lemon/maps.h
author deba
Tue, 17 Oct 2006 11:02:05 +0000
changeset 2251 37fa5f83251e
parent 2093 ff241247e157
child 2258 741995f3dbc4
permissions -rw-r--r--
Documentation for UndirGraphAdaptor
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MAPS_H
    20 #define LEMON_MAPS_H
    21 
    22 #include <iterator>
    23 #include <functional>
    24 
    25 #include <lemon/bits/utility.h>
    26 #include <lemon/bits/traits.h>
    27 
    28 ///\file
    29 ///\ingroup maps
    30 ///\brief Miscellaneous property maps
    31 ///
    32 ///\todo This file has the same name as the concept file in concept/,
    33 /// and this is not easily detectable in docs...
    34 
    35 #include <map>
    36 
    37 namespace lemon {
    38 
    39   /// \addtogroup maps
    40   /// @{
    41 
    42   /// Base class of maps.
    43 
    44   /// Base class of maps.
    45   /// It provides the necessary <tt>typedef</tt>s required by the map concept.
    46   template<typename K, typename T>
    47   class MapBase {
    48   public:
    49     ///\e
    50     typedef K Key;
    51     ///\e
    52     typedef T Value;
    53   };
    54 
    55   /// Null map. (a.k.a. DoNothingMap)
    56 
    57   /// If you have to provide a map only for its type definitions,
    58   /// or if you have to provide a writable map, but
    59   /// data written to it will sent to <tt>/dev/null</tt>...
    60   template<typename K, typename T>
    61   class NullMap : public MapBase<K, T> {
    62   public:
    63     typedef MapBase<K, T> Parent;
    64     typedef typename Parent::Key Key;
    65     typedef typename Parent::Value Value;
    66     
    67     /// Gives back a default constructed element.
    68     T operator[](const K&) const { return T(); }
    69     /// Absorbs the value.
    70     void set(const K&, const T&) {}
    71   };
    72 
    73   template <typename K, typename V> 
    74   NullMap<K, V> nullMap() {
    75     return NullMap<K, V>();
    76   }
    77 
    78 
    79   /// Constant map.
    80 
    81   /// This is a readable map which assigns a specified value to each key.
    82   /// In other aspects it is equivalent to the \ref NullMap.
    83   /// \todo set could be used to set the value.
    84   template<typename K, typename T>
    85   class ConstMap : public MapBase<K, T> {
    86   private:
    87     T v;
    88   public:
    89 
    90     typedef MapBase<K, T> Parent;
    91     typedef typename Parent::Key Key;
    92     typedef typename Parent::Value Value;
    93 
    94     /// Default constructor
    95 
    96     /// The value of the map will be uninitialized. 
    97     /// (More exactly it will be default constructed.)
    98     ConstMap() {}
    99     ///\e
   100 
   101     /// \param _v The initial value of the map.
   102     ///
   103     ConstMap(const T &_v) : v(_v) {}
   104 
   105     T operator[](const K&) const { return v; }
   106     void set(const K&, const T&) {}
   107 
   108     template<typename T1>
   109     struct rebind {
   110       typedef ConstMap<K, T1> other;
   111     };
   112 
   113     template<typename T1>
   114     ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
   115   };
   116 
   117   ///Returns a \ref ConstMap class
   118 
   119   ///This function just returns a \ref ConstMap class.
   120   ///\relates ConstMap
   121   template<typename K, typename V> 
   122   inline ConstMap<K, V> constMap(const V &v) {
   123     return ConstMap<K, V>(v);
   124   }
   125 
   126 
   127   //\todo to document later
   128   template<typename T, T v>
   129   struct Const { };
   130 
   131   //\todo to document later
   132   template<typename K, typename V, V v>
   133   class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
   134   public:
   135     typedef MapBase<K, V> Parent;
   136     typedef typename Parent::Key Key;
   137     typedef typename Parent::Value Value;
   138 
   139     ConstMap() { }
   140     V operator[](const K&) const { return v; }
   141     void set(const K&, const V&) { }
   142   };
   143 
   144   ///Returns a \ref ConstMap class
   145 
   146   ///This function just returns a \ref ConstMap class.
   147   ///\relates ConstMap
   148   template<typename K, typename V, V v> 
   149   inline ConstMap<K, Const<V, v> > constMap() {
   150     return ConstMap<K, Const<V, v> >();
   151   }
   152 
   153   /// \c std::map wrapper
   154 
   155   /// This is essentially a wrapper for \c std::map. With addition that
   156   /// you can specify a default value different from \c Value() .
   157   ///
   158   /// \todo Provide allocator parameter...
   159   template <typename K, typename T, typename Compare = std::less<K> >
   160   class StdMap : public std::map<K, T, Compare> {
   161     typedef std::map<K, T, Compare> parent;
   162     T v;
   163     typedef typename parent::value_type PairType;
   164 
   165   public:
   166     ///\e
   167     typedef K Key;
   168     ///\e
   169     typedef T Value;
   170     ///\e
   171     typedef T& Reference;
   172     ///\e
   173     typedef const T& ConstReference;
   174 
   175 
   176     StdMap() : v() {}
   177     /// Constructor with specified default value
   178     StdMap(const T& _v) : v(_v) {}
   179 
   180     /// \brief Constructs the map from an appropriate std::map.
   181     ///
   182     /// \warning Inefficient: copies the content of \c m !
   183     StdMap(const parent &m) : parent(m) {}
   184     /// \brief Constructs the map from an appropriate std::map, and explicitly
   185     /// specifies a default value.
   186     ///
   187     /// \warning Inefficient: copies the content of \c m !
   188     StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
   189     
   190     template<typename T1, typename Comp1>
   191     StdMap(const StdMap<Key, T1,Comp1> &m, const T &_v) { 
   192       //FIXME; 
   193     }
   194 
   195     Reference operator[](const Key &k) {
   196       return insert(PairType(k,v)).first -> second;
   197     }
   198 
   199     ConstReference operator[](const Key &k) const {
   200       typename parent::iterator i = lower_bound(k);
   201       if (i == parent::end() || parent::key_comp()(k, (*i).first))
   202 	return v;
   203       return (*i).second;
   204     }
   205     void set(const Key &k, const T &t) {
   206       parent::operator[](k) = t;
   207     }
   208 
   209     /// Changes the default value of the map.
   210     /// \return Returns the previous default value.
   211     ///
   212     /// \warning The value of some keys (which has already been queried, but
   213     /// the value has been unchanged from the default) may change!
   214     T setDefault(const T &_v) { T old=v; v=_v; return old; }
   215 
   216     template<typename T1>
   217     struct rebind {
   218       typedef StdMap<Key, T1,Compare> other;
   219     };
   220   };
   221 
   222   /// @}
   223 
   224   /// \addtogroup map_adaptors
   225   /// @{
   226 
   227   /// \brief Identity mapping.
   228   ///
   229   /// This mapping gives back the given key as value without any
   230   /// modification. 
   231   template <typename T>
   232   class IdentityMap : public MapBase<T, T> {
   233   public:
   234     typedef MapBase<T, T> Parent;
   235     typedef typename Parent::Key Key;
   236     typedef typename Parent::Value Value;
   237 
   238     const T& operator[](const T& t) const {
   239       return t;
   240     }
   241   };
   242 
   243   ///Returns an \ref IdentityMap class
   244 
   245   ///This function just returns an \ref IdentityMap class.
   246   ///\relates IdentityMap
   247   template<typename T>
   248   inline IdentityMap<T> identityMap() {
   249     return IdentityMap<T>();
   250   }
   251   
   252 
   253   ///Convert the \c Value of a map to another type.
   254 
   255   ///This \ref concept::ReadMap "read only map"
   256   ///converts the \c Value of a maps to type \c T.
   257   ///Its \c Key is inherited from \c M.
   258   template <typename M, typename T> 
   259   class ConvertMap : public MapBase<typename M::Key, T> {
   260     const M& m;
   261   public:
   262     typedef MapBase<typename M::Key, T> Parent;
   263     typedef typename Parent::Key Key;
   264     typedef typename Parent::Value Value;
   265 
   266     ///Constructor
   267 
   268     ///Constructor
   269     ///\param _m is the underlying map
   270     ConvertMap(const M &_m) : m(_m) {};
   271 
   272     /// \brief The subscript operator.
   273     ///
   274     /// The subscript operator.
   275     /// \param k The key
   276     /// \return The target of the edge 
   277     Value operator[](const Key& k) const {return m[k];}
   278   };
   279   
   280   ///Returns an \ref ConvertMap class
   281 
   282   ///This function just returns an \ref ConvertMap class.
   283   ///\relates ConvertMap
   284   ///\todo The order of the template parameters are changed.
   285   template<typename T, typename M>
   286   inline ConvertMap<M, T> convertMap(const M &m) {
   287     return ConvertMap<M, T>(m);
   288   }
   289 
   290   ///Simple wrapping of the map
   291 
   292   ///This \ref concept::ReadMap "read only map" returns the simple
   293   ///wrapping of the given map. Sometimes the reference maps cannot be
   294   ///combined with simple read maps. This map adaptor wraps the given
   295   ///map to simple read map.
   296   template<typename M> 
   297   class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
   298     const M& m;
   299 
   300   public:
   301     typedef MapBase<typename M::Key, typename M::Value> Parent;
   302     typedef typename Parent::Key Key;
   303     typedef typename Parent::Value Value;
   304 
   305     ///Constructor
   306     SimpleMap(const M &_m) : m(_m) {};
   307     Value operator[](Key k) const {return m[k];}
   308   };
   309 
   310   ///Simple writeable wrapping of the map
   311 
   312   ///This \ref concept::ReadMap "read only map" returns the simple
   313   ///wrapping of the given map. Sometimes the reference maps cannot be
   314   ///combined with simple read-write maps. This map adaptor wraps the
   315   ///given map to simple read-write map.
   316   template<typename M> 
   317   class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
   318     M& m;
   319 
   320   public:
   321     typedef MapBase<typename M::Key, typename M::Value> Parent;
   322     typedef typename Parent::Key Key;
   323     typedef typename Parent::Value Value;
   324 
   325     ///Constructor
   326     SimpleWriteMap(M &_m) : m(_m) {};
   327     Value operator[](Key k) const {return m[k];}
   328     void set(Key k, const Value& c) { m.set(k, c); }
   329   };
   330 
   331   ///Sum of two maps
   332 
   333   ///This \ref concept::ReadMap "read only map" returns the sum of the two
   334   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   335   ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
   336 
   337   template<typename M1, typename M2> 
   338   class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
   339     const M1& m1;
   340     const M2& m2;
   341 
   342   public:
   343     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   344     typedef typename Parent::Key Key;
   345     typedef typename Parent::Value Value;
   346 
   347     ///Constructor
   348     AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   349     Value operator[](Key k) const {return m1[k]+m2[k];}
   350   };
   351   
   352   ///Returns an \ref AddMap class
   353 
   354   ///This function just returns an \ref AddMap class.
   355   ///\todo How to call these type of functions?
   356   ///
   357   ///\relates AddMap
   358   ///\todo Wrong scope in Doxygen when \c \\relates is used
   359   template<typename M1, typename M2> 
   360   inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
   361     return AddMap<M1, M2>(m1,m2);
   362   }
   363 
   364   ///Shift a map with a constant.
   365 
   366   ///This \ref concept::ReadMap "read only map" returns the sum of the
   367   ///given map and a constant value.
   368   ///Its \c Key and \c Value is inherited from \c M.
   369   ///
   370   ///Actually,
   371   ///\code
   372   ///  ShiftMap<X> sh(x,v);
   373   ///\endcode
   374   ///is equivalent with
   375   ///\code
   376   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   377   ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   378   ///\endcode
   379   template<typename M, typename C = typename M::Value> 
   380   class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
   381     const M& m;
   382     C v;
   383   public:
   384     typedef MapBase<typename M::Key, typename M::Value> Parent;
   385     typedef typename Parent::Key Key;
   386     typedef typename Parent::Value Value;
   387 
   388     ///Constructor
   389 
   390     ///Constructor
   391     ///\param _m is the undelying map
   392     ///\param _v is the shift value
   393     ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
   394     Value operator[](Key k) const {return m[k] + v;}
   395   };
   396 
   397   ///Shift a map with a constant.
   398 
   399   ///This \ref concept::ReadWriteMap "read-write map" returns the sum of the
   400   ///given map and a constant value. It makes also possible to write the map.
   401   ///Its \c Key and \c Value is inherited from \c M.
   402   ///
   403   ///Actually,
   404   ///\code
   405   ///  ShiftMap<X> sh(x,v);
   406   ///\endcode
   407   ///is equivalent with
   408   ///\code
   409   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   410   ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   411   ///\endcode
   412   template<typename M, typename C = typename M::Value> 
   413   class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
   414     M& m;
   415     C v;
   416   public:
   417     typedef MapBase<typename M::Key, typename M::Value> Parent;
   418     typedef typename Parent::Key Key;
   419     typedef typename Parent::Value Value;
   420 
   421     ///Constructor
   422 
   423     ///Constructor
   424     ///\param _m is the undelying map
   425     ///\param _v is the shift value
   426     ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
   427     Value operator[](Key k) const {return m[k] + v;}
   428     void set(Key k, const Value& c) { m.set(k, c - v); }
   429   };
   430   
   431   ///Returns an \ref ShiftMap class
   432 
   433   ///This function just returns an \ref ShiftMap class.
   434   ///\relates ShiftMap
   435   ///\todo A better name is required.
   436   template<typename M, typename C> 
   437   inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
   438     return ShiftMap<M, C>(m,v);
   439   }
   440 
   441   template<typename M, typename C> 
   442   inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
   443     return ShiftWriteMap<M, C>(m,v);
   444   }
   445 
   446   ///Difference of two maps
   447 
   448   ///This \ref concept::ReadMap "read only map" returns the difference
   449   ///of the values of the two
   450   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   451   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   452 
   453   template<typename M1, typename M2> 
   454   class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
   455     const M1& m1;
   456     const M2& m2;
   457   public:
   458     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   459     typedef typename Parent::Key Key;
   460     typedef typename Parent::Value Value;
   461 
   462     ///Constructor
   463     SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   464     Value operator[](Key k) const {return m1[k]-m2[k];}
   465   };
   466   
   467   ///Returns a \ref SubMap class
   468 
   469   ///This function just returns a \ref SubMap class.
   470   ///
   471   ///\relates SubMap
   472   template<typename M1, typename M2> 
   473   inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
   474     return SubMap<M1, M2>(m1, m2);
   475   }
   476 
   477   ///Product of two maps
   478 
   479   ///This \ref concept::ReadMap "read only map" returns the product of the
   480   ///values of the two
   481   ///given
   482   ///maps. Its \c Key and \c Value will be inherited from \c M1.
   483   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   484 
   485   template<typename M1, typename M2> 
   486   class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
   487     const M1& m1;
   488     const M2& m2;
   489   public:
   490     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   491     typedef typename Parent::Key Key;
   492     typedef typename Parent::Value Value;
   493 
   494     ///Constructor
   495     MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   496     Value operator[](Key k) const {return m1[k]*m2[k];}
   497   };
   498   
   499   ///Returns a \ref MulMap class
   500 
   501   ///This function just returns a \ref MulMap class.
   502   ///\relates MulMap
   503   template<typename M1, typename M2> 
   504   inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
   505     return MulMap<M1, M2>(m1,m2);
   506   }
   507  
   508   ///Scales a maps with a constant.
   509 
   510   ///This \ref concept::ReadMap "read only map" returns the value of the
   511   ///given map multiplied from the left side with a constant value.
   512   ///Its \c Key and \c Value is inherited from \c M.
   513   ///
   514   ///Actually,
   515   ///\code
   516   ///  ScaleMap<X> sc(x,v);
   517   ///\endcode
   518   ///is equivalent with
   519   ///\code
   520   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   521   ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
   522   ///\endcode
   523   template<typename M, typename C = typename M::Value> 
   524   class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
   525     const M& m;
   526     C v;
   527   public:
   528     typedef MapBase<typename M::Key, typename M::Value> Parent;
   529     typedef typename Parent::Key Key;
   530     typedef typename Parent::Value Value;
   531 
   532     ///Constructor
   533 
   534     ///Constructor
   535     ///\param _m is the undelying map
   536     ///\param _v is the scaling value
   537     ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
   538     Value operator[](Key k) const {return v * m[k];}
   539   };
   540 
   541   ///Scales a maps with a constant.
   542 
   543   ///This \ref concept::ReadWriteMap "read-write map" returns the value of the
   544   ///given map multiplied from the left side with a constant value. It can
   545   ///be used as write map also if the given multiplier is not zero.
   546   ///Its \c Key and \c Value is inherited from \c M.
   547   template<typename M, typename C = typename M::Value> 
   548   class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
   549     M& m;
   550     C v;
   551   public:
   552     typedef MapBase<typename M::Key, typename M::Value> Parent;
   553     typedef typename Parent::Key Key;
   554     typedef typename Parent::Value Value;
   555 
   556     ///Constructor
   557 
   558     ///Constructor
   559     ///\param _m is the undelying map
   560     ///\param _v is the scaling value
   561     ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
   562     Value operator[](Key k) const {return v * m[k];}
   563     void set(Key k, const Value& c) { m.set(k, c / v);}
   564   };
   565   
   566   ///Returns an \ref ScaleMap class
   567 
   568   ///This function just returns an \ref ScaleMap class.
   569   ///\relates ScaleMap
   570   ///\todo A better name is required.
   571   template<typename M, typename C> 
   572   inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
   573     return ScaleMap<M, C>(m,v);
   574   }
   575 
   576   template<typename M, typename C> 
   577   inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) {
   578     return ScaleWriteMap<M, C>(m,v);
   579   }
   580 
   581   ///Quotient of two maps
   582 
   583   ///This \ref concept::ReadMap "read only map" returns the quotient of the
   584   ///values of the two
   585   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   586   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   587 
   588   template<typename M1, typename M2> 
   589   class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
   590     const M1& m1;
   591     const M2& m2;
   592   public:
   593     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   594     typedef typename Parent::Key Key;
   595     typedef typename Parent::Value Value;
   596 
   597     ///Constructor
   598     DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   599     Value operator[](Key k) const {return m1[k]/m2[k];}
   600   };
   601   
   602   ///Returns a \ref DivMap class
   603 
   604   ///This function just returns a \ref DivMap class.
   605   ///\relates DivMap
   606   template<typename M1, typename M2> 
   607   inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
   608     return DivMap<M1, M2>(m1,m2);
   609   }
   610   
   611   ///Composition of two maps
   612 
   613   ///This \ref concept::ReadMap "read only map" returns the composition of
   614   ///two
   615   ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
   616   ///of \c M2,
   617   ///then for
   618   ///\code
   619   ///  ComposeMap<M1, M2> cm(m1,m2);
   620   ///\endcode
   621   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
   622   ///
   623   ///Its \c Key is inherited from \c M2 and its \c Value is from
   624   ///\c M1.
   625   ///The \c M2::Value must be convertible to \c M1::Key.
   626   ///\todo Check the requirements.
   627 
   628   template <typename M1, typename M2> 
   629   class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
   630     const M1& m1;
   631     const M2& m2;
   632   public:
   633     typedef MapBase<typename M2::Key, typename M1::Value> Parent;
   634     typedef typename Parent::Key Key;
   635     typedef typename Parent::Value Value;
   636 
   637     ///Constructor
   638     ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   639     
   640     typename MapTraits<M1>::ConstReturnValue
   641     operator[](Key k) const {return m1[m2[k]];}
   642   };
   643   ///Returns a \ref ComposeMap class
   644 
   645   ///This function just returns a \ref ComposeMap class.
   646   ///
   647   ///\relates ComposeMap
   648   template <typename M1, typename M2> 
   649   inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
   650     return ComposeMap<M1, M2>(m1,m2);
   651   }
   652   
   653   ///Combines of two maps using an STL (binary) functor.
   654 
   655   ///Combines of two maps using an STL (binary) functor.
   656   ///
   657   ///
   658   ///This \ref concept::ReadMap "read only map" takes two maps and a
   659   ///binary functor and returns the composition of
   660   ///the two
   661   ///given maps unsing the functor. 
   662   ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
   663   ///and \c f is of \c F,
   664   ///then for
   665   ///\code
   666   ///  CombineMap<M1, M2,F,V> cm(m1,m2,f);
   667   ///\endcode
   668   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
   669   ///
   670   ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
   671   ///The \c M2::Value and \c M1::Value must be convertible to the corresponding
   672   ///input parameter of \c F and the return type of \c F must be convertible
   673   ///to \c V.
   674   ///\todo Check the requirements.
   675 
   676   template<typename M1, typename M2, typename F,
   677 	   typename V = typename F::result_type,
   678 	   typename NC = False> 
   679   class CombineMap : public MapBase<typename M1::Key, V> {
   680     const M1& m1;
   681     const M2& m2;
   682     F f;
   683   public:
   684     typedef MapBase<typename M1::Key, V> Parent;
   685     typedef typename Parent::Key Key;
   686     typedef typename Parent::Value Value;
   687 
   688     ///Constructor
   689     CombineMap(const M1 &_m1,const M2 &_m2,const F &_f)
   690       : m1(_m1), m2(_m2), f(_f) {};
   691     Value operator[](Key k) const {return f(m1[k],m2[k]);}
   692   };
   693   
   694   ///Returns a \ref CombineMap class
   695 
   696   ///This function just returns a \ref CombineMap class.
   697   ///
   698   ///Only the first template parameter (the value type) must be given.
   699   ///
   700   ///For example if \c m1 and \c m2 are both \c double valued maps, then 
   701   ///\code
   702   ///combineMap<double>(m1,m2,std::plus<double>)
   703   ///\endcode
   704   ///is equivalent with
   705   ///\code
   706   ///addMap(m1,m2)
   707   ///\endcode
   708   ///
   709   ///\relates CombineMap
   710   template<typename M1, typename M2, typename F, typename V> 
   711   inline CombineMap<M1, M2, F, V> 
   712   combineMap(const M1& m1,const M2& m2, const F& f) {
   713     return CombineMap<M1, M2, F, V>(m1,m2,f);
   714   }
   715 
   716   template<typename M1, typename M2, typename F> 
   717   inline CombineMap<M1, M2, F, typename F::result_type> 
   718   combineMap(const M1& m1, const M2& m2, const F& f) {
   719     return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
   720   }
   721 
   722   template<typename M1, typename M2, typename K1, typename K2, typename V> 
   723   inline CombineMap<M1, M2, V (*)(K1, K2), V> 
   724   combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
   725     return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
   726   }
   727 
   728   ///Negative value of a map
   729 
   730   ///This \ref concept::ReadMap "read only map" returns the negative
   731   ///value of the
   732   ///value returned by the
   733   ///given map. Its \c Key and \c Value will be inherited from \c M.
   734   ///The unary \c - operator must be defined for \c Value, of course.
   735 
   736   template<typename M> 
   737   class NegMap : public MapBase<typename M::Key, typename M::Value> {
   738     const M& m;
   739   public:
   740     typedef MapBase<typename M::Key, typename M::Value> Parent;
   741     typedef typename Parent::Key Key;
   742     typedef typename Parent::Value Value;
   743 
   744     ///Constructor
   745     NegMap(const M &_m) : m(_m) {};
   746     Value operator[](Key k) const {return -m[k];}
   747   };
   748   
   749   ///Negative value of a map
   750 
   751   ///This \ref concept::ReadWriteMap "read-write map" returns the negative
   752   ///value of the value returned by the
   753   ///given map. Its \c Key and \c Value will be inherited from \c M.
   754   ///The unary \c - operator must be defined for \c Value, of course.
   755 
   756   template<typename M> 
   757   class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
   758     M& m;
   759   public:
   760     typedef MapBase<typename M::Key, typename M::Value> Parent;
   761     typedef typename Parent::Key Key;
   762     typedef typename Parent::Value Value;
   763 
   764     ///Constructor
   765     NegWriteMap(M &_m) : m(_m) {};
   766     Value operator[](Key k) const {return -m[k];}
   767     void set(Key k, const Value& v) { m.set(k, -v); }
   768   };
   769 
   770   ///Returns a \ref NegMap class
   771 
   772   ///This function just returns a \ref NegMap class.
   773   ///\relates NegMap
   774   template <typename M> 
   775   inline NegMap<M> negMap(const M &m) {
   776     return NegMap<M>(m);
   777   }
   778 
   779   template <typename M> 
   780   inline NegWriteMap<M> negMap(M &m) {
   781     return NegWriteMap<M>(m);
   782   }
   783 
   784   ///Absolute value of a map
   785 
   786   ///This \ref concept::ReadMap "read only map" returns the absolute value
   787   ///of the
   788   ///value returned by the
   789   ///given map. Its \c Key and \c Value will be inherited
   790   ///from <tt>M</tt>. <tt>Value</tt>
   791   ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
   792   ///operator must be defined for it, of course.
   793   ///
   794   ///\bug We need a unified way to handle the situation below:
   795   ///\code
   796   ///  struct _UnConvertible {};
   797   ///  template<class A> inline A t_abs(A a) {return _UnConvertible();}
   798   ///  template<> inline int t_abs<>(int n) {return abs(n);}
   799   ///  template<> inline long int t_abs<>(long int n) {return labs(n);}
   800   ///  template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
   801   ///  template<> inline float t_abs<>(float n) {return fabsf(n);}
   802   ///  template<> inline double t_abs<>(double n) {return fabs(n);}
   803   ///  template<> inline long double t_abs<>(long double n) {return fabsl(n);}
   804   ///\endcode
   805   
   806 
   807   template<typename M> 
   808   class AbsMap : public MapBase<typename M::Key, typename M::Value> {
   809     const M& m;
   810   public:
   811     typedef MapBase<typename M::Key, typename M::Value> Parent;
   812     typedef typename Parent::Key Key;
   813     typedef typename Parent::Value Value;
   814 
   815     ///Constructor
   816     AbsMap(const M &_m) : m(_m) {};
   817     Value operator[](Key k) const {
   818       Value tmp = m[k]; 
   819       return tmp >= 0 ? tmp : -tmp;
   820     }
   821 
   822   };
   823   
   824   ///Returns a \ref AbsMap class
   825 
   826   ///This function just returns a \ref AbsMap class.
   827   ///\relates AbsMap
   828   template<typename M> 
   829   inline AbsMap<M> absMap(const M &m) {
   830     return AbsMap<M>(m);
   831   }
   832 
   833   ///Converts an STL style functor to a map
   834 
   835   ///This \ref concept::ReadMap "read only map" returns the value
   836   ///of a
   837   ///given map.
   838   ///
   839   ///Template parameters \c K and \c V will become its
   840   ///\c Key and \c Value. They must be given explicitely
   841   ///because a functor does not provide such typedefs.
   842   ///
   843   ///Parameter \c F is the type of the used functor.
   844   
   845 
   846   template<typename F, 
   847 	   typename K = typename F::argument_type, 
   848 	   typename V = typename F::result_type,
   849 	   typename NC = False> 
   850   class FunctorMap : public MapBase<K, V> {
   851     F f;
   852   public:
   853     typedef MapBase<K, V> Parent;
   854     typedef typename Parent::Key Key;
   855     typedef typename Parent::Value Value;
   856 
   857     ///Constructor
   858     FunctorMap(const F &_f) : f(_f) {}
   859 
   860     Value operator[](Key k) const { return f(k);}
   861   };
   862   
   863   ///Returns a \ref FunctorMap class
   864 
   865   ///This function just returns a \ref FunctorMap class.
   866   ///
   867   ///The third template parameter isn't necessary to be given.
   868   ///\relates FunctorMap
   869   template<typename K, typename V, typename F> inline 
   870   FunctorMap<F, K, V> functorMap(const F &f) {
   871     return FunctorMap<F, K, V>(f);
   872   }
   873 
   874   template <typename F> inline 
   875   FunctorMap<F, typename F::argument_type, typename F::result_type> 
   876   functorMap(const F &f) {
   877     return FunctorMap<F, typename F::argument_type, 
   878       typename F::result_type>(f);
   879   }
   880 
   881   template <typename K, typename V> inline 
   882   FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
   883     return FunctorMap<V (*)(K), K, V>(f);
   884   }
   885 
   886 
   887   ///Converts a map to an STL style (unary) functor
   888 
   889   ///This class Converts a map to an STL style (unary) functor.
   890   ///that is it provides an <tt>operator()</tt> to read its values.
   891   ///
   892   ///For the sake of convenience it also works as
   893   ///a ususal \ref concept::ReadMap "readable map",
   894   ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
   895 
   896   template <typename M> 
   897   class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
   898     const M& m;
   899   public:
   900     typedef MapBase<typename M::Key, typename M::Value> Parent;
   901     typedef typename Parent::Key Key;
   902     typedef typename Parent::Value Value;
   903 
   904     ///\e
   905     typedef typename M::Key argument_type;
   906     ///\e
   907     typedef typename M::Value result_type;
   908 
   909     ///Constructor
   910     MapFunctor(const M &_m) : m(_m) {};
   911     ///Returns a value of the map
   912     Value operator()(Key k) const {return m[k];}
   913     ///\e
   914     Value operator[](Key k) const {return m[k];}
   915   };
   916   
   917   ///Returns a \ref MapFunctor class
   918 
   919   ///This function just returns a \ref MapFunctor class.
   920   ///\relates MapFunctor
   921   template<typename M> 
   922   inline MapFunctor<M> mapFunctor(const M &m) {
   923     return MapFunctor<M>(m);
   924   }
   925 
   926   ///Applies all map setting operations to two maps
   927 
   928   ///This map has two \ref concept::ReadMap "readable map"
   929   ///parameters and each read request will be passed just to the
   930   ///first map. This class is the just readable map type of the ForkWriteMap.
   931   ///
   932   ///The \c Key and \c Value will be inherited from \c M1.
   933   ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
   934 
   935   template<typename  M1, typename M2> 
   936   class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
   937     const M1& m1;
   938     const M2& m2;
   939   public:
   940     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   941     typedef typename Parent::Key Key;
   942     typedef typename Parent::Value Value;
   943 
   944     ///Constructor
   945     ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {};
   946     Value operator[](Key k) const {return m1[k];}
   947   };
   948 
   949 
   950   ///Applies all map setting operations to two maps
   951 
   952   ///This map has two \ref concept::WriteMap "writable map"
   953   ///parameters and each write request will be passed to both of them.
   954   ///If \c M1 is also \ref concept::ReadMap "readable",
   955   ///then the read operations will return the
   956   ///corresponding values of \c M1.
   957   ///
   958   ///The \c Key and \c Value will be inherited from \c M1.
   959   ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
   960 
   961   template<typename  M1, typename M2> 
   962   class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> {
   963     M1& m1;
   964     M2& m2;
   965   public:
   966     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   967     typedef typename Parent::Key Key;
   968     typedef typename Parent::Value Value;
   969 
   970     ///Constructor
   971     ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {};
   972     Value operator[](Key k) const {return m1[k];}
   973     void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
   974   };
   975   
   976   ///Returns an \ref ForkMap class
   977 
   978   ///This function just returns an \ref ForkMap class.
   979   ///\todo How to call these type of functions?
   980   ///
   981   ///\relates ForkMap
   982   ///\todo Wrong scope in Doxygen when \c \\relates is used
   983   template <typename M1, typename M2> 
   984   inline ForkMap<M1, M2> forkMap(const M1 &m1, const M2 &m2) {
   985     return ForkMap<M1, M2>(m1,m2);
   986   }
   987 
   988   template <typename M1, typename M2> 
   989   inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) {
   990     return ForkWriteMap<M1, M2>(m1,m2);
   991   }
   992 
   993 
   994   
   995   /* ************* BOOL MAPS ******************* */
   996   
   997   ///Logical 'not' of a map
   998   
   999   ///This bool \ref concept::ReadMap "read only map" returns the 
  1000   ///logical negation of
  1001   ///value returned by the
  1002   ///given map. Its \c Key and will be inherited from \c M,
  1003   ///its Value is <tt>bool</tt>.
  1004 
  1005   template <typename M> 
  1006   class NotMap : public MapBase<typename M::Key, bool> {
  1007     const M& m;
  1008   public:
  1009     typedef MapBase<typename M::Key, bool> Parent;
  1010     typedef typename Parent::Key Key;
  1011     typedef typename Parent::Value Value;
  1012 
  1013     /// Constructor
  1014     NotMap(const M &_m) : m(_m) {};
  1015     Value operator[](Key k) const {return !m[k];}
  1016   };
  1017 
  1018   ///Logical 'not' of a map with writing possibility
  1019   
  1020   ///This bool \ref concept::ReadWriteMap "read-write map" returns the 
  1021   ///logical negation of value returned by the given map. It is setted
  1022   ///then the negation of the value be setted to the original map.
  1023   ///Its \c Key and will be inherited from \c M,
  1024   ///its Value is <tt>bool</tt>.
  1025   template <typename M> 
  1026   class NotWriteMap : public MapBase<typename M::Key, bool> {
  1027     M& m;
  1028   public:
  1029     typedef MapBase<typename M::Key, bool> Parent;
  1030     typedef typename Parent::Key Key;
  1031     typedef typename Parent::Value Value;
  1032 
  1033     /// Constructor
  1034     NotWriteMap(M &_m) : m(_m) {};
  1035     Value operator[](Key k) const {return !m[k];}
  1036     void set(Key k, bool v) { m.set(k, !v); }
  1037   };
  1038   
  1039   ///Returns a \ref NotMap class
  1040   
  1041   ///This function just returns a \ref NotMap class.
  1042   ///\relates NotMap
  1043   template <typename M> 
  1044   inline NotMap<M> notMap(const M &m) {
  1045     return NotMap<M>(m);
  1046   }
  1047 
  1048   template <typename M> 
  1049   inline NotWriteMap<M> notMap(M &m) {
  1050     return NotWriteMap<M>(m);
  1051   }
  1052 
  1053   namespace _maps_bits {
  1054     template <typename Value>
  1055     struct Identity {
  1056       typedef Value argument_type;
  1057       typedef Value result_type;
  1058       Value operator()(const Value& val) {
  1059 	return val;
  1060       }
  1061     };
  1062   }
  1063   
  1064 
  1065   /// \brief Writable bool map for store each true assigned elements.
  1066   ///
  1067   /// Writable bool map for store each true assigned elements. It will
  1068   /// copies all the true setted keys to the given iterator.
  1069   ///
  1070   /// \note The container of the iterator should contain space 
  1071   /// for each element.
  1072   ///
  1073   /// The next example shows how can you write the nodes directly
  1074   /// to the standard output.
  1075   ///\code
  1076   /// typedef IdMap<UGraph, UEdge> UEdgeIdMap;
  1077   /// UEdgeIdMap uedgeId(ugraph);
  1078   ///
  1079   /// typedef MapFunctor<UEdgeIdMap> UEdgeIdFunctor;
  1080   /// UEdgeIdFunctor uedgeIdFunctor(uedgeId);
  1081   ///
  1082   /// StoreBoolMap<ostream_iterator<int>, UEdgeIdFunctor> 
  1083   ///   writerMap(ostream_iterator<int>(cout, " "), uedgeIdFunctor);
  1084   ///
  1085   /// prim(ugraph, cost, writerMap);
  1086   ///\endcode
  1087   template <typename _Iterator, 
  1088             typename _Functor = 
  1089             _maps_bits::Identity<typename std::iterator_traits<_Iterator>::value_type> >
  1090   class StoreBoolMap {
  1091   public:
  1092     typedef _Iterator Iterator;
  1093 
  1094     typedef typename _Functor::argument_type Key;
  1095     typedef bool Value;
  1096 
  1097     typedef _Functor Functor;
  1098 
  1099     /// Constructor
  1100     StoreBoolMap(Iterator it, const Functor& functor = Functor()) 
  1101       : _begin(it), _end(it), _functor(functor) {}
  1102 
  1103     /// Gives back the given first setted iterator.
  1104     Iterator begin() const {
  1105       return _begin;
  1106     }
  1107  
  1108     /// Gives back the iterator after the last setted.
  1109     Iterator end() const {
  1110       return _end;
  1111     }
  1112 
  1113     /// Setter function of the map
  1114     void set(const Key& key, Value value) {
  1115       if (value) {
  1116 	*_end++ = _functor(key);
  1117       }
  1118     }
  1119     
  1120   private:
  1121     Iterator _begin, _end;
  1122     Functor _functor;
  1123   };
  1124 
  1125   /// \brief Writable bool map for store each true assigned elements in 
  1126   /// a back insertable container.
  1127   ///
  1128   /// Writable bool map for store each true assigned elements in a back 
  1129   /// insertable container. It will push back all the true setted keys into
  1130   /// the container. It can be used to retrieve the items into a standard
  1131   /// container. The next example shows how can you store the undirected
  1132   /// edges in a vector with prim algorithm.
  1133   ///
  1134   ///\code
  1135   /// vector<UEdge> span_tree_uedges;
  1136   /// BackInserterBoolMap<vector<UEdge> > inserter_map(span_tree_uedges);
  1137   /// prim(ugraph, cost, inserter_map);
  1138   ///\endcode
  1139   template <typename Container,
  1140             typename Functor =
  1141             _maps_bits::Identity<typename Container::value_type> >
  1142   class BackInserterBoolMap {
  1143   public:
  1144     typedef typename Container::value_type Key;
  1145     typedef bool Value;
  1146 
  1147     /// Constructor
  1148     BackInserterBoolMap(Container& _container, 
  1149                         const Functor& _functor = Functor()) 
  1150       : container(_container), functor(_functor) {}
  1151 
  1152     /// Setter function of the map
  1153     void set(const Key& key, Value value) {
  1154       if (value) {
  1155 	container.push_back(functor(key));
  1156       }
  1157     }
  1158     
  1159   private:
  1160     Container& container;
  1161     Functor functor;
  1162   };
  1163 
  1164   /// \brief Writable bool map for store each true assigned elements in 
  1165   /// a front insertable container.
  1166   ///
  1167   /// Writable bool map for store each true assigned elements in a front 
  1168   /// insertable container. It will push front all the true setted keys into
  1169   /// the container. For example see the BackInserterBoolMap.
  1170   template <typename Container,
  1171             typename Functor =
  1172             _maps_bits::Identity<typename Container::value_type> >
  1173   class FrontInserterBoolMap {
  1174   public:
  1175     typedef typename Container::value_type Key;
  1176     typedef bool Value;
  1177 
  1178     /// Constructor
  1179     FrontInserterBoolMap(Container& _container,
  1180                          const Functor& _functor = Functor()) 
  1181       : container(_container), functor(_functor) {}
  1182 
  1183     /// Setter function of the map
  1184     void set(const Key& key, Value value) {
  1185       if (value) {
  1186 	container.push_front(key);
  1187       }
  1188     }
  1189     
  1190   private:
  1191     Container& container;    
  1192     Functor functor;
  1193   };
  1194 
  1195   /// \brief Writable bool map for store each true assigned elements in 
  1196   /// an insertable container.
  1197   ///
  1198   /// Writable bool map for store each true assigned elements in an 
  1199   /// insertable container. It will insert all the true setted keys into
  1200   /// the container. If you want to store the cut edges of the strongly
  1201   /// connected components in a set you can use the next code:
  1202   ///
  1203   ///\code
  1204   /// set<Edge> cut_edges;
  1205   /// InserterBoolMap<set<Edge> > inserter_map(cut_edges);
  1206   /// stronglyConnectedCutEdges(graph, cost, inserter_map);
  1207   ///\endcode
  1208   template <typename Container,
  1209             typename Functor =
  1210             _maps_bits::Identity<typename Container::value_type> >
  1211   class InserterBoolMap {
  1212   public:
  1213     typedef typename Container::value_type Key;
  1214     typedef bool Value;
  1215 
  1216     /// Constructor
  1217     InserterBoolMap(Container& _container, typename Container::iterator _it,
  1218                     const Functor& _functor = Functor()) 
  1219       : container(_container), it(_it), functor(_functor) {}
  1220 
  1221     /// Constructor
  1222     InserterBoolMap(Container& _container, const Functor& _functor = Functor())
  1223       : container(_container), it(_container.end()), functor(_functor) {}
  1224 
  1225     /// Setter function of the map
  1226     void set(const Key& key, Value value) {
  1227       if (value) {
  1228 	it = container.insert(it, key);
  1229         ++it;
  1230       }
  1231     }
  1232     
  1233   private:
  1234     Container& container;
  1235     typename Container::iterator it;
  1236     Functor functor;
  1237   };
  1238 
  1239   /// \brief Fill the true setted elements with a given value.
  1240   ///
  1241   /// Writable bool map for fill the true setted elements with a given value.
  1242   /// The value can be setted 
  1243   /// the container.
  1244   ///
  1245   /// The next code finds the connected components of the undirected graph
  1246   /// and stores it in the \c comp map:
  1247   ///\code
  1248   /// typedef UGraph::NodeMap<int> ComponentMap;
  1249   /// ComponentMap comp(ugraph);
  1250   /// typedef FillBoolMap<UGraph::NodeMap<int> > ComponentFillerMap;
  1251   /// ComponentFillerMap filler(comp, 0);
  1252   ///
  1253   /// Dfs<UGraph>::DefProcessedMap<ComponentFillerMap>::Create dfs(ugraph);
  1254   /// dfs.processedMap(filler);
  1255   /// dfs.init();
  1256   /// for (NodeIt it(ugraph); it != INVALID; ++it) {
  1257   ///   if (!dfs.reached(it)) {
  1258   ///     dfs.addSource(it);
  1259   ///     dfs.start();
  1260   ///     ++filler.fillValue();
  1261   ///   }
  1262   /// }
  1263   ///\endcode
  1264 
  1265   template <typename Map>
  1266   class FillBoolMap {
  1267   public:
  1268     typedef typename Map::Key Key;
  1269     typedef bool Value;
  1270 
  1271     /// Constructor
  1272     FillBoolMap(Map& _map, const typename Map::Value& _fill) 
  1273       : map(_map), fill(_fill) {}
  1274 
  1275     /// Constructor
  1276     FillBoolMap(Map& _map) 
  1277       : map(_map), fill() {}
  1278 
  1279     /// Gives back the current fill value
  1280     const typename Map::Value& fillValue() const {
  1281       return fill;
  1282     } 
  1283 
  1284     /// Gives back the current fill value
  1285     typename Map::Value& fillValue() {
  1286       return fill;
  1287     } 
  1288 
  1289     /// Sets the current fill value
  1290     void fillValue(const typename Map::Value& _fill) {
  1291       fill = _fill;
  1292     } 
  1293 
  1294     /// Setter function of the map
  1295     void set(const Key& key, Value value) {
  1296       if (value) {
  1297 	map.set(key, fill);
  1298       }
  1299     }
  1300     
  1301   private:
  1302     Map& map;
  1303     typename Map::Value fill;
  1304   };
  1305 
  1306 
  1307   /// \brief Writable bool map which stores for each true assigned elements  
  1308   /// the setting order number.
  1309   ///
  1310   /// Writable bool map which stores for each true assigned elements  
  1311   /// the setting order number. It make easy to calculate the leaving
  1312   /// order of the nodes in the \ref dfs "Dfs" algorithm.
  1313   ///
  1314   ///\code
  1315   /// typedef Graph::NodeMap<int> OrderMap;
  1316   /// OrderMap order(graph);
  1317   /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
  1318   /// OrderSetterMap setter(order);
  1319   /// Dfs<Graph>::DefProcessedMap<OrderSetterMap>::Create dfs(graph);
  1320   /// dfs.processedMap(setter);
  1321   /// dfs.init();
  1322   /// for (NodeIt it(graph); it != INVALID; ++it) {
  1323   ///   if (!dfs.reached(it)) {
  1324   ///     dfs.addSource(it);
  1325   ///     dfs.start();
  1326   ///   }
  1327   /// }
  1328   ///\endcode
  1329   ///
  1330   /// The discovering order can be stored a little harder because the
  1331   /// ReachedMap should be readable in the dfs algorithm but the setting
  1332   /// order map is not readable. Now we should use the fork map:
  1333   ///
  1334   ///\code
  1335   /// typedef Graph::NodeMap<int> OrderMap;
  1336   /// OrderMap order(graph);
  1337   /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
  1338   /// OrderSetterMap setter(order);
  1339   /// typedef Graph::NodeMap<bool> StoreMap;
  1340   /// StoreMap store(graph);
  1341   ///
  1342   /// typedef ForkWriteMap<StoreMap, OrderSetterMap> ReachedMap;
  1343   /// ReachedMap reached(store, setter);
  1344   ///
  1345   /// Dfs<Graph>::DefReachedMap<ReachedMap>::Create dfs(graph);
  1346   /// dfs.reachedMap(reached);
  1347   /// dfs.init();
  1348   /// for (NodeIt it(graph); it != INVALID; ++it) {
  1349   ///   if (!dfs.reached(it)) {
  1350   ///     dfs.addSource(it);
  1351   ///     dfs.start();
  1352   ///   }
  1353   /// }
  1354   ///\endcode
  1355   template <typename Map>
  1356   class SettingOrderBoolMap {
  1357   public:
  1358     typedef typename Map::Key Key;
  1359     typedef bool Value;
  1360 
  1361     /// Constructor
  1362     SettingOrderBoolMap(Map& _map) 
  1363       : map(_map), counter(0) {}
  1364 
  1365     /// Number of setted keys.
  1366     int num() const {
  1367       return counter;
  1368     }
  1369 
  1370     /// Setter function of the map
  1371     void set(const Key& key, Value value) {
  1372       if (value) {
  1373 	map.set(key, counter++);
  1374       }
  1375     }
  1376     
  1377   private:
  1378     Map& map;
  1379     int counter;
  1380   };
  1381 
  1382   /// @}
  1383 }
  1384 
  1385 #endif // LEMON_MAPS_H