   165 	    predecessor.set(w,e);
   166 	    pred_node.set(w,v);
   167 	    break;
   168 	  case heap.IN_HEAP:
   169 	    if ( oldvalue+length[e] < heap[w] ) {
   170 	      heap.decrease(w, oldvalue+length[e]); 
   171 	      predecessor.set(w,e);
   172 	      pred_node.set(w,v);
   173 	    }
   174 	    break;
   175 	  case heap.POST_HEAP:
   176 	    break;
   177 	  }
   178 	}
   179       } //FIXME this bracket
   180     }
   181   }
   182   
   183 } //END OF NAMESPACE HUGO
   184 
   185 #endif
   186 
   187