lemon/full_graph.h
author alpar
Thu, 14 Jul 2005 12:23:15 +0000
changeset 1557 3e8d928e283d
parent 1435 8e85e6bbefdf
child 1566 12a3101cf3ab
permissions -rw-r--r--
Each version of Kruskal is called the same ( kruskal(g,in,out) ) independently
from the input source and the output type.
     1 /* -*- C++ -*-
     2  * lemon/full_graph.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_FULL_GRAPH_H
    18 #define LEMON_FULL_GRAPH_H
    19 
    20 #include <cmath>
    21 
    22 
    23 #include <lemon/bits/iterable_graph_extender.h>
    24 #include <lemon/bits/alteration_notifier.h>
    25 #include <lemon/bits/default_map.h>
    26 
    27 #include <lemon/invalid.h>
    28 #include <lemon/utility.h>
    29 
    30 
    31 ///\ingroup graphs
    32 ///\file
    33 ///\brief FullGraph and SymFullGraph classes.
    34 
    35 
    36 namespace lemon {
    37 
    38   class FullGraphBase {
    39     int NodeNum;
    40     int EdgeNum;
    41   public:
    42 
    43     typedef FullGraphBase Graph;
    44 
    45     class Node;
    46     class Edge;
    47 
    48   public:
    49 
    50     FullGraphBase() {}
    51 
    52 
    53     ///Creates a full graph with \c n nodes.
    54     void construct(int n) { NodeNum = n; EdgeNum = n * n; }
    55     ///
    56     //    FullGraphBase(const FullGraphBase &_g)
    57     //      : NodeNum(_g.nodeNum()), EdgeNum(NodeNum*NodeNum) { }
    58     
    59     typedef True NodeNumTag;
    60     typedef True EdgeNumTag;
    61 
    62     ///Number of nodes.
    63     int nodeNum() const { return NodeNum; }
    64     ///Number of edges.
    65     int edgeNum() const { return EdgeNum; }
    66 
    67     /// Maximum node ID.
    68     
    69     /// Maximum node ID.
    70     ///\sa id(Node)
    71     int maxId(Node = INVALID) const { return NodeNum-1; }
    72     /// Maximum edge ID.
    73     
    74     /// Maximum edge ID.
    75     ///\sa id(Edge)
    76     int maxId(Edge = INVALID) const { return EdgeNum-1; }
    77 
    78     Node source(Edge e) const { return e.id % NodeNum; }
    79     Node target(Edge e) const { return e.id / NodeNum; }
    80 
    81 
    82     /// Node ID.
    83     
    84     /// The ID of a valid Node is a nonnegative integer not greater than
    85     /// \ref maxNodeId(). The range of the ID's is not surely continuous
    86     /// and the greatest node ID can be actually less then \ref maxNodeId().
    87     ///
    88     /// The ID of the \ref INVALID node is -1.
    89     ///\return The ID of the node \c v. 
    90 
    91     static int id(Node v) { return v.id; }
    92     /// Edge ID.
    93     
    94     /// The ID of a valid Edge is a nonnegative integer not greater than
    95     /// \ref maxEdgeId(). The range of the ID's is not surely continuous
    96     /// and the greatest edge ID can be actually less then \ref maxEdgeId().
    97     ///
    98     /// The ID of the \ref INVALID edge is -1.
    99     ///\return The ID of the edge \c e. 
   100     static int id(Edge e) { return e.id; }
   101 
   102     static Node fromId(int id, Node) { return Node(id);}
   103     
   104     static Edge fromId(int id, Edge) { return Edge(id);}
   105 
   106     /// Finds an edge between two nodes.
   107     
   108     /// Finds an edge from node \c u to node \c v.
   109     ///
   110     /// If \c prev is \ref INVALID (this is the default value), then
   111     /// It finds the first edge from \c u to \c v. Otherwise it looks for
   112     /// the next edge from \c u to \c v after \c prev.
   113     /// \return The found edge or INVALID if there is no such an edge.
   114     Edge findEdge(Node u,Node v, Edge prev = INVALID) 
   115     {
   116       return prev.id == -1 ? Edge(*this, u.id, v.id) : INVALID;
   117     }
   118     
   119       
   120     class Node {
   121       friend class FullGraphBase;
   122 
   123     protected:
   124       int id;
   125       Node(int _id) { id = _id;}
   126     public:
   127       Node() {}
   128       Node (Invalid) { id = -1; }
   129       bool operator==(const Node node) const {return id == node.id;}
   130       bool operator!=(const Node node) const {return id != node.id;}
   131       bool operator<(const Node node) const {return id < node.id;}
   132     };
   133     
   134 
   135 
   136     class Edge {
   137       friend class FullGraphBase;
   138       
   139     protected:
   140       int id;  // NodeNum * target + source;
   141 
   142       Edge(int _id) : id(_id) {}
   143 
   144       Edge(const FullGraphBase& _graph, int source, int target) 
   145 	: id(_graph.NodeNum * target+source) {}
   146     public:
   147       Edge() { }
   148       Edge (Invalid) { id = -1; }
   149       bool operator==(const Edge edge) const {return id == edge.id;}
   150       bool operator!=(const Edge edge) const {return id != edge.id;}
   151       bool operator<(const Edge edge) const {return id < edge.id;}
   152     };
   153 
   154     void first(Node& node) const {
   155       node.id = NodeNum-1;
   156     }
   157 
   158     static void next(Node& node) {
   159       --node.id;
   160     }
   161 
   162     void first(Edge& edge) const {
   163       edge.id = EdgeNum-1;
   164     }
   165 
   166     static void next(Edge& edge) {
   167       --edge.id;
   168     }
   169 
   170     void firstOut(Edge& edge, const Node& node) const {
   171       edge.id = EdgeNum + node.id - NodeNum;
   172     }
   173 
   174     void nextOut(Edge& edge) const {
   175       edge.id -= NodeNum;
   176       if (edge.id < 0) edge.id = -1;
   177     }
   178 
   179     void firstIn(Edge& edge, const Node& node) const {
   180       edge.id = node.id * NodeNum;
   181     }
   182     
   183     void nextIn(Edge& edge) const {
   184       ++edge.id;
   185       if (edge.id % NodeNum == 0) edge.id = -1;
   186     }
   187 
   188   };
   189 
   190 
   191   typedef AlterableGraphExtender<FullGraphBase> AlterableFullGraphBase;
   192   typedef IterableGraphExtender<AlterableFullGraphBase> IterableFullGraphBase;
   193   typedef DefaultMappableGraphExtender<IterableFullGraphBase> MappableFullGraphBase;
   194 
   195   /// \addtogroup graphs
   196   /// @{
   197 
   198   ///A full graph class.
   199 
   200   ///This is a simple and fast directed full graph implementation.
   201   ///It is completely static, so you can neither add nor delete either
   202   ///edges or nodes.
   203   ///Thus it conforms to
   204   ///the \ref concept::StaticGraph "StaticGraph" concept
   205   ///\sa concept::StaticGraph.
   206   ///
   207   ///\author Alpar Juttner
   208   class FullGraph : public MappableFullGraphBase {
   209   public:
   210 
   211     FullGraph(int n) { construct(n); }
   212   };
   213 
   214   ///@}
   215 
   216   // Base graph class for UndirFullGraph.
   217   class UndirFullGraphBase {
   218     int NodeNum;
   219     int EdgeNum;
   220   public:
   221 
   222     typedef UndirFullGraphBase Graph;
   223 
   224     class Node;
   225     class Edge;
   226 
   227   public:
   228 
   229     UndirFullGraphBase() {}
   230 
   231 
   232     ///Creates a full graph with \c n nodes.
   233     void construct(int n) { NodeNum = n; EdgeNum = n * (n - 1) / 2; }
   234     ///
   235     //    FullGraphBase(const FullGraphBase &_g)
   236     //      : NodeNum(_g.nodeNum()), EdgeNum(NodeNum*NodeNum) { }
   237     
   238     typedef True NodeNumTag;
   239     typedef True EdgeNumTag;
   240 
   241     ///Number of nodes.
   242     int nodeNum() const { return NodeNum; }
   243     ///Number of edges.
   244     int edgeNum() const { return EdgeNum; }
   245 
   246     /// Maximum node ID.
   247     
   248     /// Maximum node ID.
   249     ///\sa id(Node)
   250     int maxId(Node = INVALID) const { return NodeNum-1; }
   251     /// Maximum edge ID.
   252     
   253     /// Maximum edge ID.
   254     ///\sa id(Edge)
   255     int maxId(Edge = INVALID) const { return EdgeNum-1; }
   256 
   257     Node source(Edge e) const { 
   258       /// \todo we may do it faster
   259       return ((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2; 
   260     }
   261 
   262     Node target(Edge e) const { 
   263       int source = ((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2;;
   264       return e.id - (source) * (source - 1) / 2; 
   265     }
   266 
   267 
   268     /// Node ID.
   269     
   270     /// The ID of a valid Node is a nonnegative integer not greater than
   271     /// \ref maxNodeId(). The range of the ID's is not surely continuous
   272     /// and the greatest node ID can be actually less then \ref maxNodeId().
   273     ///
   274     /// The ID of the \ref INVALID node is -1.
   275     ///\return The ID of the node \c v. 
   276 
   277     static int id(Node v) { return v.id; }
   278     /// Edge ID.
   279     
   280     /// The ID of a valid Edge is a nonnegative integer not greater than
   281     /// \ref maxEdgeId(). The range of the ID's is not surely continuous
   282     /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   283     ///
   284     /// The ID of the \ref INVALID edge is -1.
   285     ///\return The ID of the edge \c e. 
   286     static int id(Edge e) { return e.id; }
   287 
   288     /// Finds an edge between two nodes.
   289     
   290     /// Finds an edge from node \c u to node \c v.
   291     ///
   292     /// If \c prev is \ref INVALID (this is the default value), then
   293     /// It finds the first edge from \c u to \c v. Otherwise it looks for
   294     /// the next edge from \c u to \c v after \c prev.
   295     /// \return The found edge or INVALID if there is no such an edge.
   296     Edge findEdge(Node u,Node v, Edge prev = INVALID) 
   297     {
   298       return prev.id == -1 ? Edge(*this, u.id, v.id) : INVALID;
   299     }
   300     
   301       
   302     class Node {
   303       friend class UndirFullGraphBase;
   304 
   305     protected:
   306       int id;
   307       Node(int _id) { id = _id;}
   308     public:
   309       Node() {}
   310       Node (Invalid) { id = -1; }
   311       bool operator==(const Node node) const {return id == node.id;}
   312       bool operator!=(const Node node) const {return id != node.id;}
   313       bool operator<(const Node node) const {return id < node.id;}
   314     };
   315     
   316 
   317 
   318     class Edge {
   319       friend class UndirFullGraphBase;
   320       
   321     protected:
   322       int id;  // NodeNum * target + source;
   323 
   324       Edge(int _id) : id(_id) {}
   325 
   326       Edge(const UndirFullGraphBase& _graph, int source, int target) 
   327 	: id(_graph.NodeNum * target+source) {}
   328     public:
   329       Edge() { }
   330       Edge (Invalid) { id = -1; }
   331       bool operator==(const Edge edge) const {return id == edge.id;}
   332       bool operator!=(const Edge edge) const {return id != edge.id;}
   333       bool operator<(const Edge edge) const {return id < edge.id;}
   334     };
   335 
   336     void first(Node& node) const {
   337       node.id = NodeNum-1;
   338     }
   339 
   340     static void next(Node& node) {
   341       --node.id;
   342     }
   343 
   344     void first(Edge& edge) const {
   345       edge.id = EdgeNum-1;
   346     }
   347 
   348     static void next(Edge& edge) {
   349       --edge.id;
   350     }
   351 
   352     void firstOut(Edge& edge, const Node& node) const {      
   353       edge.id = node.id != 0 ? node.id * (node.id - 1) / 2 : -1;
   354     }
   355 
   356     /// \todo with specialized iterators we can make faster iterating
   357     void nextOut(Edge& e) const {
   358       int source = ((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2;;
   359       int target = e.id - (source) * (source - 1) / 2; 
   360       ++target;
   361       e.id = target < source ? source * (source - 1) / 2 + target : -1;
   362     }
   363 
   364     void firstIn(Edge& edge, const Node& node) const {
   365       edge.id = node.id * (node.id + 1) / 2 - 1;
   366     }
   367     
   368     void nextIn(Edge& e) const {
   369       int source = ((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2;;
   370       int target = e.id - (source) * (source - 1) / 2; ++target;
   371       ++source;
   372       e.id = source < NodeNum ? source * (source - 1) / 2 + target : -1;
   373     }
   374 
   375   };
   376 
   377   /// \addtogroup graphs
   378   /// @{
   379 
   380   
   381   /// \todo UndirFullGraph from the UndirFullGraphBase
   382 
   383 
   384   /// @}  
   385 
   386 } //namespace lemon
   387 
   388 
   389 #endif //LEMON_FULL_GRAPH_H