lemon/min_cost_max_flow.h
author deba
Tue, 10 Jun 2008 11:36:17 +0000
changeset 2612 3d65053d01a3
parent 2582 4f1ac622bb7a
child 2620 8f41a3129746
permissions -rw-r--r--
Bug fix initialization
The std::numeric_limits<double>::min() means the smallest positive number,
and not the smallest number in the whole range of double.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MIN_COST_MAX_FLOW_H
    20 #define LEMON_MIN_COST_MAX_FLOW_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief An efficient algorithm for finding a minimum cost maximum flow.
    26 
    27 #include <lemon/preflow.h>
    28 #include <lemon/network_simplex.h>
    29 #include <lemon/maps.h>
    30 
    31 namespace lemon {
    32 
    33   /// \addtogroup min_cost_flow
    34   /// @{
    35 
    36   /// \brief An efficient algorithm for finding a minimum cost
    37   /// maximum flow.
    38   ///
    39   /// \ref MinCostMaxFlow implements an efficient algorithm for
    40   /// finding a maximum flow having minimal total cost from a given
    41   /// source node to a given target node in a directed graph.
    42   ///
    43   /// \ref MinCostMaxFlow uses \ref Preflow for finding the maximum
    44   /// flow value and \ref NetworkSimplex for finding a minimum cost
    45   /// flow of that value.
    46   /// According to our benchmark tests \ref Preflow is generally the
    47   /// most efficient algorithm for the maximum flow problem and
    48   /// \ref NetworkSimplex is the most efficient for the minimum cost
    49   /// flow problem in LEMON.
    50   ///
    51   /// \tparam Graph The directed graph type the algorithm runs on.
    52   /// \tparam CapacityMap The type of the capacity (upper bound) map.
    53   /// \tparam CostMap The type of the cost (length) map.
    54   ///
    55   /// \warning
    56   /// - Edge capacities and costs should be \e non-negative \e integers.
    57   /// - \c CapacityMap::Value must be convertible to \c CostMap::Value.
    58   /// - \c CostMap::Value must be signed type.
    59   ///
    60   /// \author Peter Kovacs
    61 
    62   template < typename Graph,
    63              typename CapacityMap = typename Graph::template EdgeMap<int>,
    64              typename CostMap = typename Graph::template EdgeMap<int> >
    65   class MinCostMaxFlow
    66   {
    67     GRAPH_TYPEDEFS(typename Graph);
    68 
    69     typedef typename CapacityMap::Value Capacity;
    70     typedef typename CostMap::Value Cost;
    71     typedef typename Graph::template NodeMap<Cost> SupplyMap;
    72 
    73     typedef Preflow<Graph, CapacityMap> MaxFlowImpl;
    74     typedef NetworkSimplex< Graph, CapacityMap, CapacityMap,
    75                             CostMap, SupplyMap > MinCostFlowImpl;
    76 
    77   public:
    78 
    79     /// The type of the flow map.
    80     typedef typename Graph::template EdgeMap<Capacity> FlowMap;
    81     /// The type of the potential map.
    82     typedef typename Graph::template NodeMap<Cost> PotentialMap;
    83 
    84   private:
    85 
    86     // The directed graph the algorithm runs on
    87     const Graph &_graph;
    88     // The capacity map
    89     const CapacityMap &_capacity;
    90     // The cost map
    91     const CostMap &_cost;
    92 
    93     // Edge map of the found flow
    94     FlowMap *_flow;
    95     bool _local_flow;
    96     // Node map of the current potentials
    97     PotentialMap *_potential;
    98     bool _local_potential;
    99 
   100     // The source node
   101     Node _source;
   102     // The target node
   103     Node _target;
   104 
   105   public:
   106 
   107     /// \brief Constructor.
   108     ///
   109     /// Constructor.
   110     ///
   111     /// \param graph The directed graph the algorithm runs on.
   112     /// \param capacity The capacities (upper bounds) of the edges.
   113     /// \param cost The cost (length) values of the edges.
   114     /// \param s The source node.
   115     /// \param t The target node.
   116     MinCostMaxFlow( const Graph &graph,
   117                     const CapacityMap &capacity,
   118                     const CostMap &cost,
   119                     Node s, Node t ) :
   120       _graph(graph), _capacity(capacity), _cost(cost), _flow(0),
   121       _local_flow(false), _potential(0), _local_potential(false),
   122       _source(s), _target(t) {}
   123 
   124     /// Destructor.
   125     ~MinCostMaxFlow() {
   126       if (_local_flow) delete _flow;
   127       if (_local_potential) delete _potential;
   128     }
   129 
   130     /// \brief Sets the flow map.
   131     ///
   132     /// Sets the flow map.
   133     ///
   134     /// \return \c (*this)
   135     MinCostMaxFlow& flowMap(FlowMap &map) {
   136       if (_local_flow) {
   137         delete _flow;
   138         _local_flow = false;
   139       }
   140       _flow = &map;
   141       return *this;
   142     }
   143 
   144     /// \brief Sets the potential map.
   145     ///
   146     /// Sets the potential map.
   147     ///
   148     /// \return \c (*this)
   149     MinCostMaxFlow& potentialMap(PotentialMap &map) {
   150       if (_local_potential) {
   151         delete _potential;
   152         _local_potential = false;
   153       }
   154       _potential = &map;
   155       return *this;
   156     }
   157 
   158     /// \name Execution control
   159     /// The only way to execute the algorithm is to call the run()
   160     /// function.
   161 
   162     /// @{
   163 
   164     /// \brief Runs the algorithm.
   165     ///
   166     /// Runs the algorithm.
   167     void run() {
   168       // Initializing maps
   169       if (!_flow) {
   170         _flow = new FlowMap(_graph);
   171         _local_flow = true;
   172       }
   173       if (!_potential) {
   174         _potential = new PotentialMap(_graph);
   175         _local_potential = true;
   176       }
   177       // Running Preflow
   178       MaxFlowImpl preflow(_graph, _capacity, _source, _target);
   179       preflow.flowMap(*_flow).runMinCut();
   180       // Running NetworkSimplex
   181       MinCostFlowImpl mcf( _graph, _capacity, _cost,
   182                            _source, _target, preflow.flowValue() );
   183       mcf.flowMap(*_flow).potentialMap(*_potential).run();
   184     }
   185 
   186     /// @}
   187 
   188     /// \name Query Functions
   189     /// The result of the algorithm can be obtained using these
   190     /// functions.
   191     /// \n run() must be called before using them.
   192 
   193     /// @{
   194 
   195     /// \brief Returns a const reference to the edge map storing the
   196     /// found flow.
   197     ///
   198     /// Returns a const reference to the edge map storing the found flow.
   199     ///
   200     /// \pre \ref run() must be called before using this function.
   201     const FlowMap& flowMap() const {
   202       return *_flow;
   203     }
   204 
   205     /// \brief Returns a const reference to the node map storing the
   206     /// found potentials (the dual solution).
   207     ///
   208     /// Returns a const reference to the node map storing the found
   209     /// potentials (the dual solution).
   210     ///
   211     /// \pre \ref run() must be called before using this function.
   212     const PotentialMap& potentialMap() const {
   213       return *_potential;
   214     }
   215 
   216     /// \brief Returns the flow on the given edge.
   217     ///
   218     /// Returns the flow on the given edge.
   219     ///
   220     /// \pre \ref run() must be called before using this function.
   221     Capacity flow(const Edge& edge) const {
   222       return (*_flow)[edge];
   223     }
   224 
   225     /// \brief Returns the potential of the given node.
   226     ///
   227     /// Returns the potential of the given node.
   228     ///
   229     /// \pre \ref run() must be called before using this function.
   230     Cost potential(const Node& node) const {
   231       return (*_potential)[node];
   232     }
   233 
   234     /// \brief Returns the total cost of the found flow.
   235     ///
   236     /// Returns the total cost of the found flow. The complexity of the
   237     /// function is \f$ O(e) \f$.
   238     ///
   239     /// \pre \ref run() must be called before using this function.
   240     Cost totalCost() const {
   241       Cost c = 0;
   242       for (EdgeIt e(_graph); e != INVALID; ++e)
   243         c += (*_flow)[e] * _cost[e];
   244       return c;
   245     }
   246 
   247     /// @}
   248 
   249   }; //class MinCostMaxFlow
   250 
   251   ///@}
   252 
   253 } //namespace lemon
   254 
   255 #endif //LEMON_MIN_COST_MAX_FLOW_H