src/work/marci/bfs_dfs.h
author marci
Mon, 20 Sep 2004 17:53:33 +0000
changeset 890 3a48bc350e0f
parent 774 4297098d9677
child 921 818510fa3d99
permissions -rw-r--r--
Specialized ConstMap for defining constant maps at compile time, by klao.
Time comparision of the generic and specialized maps.
     1 // -*- c++ -*-
     2 #ifndef HUGO_BFS_DFS_H
     3 #define HUGO_BFS_DFS_H
     4 
     5 /// \ingroup galgs
     6 /// \file
     7 /// \brief Bfs and dfs iterators.
     8 ///
     9 /// This file contains bfs and dfs iterator classes.
    10 ///
    11 // /// \author Marton Makai
    12 
    13 #include <queue>
    14 #include <stack>
    15 #include <utility>
    16 
    17 #include <hugo/invalid.h>
    18 
    19 namespace hugo {
    20 
    21   /// Bfs searches for the nodes wich are not marked in 
    22   /// \c reached_map
    23   /// Reached have to be a read-write bool node-map.
    24   /// \ingroup galgs
    25   template <typename Graph, /*typename OutEdgeIt,*/ 
    26 	    typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
    27   class BfsIterator {
    28   protected:
    29     typedef typename Graph::Node Node;
    30     typedef typename Graph::Edge Edge;
    31     typedef typename Graph::OutEdgeIt OutEdgeIt;
    32     const Graph* graph;
    33     std::queue<Node> bfs_queue;
    34     ReachedMap& reached;
    35     bool b_node_newly_reached;
    36     Edge actual_edge;
    37     bool own_reached_map;
    38   public:
    39     /// In that constructor \c _reached have to be a reference 
    40     /// for a bool bode-map. The algorithm will search for the 
    41     /// initially \c false nodes 
    42     /// in a bfs order.
    43     BfsIterator(const Graph& _graph, ReachedMap& _reached) : 
    44       graph(&_graph), reached(_reached), 
    45       own_reached_map(false) { }
    46     /// The same as above, but the map storing the reached nodes 
    47     /// is constructed dynamically to everywhere false.
    48     /// \deprecated
    49     BfsIterator(const Graph& _graph) : 
    50       graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), 
    51       own_reached_map(true) { }
    52     /// The map storing the reached nodes have to be destroyed if 
    53     /// it was constructed dynamically
    54     ~BfsIterator() { if (own_reached_map) delete &reached; }
    55     /// This method markes \c s reached.
    56     /// If the queue is empty, then \c s is pushed in the bfs queue 
    57     /// and the first out-edge is processed.
    58     /// If the queue is not empty, then \c s is simply pushed.
    59     BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& pushAndSetReached(Node s) { 
    60       reached.set(s, true);
    61       if (bfs_queue.empty()) {
    62 	bfs_queue.push(s);
    63 	actual_edge=OutEdgeIt(*graph, s);
    64 	//graph->first(actual_edge, s);
    65 	if (actual_edge!=INVALID) { 
    66 	  Node w=graph->head(actual_edge);
    67 	  if (!reached[w]) {
    68 	    bfs_queue.push(w);
    69 	    reached.set(w, true);
    70 	    b_node_newly_reached=true;
    71 	  } else {
    72 	    b_node_newly_reached=false;
    73 	  }
    74 	} 
    75       } else {
    76 	bfs_queue.push(s);
    77       }
    78       return *this;
    79     }
    80     /// As \c BfsIterator<Graph, ReachedMap> works as an edge-iterator, 
    81     /// its \c operator++() iterates on the edges in a bfs order.
    82     BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& 
    83     operator++() { 
    84       if (actual_edge!=INVALID) { 
    85 	actual_edge=++OutEdgeIt(*graph, actual_edge);
    86 	//++actual_edge;
    87 	if (actual_edge!=INVALID) {
    88 	  Node w=graph->head(actual_edge);
    89 	  if (!reached[w]) {
    90 	    bfs_queue.push(w);
    91 	    reached.set(w, true);
    92 	    b_node_newly_reached=true;
    93 	  } else {
    94 	    b_node_newly_reached=false;
    95 	  }
    96 	}
    97       } else {
    98 	bfs_queue.pop(); 
    99 	if (!bfs_queue.empty()) {
   100 	  actual_edge=OutEdgeIt(*graph, bfs_queue.front());
   101 	  //graph->first(actual_edge, bfs_queue.front());
   102 	  if (actual_edge!=INVALID) {
   103 	    Node w=graph->head(actual_edge);
   104 	    if (!reached[w]) {
   105 	      bfs_queue.push(w);
   106 	      reached.set(w, true);
   107 	      b_node_newly_reached=true;
   108 	    } else {
   109 	      b_node_newly_reached=false;
   110 	    }
   111 	  }
   112 	}
   113       }
   114       return *this;
   115     }
   116     /// Returns true iff the algorithm is finished.
   117     bool finished() const { return bfs_queue.empty(); }
   118     /// The conversion operator makes for converting the bfs-iterator 
   119     /// to an \c out-edge-iterator.
   120     ///\bug Edge have to be in HUGO 0.2
   121     operator Edge() const { return actual_edge; }
   122     /// Returns if b-node has been reached just now.
   123     bool isBNodeNewlyReached() const { return b_node_newly_reached; }
   124     /// Returns if a-node is examined.
   125     bool isANodeExamined() const { return actual_edge==INVALID; }
   126     /// Returns a-node of the actual edge, so does if the edge is invalid.
   127     Node tail() const { return bfs_queue.front(); }
   128     /// \pre The actual edge have to be valid.
   129     Node head() const { return graph->head(actual_edge); }
   130     /// Guess what?
   131     /// \deprecated 
   132     const ReachedMap& getReachedMap() const { return reached; }
   133     /// Guess what?
   134     /// \deprecated
   135     const std::queue<Node>& getBfsQueue() const { return bfs_queue; }
   136   };
   137 
   138   /// Bfs searches for the nodes wich are not marked in 
   139   /// \c reached_map
   140   /// Reached have to work as a read-write bool Node-map, 
   141   /// Pred is a write edge node-map and
   142   /// Dist is a read-write node-map of integral value, have to be. 
   143   /// \ingroup galgs
   144   template <typename Graph, 
   145 	    typename ReachedMap=typename Graph::template NodeMap<bool>, 
   146 	    typename PredMap
   147 	    =typename Graph::template NodeMap<typename Graph::Edge>, 
   148 	    typename DistMap=typename Graph::template NodeMap<int> > 
   149   class Bfs : public BfsIterator<Graph, ReachedMap> {
   150     typedef BfsIterator<Graph, ReachedMap> Parent;
   151   protected:
   152     typedef typename Parent::Node Node;
   153     PredMap& pred;
   154     DistMap& dist;
   155   public:
   156     /// The algorithm will search in a bfs order for 
   157     /// the nodes which are \c false initially. 
   158     /// The constructor makes no initial changes on the maps.
   159     Bfs<Graph, ReachedMap, PredMap, DistMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred, DistMap& _dist) : 
   160       BfsIterator<Graph, ReachedMap>(_graph, _reached), 
   161       pred(_pred), dist(_dist) { }
   162     /// \c s is marked to be reached and pushed in the bfs queue.
   163     /// If the queue is empty, then the first out-edge is processed.
   164     /// If \c s was not marked previously, then 
   165     /// in addition its pred is set to be \c INVALID, and dist to \c 0. 
   166     /// if \c s was marked previuosly, then it is simply pushed.
   167     Bfs<Graph, ReachedMap, PredMap, DistMap>& push(Node s) { 
   168       if (this->reached[s]) {
   169 	Parent::pushAndSetReached(s);
   170       } else {
   171 	Parent::pushAndSetReached(s);
   172 	pred.set(s, INVALID);
   173 	dist.set(s, 0);
   174       }
   175       return *this;
   176     }
   177     /// A bfs is processed from \c s.
   178     Bfs<Graph, ReachedMap, PredMap, DistMap>& run(Node s) {
   179       push(s);
   180       while (!this->finished()) this->operator++();
   181       return *this;
   182     }
   183     /// Beside the bfs iteration, \c pred and \dist are saved in a 
   184     /// newly reached node. 
   185     Bfs<Graph, ReachedMap, PredMap, DistMap>& operator++() {
   186       Parent::operator++();
   187       if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) 
   188       {
   189 	pred.set(this->head(), this->actual_edge);
   190 	dist.set(this->head(), dist[this->tail()]);
   191       }
   192       return *this;
   193     }
   194     /// Guess what?
   195     /// \deprecated 
   196     const PredMap& getPredMap() const { return pred; }
   197     /// Guess what?
   198     /// \deprecated
   199     const DistMap& getDistMap() const { return dist; }
   200   };
   201 
   202   /// Dfs searches for the nodes wich are not marked in 
   203   /// \c reached_map
   204   /// Reached have to be a read-write bool Node-map.
   205   /// \ingroup galgs
   206   template <typename Graph, /*typename OutEdgeIt,*/ 
   207 	    typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
   208   class DfsIterator {
   209   protected:
   210     typedef typename Graph::Node Node;
   211     typedef typename Graph::Edge Edge;
   212     typedef typename Graph::OutEdgeIt OutEdgeIt;
   213     const Graph* graph;
   214     std::stack<OutEdgeIt> dfs_stack;
   215     bool b_node_newly_reached;
   216     Edge actual_edge;
   217     Node actual_node;
   218     ReachedMap& reached;
   219     bool own_reached_map;
   220   public:
   221     /// In that constructor \c _reached have to be a reference 
   222     /// for a bool node-map. The algorithm will search in a dfs order for 
   223     /// the nodes which are \c false initially
   224     DfsIterator(const Graph& _graph, ReachedMap& _reached) : 
   225       graph(&_graph), reached(_reached), 
   226       own_reached_map(false) { }
   227     /// The same as above, but the map of reached nodes is 
   228     /// constructed dynamically 
   229     /// to everywhere false.
   230     DfsIterator(const Graph& _graph) : 
   231       graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), 
   232       own_reached_map(true) { }
   233     ~DfsIterator() { if (own_reached_map) delete &reached; }
   234     /// This method markes s reached and first out-edge is processed.
   235     DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& pushAndSetReached(Node s) { 
   236       actual_node=s;
   237       reached.set(s, true);
   238       OutEdgeIt e(*graph, s);
   239       //graph->first(e, s);
   240       dfs_stack.push(e); 
   241       return *this;
   242     }
   243     /// As \c DfsIterator<Graph, ReachedMap> works as an edge-iterator, 
   244     /// its \c operator++() iterates on the edges in a dfs order.
   245     DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& 
   246     operator++() { 
   247       actual_edge=dfs_stack.top();
   248       if (actual_edge!=INVALID/*.valid()*/) { 
   249 	Node w=graph->head(actual_edge);
   250 	actual_node=w;
   251 	if (!reached[w]) {
   252 	  OutEdgeIt e(*graph, w);
   253 	  //graph->first(e, w);
   254 	  dfs_stack.push(e);
   255 	  reached.set(w, true);
   256 	  b_node_newly_reached=true;
   257 	} else {
   258 	  actual_node=graph->tail(actual_edge);
   259 	  ++dfs_stack.top();
   260 	  b_node_newly_reached=false;
   261 	}
   262       } else {
   263 	//actual_node=G.aNode(dfs_stack.top());
   264 	dfs_stack.pop();
   265       }
   266       return *this;
   267     }
   268     /// Returns true iff the algorithm is finished.
   269     bool finished() const { return dfs_stack.empty(); }
   270     /// The conversion operator makes for converting the bfs-iterator 
   271     /// to an \c out-edge-iterator.
   272     ///\bug Edge have to be in HUGO 0.2
   273     operator Edge() const { return actual_edge; }
   274     /// Returns if b-node has been reached just now.
   275     bool isBNodeNewlyReached() const { return b_node_newly_reached; }
   276     /// Returns if a-node is examined.
   277     bool isANodeExamined() const { return actual_edge==INVALID; }
   278     /// Returns a-node of the actual edge, so does if the edge is invalid.
   279     Node tail() const { return actual_node; /*FIXME*/}
   280     /// Returns b-node of the actual edge. 
   281     /// \pre The actual edge have to be valid.
   282     Node head() const { return graph->head(actual_edge); }
   283     /// Guess what?
   284     /// \deprecated
   285     const ReachedMap& getReachedMap() const { return reached; }
   286     /// Guess what?
   287     /// \deprecated
   288     const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; }
   289   };
   290 
   291   /// Dfs searches for the nodes wich are not marked in 
   292   /// \c reached_map
   293   /// Reached is a read-write bool node-map, 
   294   /// Pred is a write node-map, have to be.
   295   /// \ingroup galgs
   296   template <typename Graph, 
   297 	    typename ReachedMap=typename Graph::template NodeMap<bool>, 
   298 	    typename PredMap
   299 	    =typename Graph::template NodeMap<typename Graph::Edge> > 
   300   class Dfs : public DfsIterator<Graph, ReachedMap> {
   301     typedef DfsIterator<Graph, ReachedMap> Parent;
   302   protected:
   303     typedef typename Parent::Node Node;
   304     PredMap& pred;
   305   public:
   306     /// The algorithm will search in a dfs order for 
   307     /// the nodes which are \c false initially. 
   308     /// The constructor makes no initial changes on the maps.
   309     Dfs<Graph, ReachedMap, PredMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred) : DfsIterator<Graph, ReachedMap>(_graph, _reached), pred(_pred) { }
   310     /// \c s is marked to be reached and pushed in the bfs queue.
   311     /// If the queue is empty, then the first out-edge is processed.
   312     /// If \c s was not marked previously, then 
   313     /// in addition its pred is set to be \c INVALID. 
   314     /// if \c s was marked previuosly, then it is simply pushed.
   315     Dfs<Graph, ReachedMap, PredMap>& push(Node s) { 
   316       if (this->reached[s]) {
   317 	Parent::pushAndSetReached(s);
   318       } else {
   319 	Parent::pushAndSetReached(s);
   320 	pred.set(s, INVALID);
   321       }
   322       return *this;
   323     }
   324     /// A bfs is processed from \c s.
   325     Dfs<Graph, ReachedMap, PredMap>& run(Node s) {
   326       push(s);
   327       while (!this->finished()) this->operator++();
   328       return *this;
   329     }
   330     /// Beside the dfs iteration, \c pred is saved in a 
   331     /// newly reached node. 
   332     Dfs<Graph, ReachedMap, PredMap>& operator++() {
   333       Parent::operator++();
   334       if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) 
   335       {
   336 	pred.set(this->head(), this->actual_edge);
   337       }
   338       return *this;
   339     }
   340     /// Guess what?
   341     /// \deprecated
   342     const PredMap& getPredMap() const { return pred; }
   343   };
   344 
   345 
   346 } // namespace hugo
   347 
   348 #endif //HUGO_BFS_DFS_H