lemon/kruskal.h
author hegyi
Sun, 07 Aug 2005 14:17:11 +0000
changeset 1614 350c1d8bb7cc
parent 1570 da93692e6537
child 1631 e15162d8eca1
permissions -rw-r--r--
Alpar had the key, focus can be set in the window class. But it is not enough, the focused widget has to be activated, as well! Was a hard task to find out... By the way, two compilation warnings are removed.
     1 /* -*- C++ -*-
     2  * lemon/kruskal.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_KRUSKAL_H
    18 #define LEMON_KRUSKAL_H
    19 
    20 #include <algorithm>
    21 #include <lemon/unionfind.h>
    22 #include<lemon/utility.h>
    23 
    24 /**
    25 @defgroup spantree Minimum Cost Spanning Tree Algorithms
    26 @ingroup galgs
    27 \brief This group containes the algorithms for finding a minimum cost spanning
    28 tree in a graph
    29 
    30 This group containes the algorithms for finding a minimum cost spanning
    31 tree in a graph
    32 */
    33 
    34 ///\ingroup spantree
    35 ///\file
    36 ///\brief Kruskal's algorithm to compute a minimum cost tree
    37 ///
    38 ///Kruskal's algorithm to compute a minimum cost tree.
    39 ///
    40 ///\todo The file still needs some clean-up.
    41 
    42 namespace lemon {
    43 
    44   /// \addtogroup spantree
    45   /// @{
    46 
    47   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    48 
    49   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    50   /// Due to hard C++ hacking, it accepts various input and output types.
    51   ///
    52   /// \param g The graph the algorithm runs on.
    53   /// It can be either \ref concept::StaticGraph "directed" or 
    54   /// \ref concept::UndirStaticGraph "undirected".
    55   /// If the graph is directed, the algorithm consider it to be 
    56   /// undirected by disregarding the direction of the edges.
    57   ///
    58   /// \param in This object is used to describe the edge costs. It can be one
    59   /// of the following choices.
    60   /// - An STL compatible 'Forward Container'
    61   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    62   /// where \c X is the type of the costs. The pairs indicates the edges along
    63   /// with the assigned cost. <em>They must be in a
    64   /// cost-ascending order.</em>
    65   /// - Any readable Edge map. The values of the map indicate the edge costs.
    66   ///
    67   /// \retval out Here we also have a choise.
    68   /// - Is can be a writable \c bool edge map. 
    69   /// After running the algorithm
    70   /// this will contain the found minimum cost spanning tree: the value of an
    71   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    72   /// be set to \c false. The value of each edge will be set exactly once.
    73   /// - It can also be an iteraror of an STL Container with
    74   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
    75   /// The algorithm copies the elements of the found tree into this sequence.
    76   /// For example, if we know that the spanning tree of the graph \c g has
    77   /// say 53 edges, then
    78   /// we can put its edges into a STL vector \c tree with a code like this.
    79   /// \code
    80   /// std::vector<Edge> tree(53);
    81   /// kruskal(g,cost,tree.begin());
    82   /// \endcode
    83   /// Or if we don't know in advance the size of the tree, we can write this.
    84   /// \code
    85   /// std::vector<Edge> tree;
    86   /// kruskal(g,cost,std::back_inserter(tree));
    87   /// \endcode
    88   ///
    89   /// \return The cost of the found tree.
    90   ///
    91   /// \warning If kruskal is run on an \ref undirected graph, be sure that the
    92   /// map storing the tree is also undirected
    93   /// (e.g. UndirListGraph::UndirEdgeMap<bool>, otherwise the values of the
    94   /// half of the edges will not be set.
    95   ///
    96   /// \todo Discuss the case of undirected graphs: In this case the algorithm
    97   /// also require <tt>Edge</tt>s instead of <tt>UndirEdge</tt>s, as some
    98   /// people would expect. So, one should be careful not to add both of the
    99   /// <tt>Edge</tt>s belonging to a certain <tt>UndirEdge</tt>.
   100   /// (\ref kruskal() and \ref KruskalMapInput are kind enough to do so.)
   101 
   102 #ifdef DOXYGEN
   103   template <class GR, class IN, class OUT>
   104   typename IN::value_type::second_type
   105   kruskal(GR const& g, IN const& in, 
   106 	  OUT& out)
   107 #else
   108   template <class GR, class IN, class OUT>
   109   typename IN::value_type::second_type
   110   kruskal(GR const& g, IN const& in, 
   111 	  OUT& out,
   112 // 	  typename IN::value_type::first_type = typename GR::Edge()
   113 // 	  ,typename OUT::Key = OUT::Key()
   114 // 	  //,typename OUT::Key = typename GR::Edge()
   115 	  const typename IN::value_type::first_type * = 
   116 	  (const typename IN::value_type::first_type *)(0),
   117 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
   118 	  )
   119 #endif
   120   {
   121     typedef typename IN::value_type::second_type EdgeCost;
   122     typedef typename GR::template NodeMap<int> NodeIntMap;
   123     typedef typename GR::Node Node;
   124 
   125     NodeIntMap comp(g, -1);
   126     UnionFind<Node,NodeIntMap> uf(comp); 
   127       
   128     EdgeCost tot_cost = 0;
   129     for (typename IN::const_iterator p = in.begin(); 
   130 	 p!=in.end(); ++p ) {
   131       if ( uf.join(g.target((*p).first),
   132 		   g.source((*p).first)) ) {
   133 	out.set((*p).first, true);
   134 	tot_cost += (*p).second;
   135       }
   136       else {
   137 	out.set((*p).first, false);
   138       }
   139     }
   140     return tot_cost;
   141   }
   142 
   143  
   144   /// @}
   145 
   146   
   147   /* A work-around for running Kruskal with const-reference bool maps... */
   148 
   149   /// Helper class for calling kruskal with "constant" output map.
   150 
   151   /// Helper class for calling kruskal with output maps constructed
   152   /// on-the-fly.
   153   ///
   154   /// A typical examle is the following call:
   155   /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
   156   /// Here, the third argument is a temporary object (which wraps around an
   157   /// iterator with a writable bool map interface), and thus by rules of C++
   158   /// is a \c const object. To enable call like this exist this class and
   159   /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
   160   /// third argument.
   161   template<class Map>
   162   class NonConstMapWr {
   163     const Map &m;
   164   public:
   165     typedef typename Map::Key Key;
   166     typedef typename Map::Value Value;
   167 
   168     NonConstMapWr(const Map &_m) : m(_m) {}
   169 
   170     template<class Key>
   171     void set(Key const& k, Value const &v) const { m.set(k,v); }
   172   };
   173 
   174   template <class GR, class IN, class OUT>
   175   inline
   176   typename IN::value_type::second_type
   177   kruskal(GR const& g, IN const& edges, OUT const& out_map,
   178 // 	  typename IN::value_type::first_type = typename GR::Edge(),
   179 // 	  typename OUT::Key = GR::Edge()
   180 	  const typename IN::value_type::first_type * = 
   181 	  (const typename IN::value_type::first_type *)(0),
   182 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
   183 	  )
   184   {
   185     NonConstMapWr<OUT> map_wr(out_map);
   186     return kruskal(g, edges, map_wr);
   187   }  
   188 
   189   /* ** ** Input-objects ** ** */
   190 
   191   /// Kruskal's input source.
   192  
   193   /// Kruskal's input source.
   194   ///
   195   /// In most cases you possibly want to use the \ref kruskal() instead.
   196   ///
   197   /// \sa makeKruskalMapInput()
   198   ///
   199   ///\param GR The type of the graph the algorithm runs on.
   200   ///\param Map An edge map containing the cost of the edges.
   201   ///\par
   202   ///The cost type can be any type satisfying
   203   ///the STL 'LessThan comparable'
   204   ///concept if it also has an operator+() implemented. (It is necessary for
   205   ///computing the total cost of the tree).
   206   ///
   207   template<class GR, class Map>
   208   class KruskalMapInput
   209     : public std::vector< std::pair<typename GR::Edge,
   210 				    typename Map::Value> > {
   211     
   212   public:
   213     typedef std::vector< std::pair<typename GR::Edge,
   214 				   typename Map::Value> > Parent;
   215     typedef typename Parent::value_type value_type;
   216 
   217   private:
   218     class comparePair {
   219     public:
   220       bool operator()(const value_type& a,
   221 		      const value_type& b) {
   222 	return a.second < b.second;
   223       }
   224     };
   225 
   226     template<class _GR>
   227     typename enable_if<typename _GR::UndirTag,void>::type
   228     fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0) 
   229     {
   230       for(typename GR::UndirEdgeIt e(g);e!=INVALID;++e) 
   231 	push_back(value_type(typename GR::Edge(e,true), m[e]));
   232     }
   233 
   234     template<class _GR>
   235     typename disable_if<typename _GR::UndirTag,void>::type
   236     fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1) 
   237     {
   238       for(typename GR::EdgeIt e(g);e!=INVALID;++e) 
   239 	push_back(value_type(e, m[e]));
   240     }
   241     
   242     
   243   public:
   244 
   245     void sort() {
   246       std::sort(this->begin(), this->end(), comparePair());
   247     }
   248 
   249     KruskalMapInput(GR const& g, Map const& m) {
   250       fillWithEdges(g,m); 
   251       sort();
   252     }
   253   };
   254 
   255   /// Creates a KruskalMapInput object for \ref kruskal()
   256 
   257   /// It makes easier to use 
   258   /// \ref KruskalMapInput by making it unnecessary 
   259   /// to explicitly give the type of the parameters.
   260   ///
   261   /// In most cases you possibly
   262   /// want to use \ref kruskal() instead.
   263   ///
   264   ///\param g The type of the graph the algorithm runs on.
   265   ///\param m An edge map containing the cost of the edges.
   266   ///\par
   267   ///The cost type can be any type satisfying the
   268   ///STL 'LessThan Comparable'
   269   ///concept if it also has an operator+() implemented. (It is necessary for
   270   ///computing the total cost of the tree).
   271   ///
   272   ///\return An appropriate input source for \ref kruskal().
   273   ///
   274   template<class GR, class Map>
   275   inline
   276   KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
   277   {
   278     return KruskalMapInput<GR,Map>(g,m);
   279   }
   280   
   281   
   282 
   283   /* ** ** Output-objects: simple writable bool maps ** ** */
   284   
   285 
   286 
   287   /// A writable bool-map that makes a sequence of "true" keys
   288 
   289   /// A writable bool-map that creates a sequence out of keys that receives
   290   /// the value "true".
   291   ///
   292   /// \sa makeKruskalSequenceOutput()
   293   ///
   294   /// Very often, when looking for a min cost spanning tree, we want as
   295   /// output a container containing the edges of the found tree. For this
   296   /// purpose exist this class that wraps around an STL iterator with a
   297   /// writable bool map interface. When a key gets value "true" this key
   298   /// is added to sequence pointed by the iterator.
   299   ///
   300   /// A typical usage:
   301   /// \code
   302   /// std::vector<Graph::Edge> v;
   303   /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
   304   /// \endcode
   305   /// 
   306   /// For the most common case, when the input is given by a simple edge
   307   /// map and the output is a sequence of the tree edges, a special
   308   /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
   309   ///
   310   /// \warning Not a regular property map, as it doesn't know its Key
   311 
   312   template<class Iterator>
   313   class KruskalSequenceOutput {
   314     mutable Iterator it;
   315 
   316   public:
   317     typedef typename Iterator::value_type Key;
   318     typedef bool Value;
   319 
   320     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   321 
   322     template<typename Key>
   323     void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
   324   };
   325 
   326   template<class Iterator>
   327   inline
   328   KruskalSequenceOutput<Iterator>
   329   makeKruskalSequenceOutput(Iterator it) {
   330     return KruskalSequenceOutput<Iterator>(it);
   331   }
   332 
   333 
   334 
   335   /* ** ** Wrapper funtions ** ** */
   336 
   337 //   \brief Wrapper function to kruskal().
   338 //   Input is from an edge map, output is a plain bool map.
   339 //  
   340 //   Wrapper function to kruskal().
   341 //   Input is from an edge map, output is a plain bool map.
   342 //  
   343 //   \param g The type of the graph the algorithm runs on.
   344 //   \param in An edge map containing the cost of the edges.
   345 //   \par
   346 //   The cost type can be any type satisfying the
   347 //   STL 'LessThan Comparable'
   348 //   concept if it also has an operator+() implemented. (It is necessary for
   349 //   computing the total cost of the tree).
   350 //  
   351 //   \retval out This must be a writable \c bool edge map.
   352 //   After running the algorithm
   353 //   this will contain the found minimum cost spanning tree: the value of an
   354 //   edge will be set to \c true if it belongs to the tree, otherwise it will
   355 //   be set to \c false. The value of each edge will be set exactly once.
   356 //  
   357 //   \return The cost of the found tree.
   358 
   359   template <class GR, class IN, class RET>
   360   inline
   361   typename IN::Value
   362   kruskal(GR const& g,
   363 	  IN const& in,
   364 	  RET &out,
   365 	  //	  typename IN::Key = typename GR::Edge(),
   366 	  //typename IN::Key = typename IN::Key (),
   367 	  //	  typename RET::Key = typename GR::Edge()
   368 	  const typename IN::Key *  = (const typename IN::Key *)(0),
   369 	  const typename RET::Key * = (const typename RET::Key *)(0)
   370 	  )
   371   {
   372     return kruskal(g,
   373 		   KruskalMapInput<GR,IN>(g,in),
   374 		   out);
   375   }
   376 
   377 //   \brief Wrapper function to kruskal().
   378 //   Input is from an edge map, output is an STL Sequence.
   379 //  
   380 //   Wrapper function to kruskal().
   381 //   Input is from an edge map, output is an STL Sequence.
   382 //  
   383 //   \param g The type of the graph the algorithm runs on.
   384 //   \param in An edge map containing the cost of the edges.
   385 //   \par
   386 //   The cost type can be any type satisfying the
   387 //   STL 'LessThan Comparable'
   388 //   concept if it also has an operator+() implemented. (It is necessary for
   389 //   computing the total cost of the tree).
   390 //  
   391 //   \retval out This must be an iteraror of an STL Container with
   392 //   <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   393 //   The algorithm copies the elements of the found tree into this sequence.
   394 //   For example, if we know that the spanning tree of the graph \c g has
   395 //   say 53 edges, then
   396 //   we can put its edges into a STL vector \c tree with a code like this.
   397 //   \code
   398 //   std::vector<Edge> tree(53);
   399 //   kruskal(g,cost,tree.begin());
   400 //   \endcode
   401 //   Or if we don't know in advance the size of the tree, we can write this.
   402 //   \code
   403 //   std::vector<Edge> tree;
   404 //   kruskal(g,cost,std::back_inserter(tree));
   405 //   \endcode
   406 //  
   407 //   \return The cost of the found tree.
   408 //  
   409 //   \bug its name does not follow the coding style.
   410 
   411   template <class GR, class IN, class RET>
   412   inline
   413   typename IN::Value
   414   kruskal(const GR& g,
   415 	  const IN& in,
   416 	  RET out,
   417 	  //,typename RET::value_type = typename GR::Edge()
   418 	  //,typename RET::value_type = typename RET::value_type()
   419 	  const typename RET::value_type * = 
   420 	  (const typename RET::value_type *)(0)
   421 	  )
   422   {
   423     KruskalSequenceOutput<RET> _out(out);
   424     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   425   }
   426  
   427   /// @}
   428 
   429 } //namespace lemon
   430 
   431 #endif //LEMON_KRUSKAL_H