lemon/topology.h
author alpar
Fri, 03 Feb 2006 17:21:21 +0000
changeset 1957 3efb110919fa
parent 1909 2d806130e700
child 1979 c2992fd74dad
permissions -rw-r--r--
Last struggle against Doxygen.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_TOPOLOGY_H
    20 #define LEMON_TOPOLOGY_H
    21 
    22 #include <lemon/dfs.h>
    23 #include <lemon/bfs.h>
    24 #include <lemon/graph_utils.h>
    25 #include <lemon/graph_adaptor.h>
    26 #include <lemon/maps.h>
    27 
    28 #include <lemon/concept/graph.h>
    29 #include <lemon/concept/ugraph.h>
    30 #include <lemon/concept_check.h>
    31 
    32 #include <lemon/bin_heap.h>
    33 #include <lemon/linear_heap.h>
    34 
    35 #include <stack>
    36 #include <functional>
    37 
    38 /// \ingroup topology
    39 /// \file
    40 /// \brief Topology related algorithms
    41 ///
    42 /// Topology related algorithms
    43 
    44 namespace lemon {
    45 
    46   /// \ingroup topology
    47   ///
    48   /// \brief Check that the given undirected graph is connected.
    49   ///
    50   /// Check that the given undirected graph connected.
    51   /// \param graph The undirected graph.
    52   /// \return %True when there is path between any two nodes in the graph.
    53   /// \note By definition, the empty graph is connected.
    54   template <typename UGraph>
    55   bool connected(const UGraph& graph) {
    56     checkConcept<concept::UGraph, UGraph>();
    57     typedef typename UGraph::NodeIt NodeIt;
    58     if (NodeIt(graph) == INVALID) return true;
    59     Dfs<UGraph> dfs(graph);
    60     dfs.run(NodeIt(graph));
    61     for (NodeIt it(graph); it != INVALID; ++it) {
    62       if (!dfs.reached(it)) {
    63 	return false;
    64       }
    65     }
    66     return true;
    67   }
    68 
    69   /// \ingroup topology
    70   ///
    71   /// \brief Count the number of connected components of an undirected graph
    72   ///
    73   /// Count the number of connected components of an undirected graph
    74   ///
    75   /// \param graph The graph. It should be undirected.
    76   /// \return The number of components
    77   /// \note By definition, the empty graph consists
    78   /// of zero connected components.
    79   template <typename UGraph>
    80   int countConnectedComponents(const UGraph &graph) {
    81     checkConcept<concept::UGraph, UGraph>();
    82     typedef typename UGraph::Node Node;
    83     typedef typename UGraph::Edge Edge;
    84 
    85     typedef NullMap<Node, Edge> PredMap;
    86     typedef NullMap<Node, int> DistMap;
    87 
    88     int compNum = 0;
    89     typename Bfs<UGraph>::
    90       template DefPredMap<PredMap>::
    91       template DefDistMap<DistMap>::
    92       Create bfs(graph);
    93 
    94     PredMap predMap;
    95     bfs.predMap(predMap);
    96 
    97     DistMap distMap;
    98     bfs.distMap(distMap);
    99 
   100     bfs.init();
   101     for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) {
   102       if (!bfs.reached(n)) {
   103 	bfs.addSource(n);
   104 	bfs.start();
   105 	++compNum;
   106       }
   107     }
   108     return compNum;
   109   }
   110 
   111   /// \ingroup topology
   112   ///
   113   /// \brief Find the connected components of an undirected graph
   114   ///
   115   /// Find the connected components of an undirected graph.
   116   ///
   117   /// \image html connected_components.png
   118   /// \image latex connected_components.eps "Connected components" width=\textwidth
   119   ///
   120   /// \param graph The graph. It should be undirected.
   121   /// \retval compMap A writable node map. The values will be set from 0 to
   122   /// the number of the connected components minus one. Each values of the map
   123   /// will be set exactly once, the values of a certain component will be
   124   /// set continuously.
   125   /// \return The number of components
   126   ///
   127   template <class UGraph, class NodeMap>
   128   int connectedComponents(const UGraph &graph, NodeMap &compMap) {
   129     checkConcept<concept::UGraph, UGraph>();
   130     typedef typename UGraph::Node Node;
   131     typedef typename UGraph::Edge Edge;
   132     checkConcept<concept::WriteMap<Node, int>, NodeMap>();
   133 
   134     typedef NullMap<Node, Edge> PredMap;
   135     typedef NullMap<Node, int> DistMap;
   136 
   137     int compNum = 0;
   138     typename Bfs<UGraph>::
   139       template DefPredMap<PredMap>::
   140       template DefDistMap<DistMap>::
   141       Create bfs(graph);
   142 
   143     PredMap predMap;
   144     bfs.predMap(predMap);
   145 
   146     DistMap distMap;
   147     bfs.distMap(distMap);
   148     
   149     bfs.init();
   150     for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) {
   151       if(!bfs.reached(n)) {
   152 	bfs.addSource(n);
   153 	while (!bfs.emptyQueue()) {
   154 	  compMap.set(bfs.nextNode(), compNum);
   155 	  bfs.processNextNode();
   156 	}
   157 	++compNum;
   158       }
   159     }
   160     return compNum;
   161   }
   162 
   163   namespace _topology_bits {
   164 
   165     template <typename Graph, typename Iterator >
   166     struct LeaveOrderVisitor : public DfsVisitor<Graph> {
   167     public:
   168       typedef typename Graph::Node Node;
   169       LeaveOrderVisitor(Iterator it) : _it(it) {}
   170 
   171       void leave(const Node& node) {
   172 	*(_it++) = node;
   173       }
   174 
   175     private:
   176       Iterator _it;
   177     };
   178 
   179     template <typename Graph, typename Map>
   180     struct FillMapVisitor : public DfsVisitor<Graph> {
   181     public:
   182       typedef typename Graph::Node Node;
   183       typedef typename Map::Value Value;
   184 
   185       FillMapVisitor(Map& map, Value& value) 
   186 	: _map(map), _value(value) {}
   187 
   188       void reach(const Node& node) {
   189 	_map.set(node, _value);
   190       }
   191     private:
   192       Map& _map;
   193       Value& _value;
   194     };
   195 
   196     template <typename Graph, typename EdgeMap>
   197     struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Graph> {
   198     public:
   199       typedef typename Graph::Node Node;
   200       typedef typename Graph::Edge Edge;
   201 
   202       StronglyConnectedCutEdgesVisitor(const Graph& graph, EdgeMap& cutMap, 
   203 				       int& cutNum) 
   204 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), 
   205 	  _compMap(graph), _num(0) {
   206       }
   207 
   208       void stop(const Node&) {
   209 	++_num;
   210       }
   211 
   212       void reach(const Node& node) {
   213 	_compMap.set(node, _num);
   214       }
   215 
   216       void examine(const Edge& edge) {
   217  	if (_compMap[_graph.source(edge)] != _compMap[_graph.target(edge)]) {
   218  	  _cutMap.set(edge, true);
   219  	  ++_cutNum;
   220  	}
   221       }
   222     private:
   223       const Graph& _graph;
   224       EdgeMap& _cutMap;
   225       int& _cutNum;
   226 
   227       typename Graph::template NodeMap<int> _compMap;
   228       int _num;
   229     };
   230 
   231   }
   232 
   233 
   234   /// \ingroup topology
   235   ///
   236   /// \brief Check that the given directed graph is strongly connected.
   237   ///
   238   /// Check that the given directed graph is strongly connected. The
   239   /// graph is strongly connected when any two nodes of the graph are
   240   /// connected with directed paths in both direction.
   241   /// \return %False when the graph is not strongly connected.
   242   /// \see connected
   243   ///
   244   /// \note By definition, the empty graph is strongly connected.
   245   template <typename Graph>
   246   bool stronglyConnected(const Graph& graph) {
   247     checkConcept<concept::StaticGraph, Graph>();
   248     if (NodeIt(graph) == INVALID) return true;
   249 
   250     typedef typename Graph::Node Node;
   251     typedef typename Graph::NodeIt NodeIt;
   252 
   253     using namespace _topology_bits;
   254 
   255     typedef DfsVisitor<Graph> Visitor;
   256     Visitor visitor;
   257 
   258     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   259     dfs.init();
   260     dfs.addSource(NodeIt(graph));
   261     dfs.start();
   262 
   263     for (NodeIt it(graph); it != INVALID; ++it) {
   264       if (!dfs.reached(it)) {
   265 	return false;
   266       }
   267     }
   268 
   269     typedef RevGraphAdaptor<const Graph> RGraph;
   270     RGraph rgraph(graph);
   271 
   272     typedef DfsVisitor<Graph> RVisitor;
   273     RVisitor rvisitor;
   274 
   275     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   276     rdfs.init();    
   277     rdfs.addSource(NodeIt(graph));
   278     rdfs.start();
   279 
   280     for (NodeIt it(graph); it != INVALID; ++it) {
   281       if (!rdfs.reached(it)) {
   282 	return false;
   283       }
   284     }
   285 
   286     return true;
   287   }
   288 
   289   /// \ingroup topology
   290   ///
   291   /// \brief Count the strongly connected components of a directed graph
   292   ///
   293   /// Count the strongly connected components of a directed graph.
   294   /// The strongly connected components are the classes of an equivalence
   295   /// relation on the nodes of the graph. Two nodes are connected with
   296   /// directed paths in both direction.
   297   ///
   298   /// \param graph The graph.
   299   /// \return The number of components
   300   /// \note By definition, the empty graph has zero
   301   /// strongly connected components.
   302   template <typename Graph>
   303   int countStronglyConnectedComponents(const Graph& graph) {
   304     checkConcept<concept::StaticGraph, Graph>();
   305 
   306     using namespace _topology_bits;
   307 
   308     typedef typename Graph::Node Node;
   309     typedef typename Graph::Edge Edge;
   310     typedef typename Graph::NodeIt NodeIt;
   311     typedef typename Graph::EdgeIt EdgeIt;
   312     
   313     typedef std::vector<Node> Container;
   314     typedef typename Container::iterator Iterator;
   315 
   316     Container nodes(countNodes(graph));
   317     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   318     Visitor visitor(nodes.begin());
   319       
   320     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   321     dfs.init();
   322     for (NodeIt it(graph); it != INVALID; ++it) {
   323       if (!dfs.reached(it)) {
   324 	dfs.addSource(it);
   325 	dfs.start();
   326       }
   327     }
   328 
   329     typedef typename Container::reverse_iterator RIterator;
   330     typedef RevGraphAdaptor<const Graph> RGraph;
   331 
   332     RGraph rgraph(graph);
   333 
   334     typedef DfsVisitor<Graph> RVisitor;
   335     RVisitor rvisitor;
   336 
   337     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   338 
   339     int compNum = 0;
   340 
   341     rdfs.init();
   342     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   343       if (!rdfs.reached(*it)) {
   344 	rdfs.addSource(*it);
   345 	rdfs.start();
   346 	++compNum;
   347       }
   348     }
   349     return compNum;
   350   }
   351 
   352   /// \ingroup topology
   353   ///
   354   /// \brief Find the strongly connected components of a directed graph
   355   ///
   356   /// Find the strongly connected components of a directed graph.
   357   /// The strongly connected components are the classes of an equivalence
   358   /// relation on the nodes of the graph. Two nodes are in relationship
   359   /// when there are directed paths between them in both direction.
   360   ///
   361   /// \image html strongly_connected_components.png
   362   /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
   363   ///
   364   /// \param graph The graph.
   365   /// \retval compMap A writable node map. The values will be set from 0 to
   366   /// the number of the strongly connected components minus one. Each values 
   367   /// of the map will be set exactly once, the values of a certain component 
   368   /// will be set continuously.
   369   /// \return The number of components
   370   ///
   371   template <typename Graph, typename NodeMap>
   372   int stronglyConnectedComponents(const Graph& graph, NodeMap& compMap) {
   373     checkConcept<concept::StaticGraph, Graph>();
   374     typedef typename Graph::Node Node;
   375     typedef typename Graph::NodeIt NodeIt;
   376     checkConcept<concept::WriteMap<Node, int>, NodeMap>();
   377 
   378     using namespace _topology_bits;
   379     
   380     typedef std::vector<Node> Container;
   381     typedef typename Container::iterator Iterator;
   382 
   383     Container nodes(countNodes(graph));
   384     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   385     Visitor visitor(nodes.begin());
   386       
   387     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   388     dfs.init();
   389     for (NodeIt it(graph); it != INVALID; ++it) {
   390       if (!dfs.reached(it)) {
   391 	dfs.addSource(it);
   392 	dfs.start();
   393       }
   394     }
   395 
   396     typedef typename Container::reverse_iterator RIterator;
   397     typedef RevGraphAdaptor<const Graph> RGraph;
   398 
   399     RGraph rgraph(graph);
   400 
   401     int compNum = 0;
   402 
   403     typedef FillMapVisitor<RGraph, NodeMap> RVisitor;
   404     RVisitor rvisitor(compMap, compNum);
   405 
   406     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   407 
   408     rdfs.init();
   409     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   410       if (!rdfs.reached(*it)) {
   411 	rdfs.addSource(*it);
   412 	rdfs.start();
   413 	++compNum;
   414       }
   415     }
   416     return compNum;
   417   }
   418 
   419   /// \ingroup topology
   420   ///
   421   /// \brief Find the cut edges of the strongly connected components.
   422   ///
   423   /// Find the cut edges of the strongly connected components.
   424   /// The strongly connected components are the classes of an equivalence
   425   /// relation on the nodes of the graph. Two nodes are in relationship
   426   /// when there are directed paths between them in both direction.
   427   /// The strongly connected components are separated by the cut edges.
   428   ///
   429   /// \param graph The graph.
   430   /// \retval cutMap A writable node map. The values will be set true when the
   431   /// edge is a cut edge.
   432   ///
   433   /// \return The number of cut edges
   434   template <typename Graph, typename EdgeMap>
   435   int stronglyConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
   436     checkConcept<concept::StaticGraph, Graph>();
   437     typedef typename Graph::Node Node;
   438     typedef typename Graph::Edge Edge;
   439     typedef typename Graph::NodeIt NodeIt;
   440     checkConcept<concept::WriteMap<Edge, bool>, EdgeMap>();
   441 
   442     using namespace _topology_bits;
   443     
   444     typedef std::vector<Node> Container;
   445     typedef typename Container::iterator Iterator;
   446 
   447     Container nodes(countNodes(graph));
   448     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   449     Visitor visitor(nodes.begin());
   450       
   451     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   452     dfs.init();
   453     for (NodeIt it(graph); it != INVALID; ++it) {
   454       if (!dfs.reached(it)) {
   455 	dfs.addSource(it);
   456 	dfs.start();
   457       }
   458     }
   459 
   460     typedef typename Container::reverse_iterator RIterator;
   461     typedef RevGraphAdaptor<const Graph> RGraph;
   462 
   463     RGraph rgraph(graph);
   464 
   465     int cutNum = 0;
   466 
   467     typedef StronglyConnectedCutEdgesVisitor<RGraph, EdgeMap> RVisitor;
   468     RVisitor rvisitor(rgraph, cutMap, cutNum);
   469 
   470     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   471 
   472     rdfs.init();
   473     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   474       if (!rdfs.reached(*it)) {
   475 	rdfs.addSource(*it);
   476 	rdfs.start();
   477       }
   478     }
   479     return cutNum;
   480   }
   481 
   482   namespace _topology_bits {
   483     
   484     template <typename Graph>
   485     class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   486     public:
   487       typedef typename Graph::Node Node;
   488       typedef typename Graph::Edge Edge;
   489       typedef typename Graph::UEdge UEdge;
   490 
   491       CountBiNodeConnectedComponentsVisitor(const Graph& graph, int &compNum) 
   492 	: _graph(graph), _compNum(compNum), 
   493 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   494 
   495       void start(const Node& node) {
   496 	_predMap.set(node, INVALID);
   497       }
   498       
   499       void reach(const Node& node) {
   500 	_numMap.set(node, _num);
   501 	_retMap.set(node, _num);
   502 	++_num;
   503       }
   504 
   505       void discover(const Edge& edge) {
   506 	_predMap.set(_graph.target(edge), _graph.source(edge));
   507       }
   508 
   509       void examine(const Edge& edge) {
   510 	if (_graph.source(edge) == _graph.target(edge) && 
   511 	    _graph.direction(edge)) {
   512 	  ++_compNum;
   513 	  return;
   514 	}
   515 	if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
   516 	  return;
   517 	}
   518 	if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   519 	  _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   520 	}
   521       }
   522 
   523       void backtrack(const Edge& edge) {
   524 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   525 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   526 	}  
   527 	if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   528 	  ++_compNum;
   529 	}
   530       }
   531       
   532     private:
   533       const Graph& _graph;
   534       int& _compNum; 
   535 
   536       typename Graph::template NodeMap<int> _numMap;
   537       typename Graph::template NodeMap<int> _retMap;
   538       typename Graph::template NodeMap<Node> _predMap;
   539       int _num;
   540     };
   541 
   542     template <typename Graph, typename EdgeMap>
   543     class BiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   544     public:
   545       typedef typename Graph::Node Node;
   546       typedef typename Graph::Edge Edge;
   547       typedef typename Graph::UEdge UEdge;
   548 
   549       BiNodeConnectedComponentsVisitor(const Graph& graph, 
   550 				       EdgeMap& compMap, int &compNum) 
   551 	: _graph(graph), _compMap(compMap), _compNum(compNum), 
   552 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   553 
   554       void start(const Node& node) {
   555 	_predMap.set(node, INVALID);
   556       }
   557       
   558       void reach(const Node& node) {
   559 	_numMap.set(node, _num);
   560 	_retMap.set(node, _num);
   561 	++_num;
   562       }
   563 
   564       void discover(const Edge& edge) {
   565 	Node target = _graph.target(edge);
   566 	_predMap.set(target, edge);
   567 	_edgeStack.push(edge);
   568       }
   569 
   570       void examine(const Edge& edge) {
   571 	Node source = _graph.source(edge);
   572 	Node target = _graph.target(edge);
   573 	if (source == target && _graph.direction(edge)) {
   574 	  _compMap.set(edge, _compNum);
   575 	  ++_compNum;
   576 	  return;
   577 	}
   578 	if (_numMap[target] < _numMap[source]) {
   579 	  if (_predMap[source] != _graph.oppositeEdge(edge)) {
   580 	    _edgeStack.push(edge);
   581 	  }
   582 	}
   583 	if (_predMap[source] != INVALID && 
   584 	    target == _graph.source(_predMap[source])) {
   585 	  return;
   586 	}
   587 	if (_retMap[source] > _numMap[target]) {
   588 	  _retMap.set(source, _numMap[target]);
   589 	}
   590       }
   591 
   592       void backtrack(const Edge& edge) {
   593 	Node source = _graph.source(edge);
   594 	Node target = _graph.target(edge);
   595 	if (_retMap[source] > _retMap[target]) {
   596 	  _retMap.set(source, _retMap[target]);
   597 	}  
   598 	if (_numMap[source] <= _retMap[target]) {
   599 	  while (_edgeStack.top() != edge) {
   600 	    _compMap.set(_edgeStack.top(), _compNum);
   601 	    _edgeStack.pop();
   602 	  }
   603 	  _compMap.set(edge, _compNum);
   604 	  _edgeStack.pop();
   605 	  ++_compNum;
   606 	}
   607       }
   608       
   609     private:
   610       const Graph& _graph;
   611       EdgeMap& _compMap;
   612       int& _compNum; 
   613 
   614       typename Graph::template NodeMap<int> _numMap;
   615       typename Graph::template NodeMap<int> _retMap;
   616       typename Graph::template NodeMap<Edge> _predMap;
   617       std::stack<UEdge> _edgeStack;
   618       int _num;
   619     };
   620 
   621 
   622     template <typename Graph, typename NodeMap>
   623     class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Graph> {
   624     public:
   625       typedef typename Graph::Node Node;
   626       typedef typename Graph::Edge Edge;
   627       typedef typename Graph::UEdge UEdge;
   628 
   629       BiNodeConnectedCutNodesVisitor(const Graph& graph, NodeMap& cutMap,
   630 				     int& cutNum) 
   631 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
   632 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   633 
   634       void start(const Node& node) {
   635 	_predMap.set(node, INVALID);
   636 	rootCut = false;
   637       }
   638       
   639       void reach(const Node& node) {
   640 	_numMap.set(node, _num);
   641 	_retMap.set(node, _num);
   642 	++_num;
   643       }
   644 
   645       void discover(const Edge& edge) {
   646 	_predMap.set(_graph.target(edge), _graph.source(edge));
   647       }
   648 
   649       void examine(const Edge& edge) {
   650 	if (_graph.source(edge) == _graph.target(edge) && 
   651 	    _graph.direction(edge)) {
   652 	  if (!_cutMap[_graph.source(edge)]) {
   653 	    _cutMap.set(_graph.source(edge), true);
   654 	    ++_cutNum;
   655 	  }
   656 	  return;
   657 	}
   658 	if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
   659 	if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   660 	  _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   661 	}
   662       }
   663 
   664       void backtrack(const Edge& edge) {
   665 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   666 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   667 	}  
   668 	if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   669 	  if (_predMap[_graph.source(edge)] != INVALID) {
   670 	    if (!_cutMap[_graph.source(edge)]) {
   671 	      _cutMap.set(_graph.source(edge), true);
   672 	      ++_cutNum;
   673 	    }
   674 	  } else if (rootCut) {
   675 	    if (!_cutMap[_graph.source(edge)]) {
   676 	      _cutMap.set(_graph.source(edge), true);
   677 	      ++_cutNum;
   678 	    }
   679 	  } else {
   680 	    rootCut = true;
   681 	  }
   682 	}
   683       }
   684       
   685     private:
   686       const Graph& _graph;
   687       NodeMap& _cutMap;
   688       int& _cutNum; 
   689 
   690       typename Graph::template NodeMap<int> _numMap;
   691       typename Graph::template NodeMap<int> _retMap;
   692       typename Graph::template NodeMap<Node> _predMap;
   693       std::stack<UEdge> _edgeStack;
   694       int _num;
   695       bool rootCut;
   696     };
   697 
   698   }
   699 
   700   template <typename UGraph>
   701   int countBiNodeConnectedComponents(const UGraph& graph);
   702 
   703   /// \ingroup topology
   704   ///
   705   /// \brief Checks the graph is bi-node-connected.
   706   ///
   707   /// This function checks that the undirected graph is bi-node-connected  
   708   /// graph. The graph is bi-node-connected if any two undirected edge is 
   709   /// on same circle.
   710   ///
   711   /// \param graph The graph.
   712   /// \return %True when the graph bi-node-connected.
   713   /// \todo Make it faster.
   714   template <typename UGraph>
   715   bool biNodeConnected(const UGraph& graph) {
   716     return countBiNodeConnectedComponents(graph) == 1;
   717   }
   718 
   719   /// \ingroup topology
   720   ///
   721   /// \brief Count the biconnected components.
   722   ///
   723   /// This function finds the bi-node-connected components in an undirected 
   724   /// graph. The biconnected components are the classes of an equivalence 
   725   /// relation on the undirected edges. Two undirected edge is in relationship
   726   /// when they are on same circle.
   727   ///
   728   /// \param graph The graph.
   729   /// \return The number of components.
   730   template <typename UGraph>
   731   int countBiNodeConnectedComponents(const UGraph& graph) {
   732     checkConcept<concept::UGraph, UGraph>();
   733     typedef typename UGraph::NodeIt NodeIt;
   734 
   735     using namespace _topology_bits;
   736 
   737     typedef CountBiNodeConnectedComponentsVisitor<UGraph> Visitor;
   738 
   739     int compNum = 0;
   740     Visitor visitor(graph, compNum);
   741 
   742     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
   743     dfs.init();
   744     
   745     for (NodeIt it(graph); it != INVALID; ++it) {
   746       if (!dfs.reached(it)) {
   747 	dfs.addSource(it);
   748 	dfs.start();
   749       }
   750     }
   751     return compNum;
   752   }
   753 
   754   /// \ingroup topology
   755   ///
   756   /// \brief Find the bi-node-connected components.
   757   ///
   758   /// This function finds the bi-node-connected components in an undirected 
   759   /// graph. The bi-node-connected components are the classes of an equivalence
   760   /// relation on the undirected edges. Two undirected edge are in relationship
   761   /// when they are on same circle.
   762   ///
   763   /// \image html node_biconnected_components.png
   764   /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
   765   ///
   766   /// \param graph The graph.
   767   /// \retval compMap A writable uedge map. The values will be set from 0
   768   /// to the number of the biconnected components minus one. Each values 
   769   /// of the map will be set exactly once, the values of a certain component 
   770   /// will be set continuously.
   771   /// \return The number of components.
   772   ///
   773   template <typename UGraph, typename UEdgeMap>
   774   int biNodeConnectedComponents(const UGraph& graph, 
   775 				UEdgeMap& compMap) {
   776     checkConcept<concept::UGraph, UGraph>();
   777     typedef typename UGraph::NodeIt NodeIt;
   778     typedef typename UGraph::UEdge UEdge;
   779     checkConcept<concept::WriteMap<UEdge, int>, UEdgeMap>();
   780 
   781     using namespace _topology_bits;
   782 
   783     typedef BiNodeConnectedComponentsVisitor<UGraph, UEdgeMap> Visitor;
   784     
   785     int compNum = 0;
   786     Visitor visitor(graph, compMap, compNum);
   787 
   788     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
   789     dfs.init();
   790     
   791     for (NodeIt it(graph); it != INVALID; ++it) {
   792       if (!dfs.reached(it)) {
   793 	dfs.addSource(it);
   794 	dfs.start();
   795       }
   796     }
   797     return compNum;
   798   }
   799 
   800   /// \ingroup topology
   801   ///
   802   /// \brief Find the bi-node-connected cut nodes.
   803   ///
   804   /// This function finds the bi-node-connected cut nodes in an undirected 
   805   /// graph. The bi-node-connected components are the classes of an equivalence
   806   /// relation on the undirected edges. Two undirected edges are in 
   807   /// relationship when they are on same circle. The biconnected components 
   808   /// are separted by nodes which are the cut nodes of the components.
   809   ///
   810   /// \param graph The graph.
   811   /// \retval cutMap A writable edge map. The values will be set true when
   812   /// the node separate two or more components.
   813   /// \return The number of the cut nodes.
   814   template <typename UGraph, typename NodeMap>
   815   int biNodeConnectedCutNodes(const UGraph& graph, NodeMap& cutMap) {
   816     checkConcept<concept::UGraph, UGraph>();
   817     typedef typename UGraph::Node Node;
   818     typedef typename UGraph::NodeIt NodeIt;
   819     checkConcept<concept::WriteMap<Node, bool>, NodeMap>();
   820 
   821     using namespace _topology_bits;
   822 
   823     typedef BiNodeConnectedCutNodesVisitor<UGraph, NodeMap> Visitor;
   824     
   825     int cutNum = 0;
   826     Visitor visitor(graph, cutMap, cutNum);
   827 
   828     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
   829     dfs.init();
   830     
   831     for (NodeIt it(graph); it != INVALID; ++it) {
   832       if (!dfs.reached(it)) {
   833 	dfs.addSource(it);
   834 	dfs.start();
   835       }
   836     }
   837     return cutNum;
   838   }
   839 
   840   namespace _topology_bits {
   841     
   842     template <typename Graph>
   843     class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   844     public:
   845       typedef typename Graph::Node Node;
   846       typedef typename Graph::Edge Edge;
   847       typedef typename Graph::UEdge UEdge;
   848 
   849       CountBiEdgeConnectedComponentsVisitor(const Graph& graph, int &compNum) 
   850 	: _graph(graph), _compNum(compNum), 
   851 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   852 
   853       void start(const Node& node) {
   854 	_predMap.set(node, INVALID);
   855       }
   856       
   857       void reach(const Node& node) {
   858 	_numMap.set(node, _num);
   859 	_retMap.set(node, _num);
   860 	++_num;
   861       }
   862       
   863       void leave(const Node& node) {
   864 	if (_numMap[node] <= _retMap[node]) {
   865 	  ++_compNum;
   866 	}	
   867       }
   868 
   869       void discover(const Edge& edge) {
   870 	_predMap.set(_graph.target(edge), edge);
   871       }
   872 
   873       void examine(const Edge& edge) {
   874 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   875 	  return;
   876 	}
   877 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   878 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   879 	}
   880       }
   881 
   882       void backtrack(const Edge& edge) {
   883 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   884 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   885 	}  
   886       }
   887       
   888     private:
   889       const Graph& _graph;
   890       int& _compNum; 
   891 
   892       typename Graph::template NodeMap<int> _numMap;
   893       typename Graph::template NodeMap<int> _retMap;
   894       typename Graph::template NodeMap<Edge> _predMap;
   895       int _num;
   896     };
   897 
   898     template <typename Graph, typename NodeMap>
   899     class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   900     public:
   901       typedef typename Graph::Node Node;
   902       typedef typename Graph::Edge Edge;
   903       typedef typename Graph::UEdge UEdge;
   904 
   905       BiEdgeConnectedComponentsVisitor(const Graph& graph, 
   906 				       NodeMap& compMap, int &compNum) 
   907 	: _graph(graph), _compMap(compMap), _compNum(compNum), 
   908 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   909 
   910       void start(const Node& node) {
   911 	_predMap.set(node, INVALID);
   912       }
   913       
   914       void reach(const Node& node) {
   915 	_numMap.set(node, _num);
   916 	_retMap.set(node, _num);
   917 	_nodeStack.push(node);
   918 	++_num;
   919       }
   920       
   921       void leave(const Node& node) {
   922 	if (_numMap[node] <= _retMap[node]) {
   923 	  while (_nodeStack.top() != node) {
   924 	    _compMap.set(_nodeStack.top(), _compNum);
   925 	    _nodeStack.pop();
   926 	  }
   927 	  _compMap.set(node, _compNum);
   928 	  _nodeStack.pop();
   929 	  ++_compNum;
   930 	}	
   931       }
   932 
   933       void discover(const Edge& edge) {
   934 	_predMap.set(_graph.target(edge), edge);
   935       }
   936 
   937       void examine(const Edge& edge) {
   938 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   939 	  return;
   940 	}
   941 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   942 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   943 	}
   944       }
   945 
   946       void backtrack(const Edge& edge) {
   947 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   948 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   949 	}  
   950       }
   951       
   952     private:
   953       const Graph& _graph;
   954       NodeMap& _compMap;
   955       int& _compNum; 
   956 
   957       typename Graph::template NodeMap<int> _numMap;
   958       typename Graph::template NodeMap<int> _retMap;
   959       typename Graph::template NodeMap<Edge> _predMap;
   960       std::stack<Node> _nodeStack;
   961       int _num;
   962     };
   963 
   964 
   965     template <typename Graph, typename EdgeMap>
   966     class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Graph> {
   967     public:
   968       typedef typename Graph::Node Node;
   969       typedef typename Graph::Edge Edge;
   970       typedef typename Graph::UEdge UEdge;
   971 
   972       BiEdgeConnectedCutEdgesVisitor(const Graph& graph, 
   973 				     EdgeMap& cutMap, int &cutNum) 
   974 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), 
   975 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   976 
   977       void start(const Node& node) {
   978 	_predMap[node] = INVALID;
   979       }
   980       
   981       void reach(const Node& node) {
   982 	_numMap.set(node, _num);
   983 	_retMap.set(node, _num);
   984 	++_num;
   985       }
   986       
   987       void leave(const Node& node) {
   988 	if (_numMap[node] <= _retMap[node]) {
   989 	  if (_predMap[node] != INVALID) {
   990 	    _cutMap.set(_predMap[node], true);
   991 	    ++_cutNum;
   992 	  }
   993 	}	
   994       }
   995 
   996       void discover(const Edge& edge) {
   997 	_predMap.set(_graph.target(edge), edge);
   998       }
   999 
  1000       void examine(const Edge& edge) {
  1001 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
  1002 	  return;
  1003 	}
  1004 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1005 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1006 	}
  1007       }
  1008 
  1009       void backtrack(const Edge& edge) {
  1010 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1011 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1012 	}  
  1013       }
  1014       
  1015     private:
  1016       const Graph& _graph;
  1017       EdgeMap& _cutMap;
  1018       int& _cutNum; 
  1019 
  1020       typename Graph::template NodeMap<int> _numMap;
  1021       typename Graph::template NodeMap<int> _retMap;
  1022       typename Graph::template NodeMap<Edge> _predMap;
  1023       int _num;
  1024     };
  1025   }
  1026 
  1027   template <typename UGraph>
  1028   int countbiEdgeConnectedComponents(const UGraph& graph);
  1029 
  1030   /// \ingroup topology
  1031   ///
  1032   /// \brief Checks that the graph is bi-edge-connected.
  1033   ///
  1034   /// This function checks that the graph is bi-edge-connected. The undirected
  1035   /// graph is bi-edge-connected when any two nodes are connected with two
  1036   /// edge-disjoint paths.
  1037   ///
  1038   /// \param graph The undirected graph.
  1039   /// \return The number of components.
  1040   /// \todo Make it faster.
  1041   template <typename UGraph>
  1042   bool biEdgeConnected(const UGraph& graph) { 
  1043     return countBiEdgeConnectedComponents(graph) == 1;
  1044   }
  1045 
  1046   /// \ingroup topology
  1047   ///
  1048   /// \brief Count the bi-edge-connected components.
  1049   ///
  1050   /// This function count the bi-edge-connected components in an undirected 
  1051   /// graph. The bi-edge-connected components are the classes of an equivalence
  1052   /// relation on the nodes. Two nodes are in relationship when they are  
  1053   /// connected with at least two edge-disjoint paths.
  1054   ///
  1055   /// \param graph The undirected graph.
  1056   /// \return The number of components.
  1057   template <typename UGraph>
  1058   int countBiEdgeConnectedComponents(const UGraph& graph) { 
  1059     checkConcept<concept::UGraph, UGraph>();
  1060     typedef typename UGraph::NodeIt NodeIt;
  1061 
  1062     using namespace _topology_bits;
  1063 
  1064     typedef CountBiEdgeConnectedComponentsVisitor<UGraph> Visitor;
  1065     
  1066     int compNum = 0;
  1067     Visitor visitor(graph, compNum);
  1068 
  1069     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
  1070     dfs.init();
  1071     
  1072     for (NodeIt it(graph); it != INVALID; ++it) {
  1073       if (!dfs.reached(it)) {
  1074 	dfs.addSource(it);
  1075 	dfs.start();
  1076       }
  1077     }
  1078     return compNum;
  1079   }
  1080 
  1081   /// \ingroup topology
  1082   ///
  1083   /// \brief Find the bi-edge-connected components.
  1084   ///
  1085   /// This function finds the bi-edge-connected components in an undirected 
  1086   /// graph. The bi-edge-connected components are the classes of an equivalence
  1087   /// relation on the nodes. Two nodes are in relationship when they are  
  1088   /// connected at least two edge-disjoint paths.
  1089   ///
  1090   /// \image html edge_biconnected_components.png
  1091   /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
  1092   ///
  1093   /// \param graph The graph.
  1094   /// \retval compMap A writable node map. The values will be set from 0 to
  1095   /// the number of the biconnected components minus one. Each values 
  1096   /// of the map will be set exactly once, the values of a certain component 
  1097   /// will be set continuously.
  1098   /// \return The number of components.
  1099   ///
  1100   template <typename UGraph, typename NodeMap>
  1101   int biEdgeConnectedComponents(const UGraph& graph, NodeMap& compMap) { 
  1102     checkConcept<concept::UGraph, UGraph>();
  1103     typedef typename UGraph::NodeIt NodeIt;
  1104     typedef typename UGraph::Node Node;
  1105     checkConcept<concept::WriteMap<Node, int>, NodeMap>();
  1106 
  1107     using namespace _topology_bits;
  1108 
  1109     typedef BiEdgeConnectedComponentsVisitor<UGraph, NodeMap> Visitor;
  1110     
  1111     int compNum = 0;
  1112     Visitor visitor(graph, compMap, compNum);
  1113 
  1114     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
  1115     dfs.init();
  1116     
  1117     for (NodeIt it(graph); it != INVALID; ++it) {
  1118       if (!dfs.reached(it)) {
  1119 	dfs.addSource(it);
  1120 	dfs.start();
  1121       }
  1122     }
  1123     return compNum;
  1124   }
  1125 
  1126   /// \ingroup topology
  1127   ///
  1128   /// \brief Find the bi-edge-connected cut edges.
  1129   ///
  1130   /// This function finds the bi-edge-connected components in an undirected 
  1131   /// graph. The bi-edge-connected components are the classes of an equivalence
  1132   /// relation on the nodes. Two nodes are in relationship when they are 
  1133   /// connected with at least two edge-disjoint paths. The bi-edge-connected 
  1134   /// components are separted by edges which are the cut edges of the 
  1135   /// components.
  1136   ///
  1137   /// \param graph The graph.
  1138   /// \retval cutMap A writable node map. The values will be set true when the
  1139   /// edge is a cut edge.
  1140   /// \return The number of cut edges.
  1141   template <typename UGraph, typename UEdgeMap>
  1142   int biEdgeConnectedCutEdges(const UGraph& graph, UEdgeMap& cutMap) { 
  1143     checkConcept<concept::UGraph, UGraph>();
  1144     typedef typename UGraph::NodeIt NodeIt;
  1145     typedef typename UGraph::UEdge UEdge;
  1146     checkConcept<concept::WriteMap<UEdge, bool>, UEdgeMap>();
  1147 
  1148     using namespace _topology_bits;
  1149 
  1150     typedef BiEdgeConnectedCutEdgesVisitor<UGraph, UEdgeMap> Visitor;
  1151     
  1152     int cutNum = 0;
  1153     Visitor visitor(graph, cutMap, cutNum);
  1154 
  1155     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
  1156     dfs.init();
  1157     
  1158     for (NodeIt it(graph); it != INVALID; ++it) {
  1159       if (!dfs.reached(it)) {
  1160 	dfs.addSource(it);
  1161 	dfs.start();
  1162       }
  1163     }
  1164     return cutNum;
  1165   }
  1166 
  1167 
  1168   namespace _topology_bits {
  1169     
  1170     template <typename Graph, typename IntNodeMap>
  1171     class TopologicalSortVisitor : public DfsVisitor<Graph> {
  1172     public:
  1173       typedef typename Graph::Node Node;
  1174       typedef typename Graph::Edge edge;
  1175 
  1176       TopologicalSortVisitor(IntNodeMap& order, int num) 
  1177 	: _order(order), _num(num) {}
  1178       
  1179       void leave(const Node& node) {
  1180 	_order.set(node, --_num);
  1181       }
  1182 
  1183     private:
  1184       IntNodeMap& _order;
  1185       int _num;
  1186     };
  1187     
  1188   }
  1189 
  1190   /// \ingroup topology
  1191   ///
  1192   /// \brief Sort the nodes of a DAG into topolgical order.
  1193   ///
  1194   /// Sort the nodes of a DAG into topolgical order.
  1195   ///
  1196   /// \param graph The graph. It should be directed and acyclic.
  1197   /// \retval order A writable node map. The values will be set from 0 to
  1198   /// the number of the nodes in the graph minus one. Each values of the map
  1199   /// will be set exactly once, the values  will be set descending order.
  1200   ///
  1201   /// \see checkedTopologicalSort
  1202   /// \see dag
  1203   template <typename Graph, typename NodeMap>
  1204   void topologicalSort(const Graph& graph, NodeMap& order) {
  1205     using namespace _topology_bits;
  1206 
  1207     checkConcept<concept::StaticGraph, Graph>();
  1208     checkConcept<concept::WriteMap<typename Graph::Node, int>, NodeMap>();
  1209 
  1210     typedef typename Graph::Node Node;
  1211     typedef typename Graph::NodeIt NodeIt;
  1212     typedef typename Graph::Edge Edge;
  1213 
  1214     TopologicalSortVisitor<Graph, NodeMap> 
  1215       visitor(order, countNodes(graph)); 
  1216 
  1217     DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
  1218       dfs(graph, visitor);
  1219 
  1220     dfs.init();
  1221     for (NodeIt it(graph); it != INVALID; ++it) {
  1222       if (!dfs.reached(it)) {
  1223 	dfs.addSource(it);
  1224 	dfs.start();
  1225       }
  1226     }    
  1227   }
  1228 
  1229   /// \ingroup topology
  1230   ///
  1231   /// \brief Sort the nodes of a DAG into topolgical order.
  1232   ///
  1233   /// Sort the nodes of a DAG into topolgical order. It also checks
  1234   /// that the given graph is DAG.
  1235   ///
  1236   /// \param graph The graph. It should be directed and acyclic.
  1237   /// \retval order A readable - writable node map. The values will be set 
  1238   /// from 0 to the number of the nodes in the graph minus one. Each values 
  1239   /// of the map will be set exactly once, the values will be set descending 
  1240   /// order.
  1241   /// \return %False when the graph is not DAG.
  1242   ///
  1243   /// \see topologicalSort
  1244   /// \see dag
  1245   template <typename Graph, typename NodeMap>
  1246   bool checkedTopologicalSort(const Graph& graph, NodeMap& order) {
  1247     using namespace _topology_bits;
  1248 
  1249     checkConcept<concept::StaticGraph, Graph>();
  1250     checkConcept<concept::ReadWriteMap<typename Graph::Node, int>, NodeMap>();
  1251 
  1252     typedef typename Graph::Node Node;
  1253     typedef typename Graph::NodeIt NodeIt;
  1254     typedef typename Graph::Edge Edge;
  1255 
  1256     order = constMap<Node, int, -1>();
  1257 
  1258     TopologicalSortVisitor<Graph, NodeMap> 
  1259       visitor(order, countNodes(graph)); 
  1260 
  1261     DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
  1262       dfs(graph, visitor);
  1263 
  1264     dfs.init();
  1265     for (NodeIt it(graph); it != INVALID; ++it) {
  1266       if (!dfs.reached(it)) {
  1267 	dfs.addSource(it);
  1268 	while (!dfs.emptyQueue()) {
  1269  	  Edge edge = dfs.nextEdge();
  1270  	  Node target = graph.target(edge);
  1271  	  if (dfs.reached(target) && order[target] == -1) {
  1272  	    return false;
  1273  	  }
  1274  	  dfs.processNextEdge();
  1275  	}
  1276       }
  1277     }
  1278     return true;
  1279   }
  1280 
  1281   /// \ingroup topology
  1282   ///
  1283   /// \brief Check that the given directed graph is a DAG.
  1284   ///
  1285   /// Check that the given directed graph is a DAG. The DAG is
  1286   /// an Directed Acyclic Graph.
  1287   /// \return %False when the graph is not DAG.
  1288   /// \see acyclic
  1289   template <typename Graph>
  1290   bool dag(const Graph& graph) {
  1291 
  1292     checkConcept<concept::StaticGraph, Graph>();
  1293 
  1294     typedef typename Graph::Node Node;
  1295     typedef typename Graph::NodeIt NodeIt;
  1296     typedef typename Graph::Edge Edge;
  1297 
  1298     typedef typename Graph::template NodeMap<bool> ProcessedMap;
  1299 
  1300     typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>::
  1301       Create dfs(graph);
  1302 
  1303     ProcessedMap processed(graph);
  1304     dfs.processedMap(processed);
  1305 
  1306     dfs.init();
  1307     for (NodeIt it(graph); it != INVALID; ++it) {
  1308       if (!dfs.reached(it)) {
  1309 	dfs.addSource(it);
  1310 	while (!dfs.emptyQueue()) {
  1311 	  Edge edge = dfs.nextEdge();
  1312 	  Node target = graph.target(edge);
  1313 	  if (dfs.reached(target) && !processed[target]) {
  1314 	    return false;
  1315 	  }
  1316 	  dfs.processNextEdge();
  1317 	}
  1318       }
  1319     }    
  1320     return true;
  1321   }
  1322 
  1323   /// \ingroup topology
  1324   ///
  1325   /// \brief Check that the given undirected graph is acyclic.
  1326   ///
  1327   /// Check that the given undirected graph acyclic.
  1328   /// \param graph The undirected graph.
  1329   /// \return %True when there is no circle in the graph.
  1330   /// \see dag
  1331   template <typename UGraph>
  1332   bool acyclic(const UGraph& graph) {
  1333     checkConcept<concept::UGraph, UGraph>();
  1334     typedef typename UGraph::Node Node;
  1335     typedef typename UGraph::NodeIt NodeIt;
  1336     typedef typename UGraph::Edge Edge;
  1337     Dfs<UGraph> dfs(graph);
  1338     dfs.init();
  1339     for (NodeIt it(graph); it != INVALID; ++it) {
  1340       if (!dfs.reached(it)) {
  1341 	dfs.addSource(it);
  1342 	while (!dfs.emptyQueue()) {
  1343 	  Edge edge = dfs.nextEdge();
  1344 	  Node source = graph.source(edge);
  1345 	  Node target = graph.target(edge);
  1346 	  if (dfs.reached(target) && 
  1347 	      dfs.predEdge(source) != graph.oppositeEdge(edge)) {
  1348 	    return false;
  1349 	  }
  1350 	  dfs.processNextEdge();
  1351 	}
  1352       }
  1353     }
  1354     return true;
  1355   }
  1356 
  1357   /// \ingroup topology
  1358   ///
  1359   /// \brief Check that the given undirected graph is tree.
  1360   ///
  1361   /// Check that the given undirected graph is tree.
  1362   /// \param graph The undirected graph.
  1363   /// \return %True when the graph is acyclic and connected.
  1364   template <typename UGraph>
  1365   bool tree(const UGraph& graph) {
  1366     checkConcept<concept::UGraph, UGraph>();
  1367     typedef typename UGraph::Node Node;
  1368     typedef typename UGraph::NodeIt NodeIt;
  1369     typedef typename UGraph::Edge Edge;
  1370     Dfs<UGraph> dfs(graph);
  1371     dfs.init();
  1372     dfs.addSource(NodeIt(graph));
  1373     while (!dfs.emptyQueue()) {
  1374       Edge edge = dfs.nextEdge();
  1375       Node source = graph.source(edge);
  1376       Node target = graph.target(edge);
  1377       if (dfs.reached(target) && 
  1378 	  dfs.predEdge(source) != graph.oppositeEdge(edge)) {
  1379 	return false;
  1380       }
  1381       dfs.processNextEdge();
  1382     }
  1383     for (NodeIt it(graph); it != INVALID; ++it) {
  1384       if (!dfs.reached(it)) {
  1385 	return false;
  1386       }
  1387     }    
  1388     return true;
  1389   }
  1390 
  1391   /// \ingroup topology
  1392   ///
  1393   /// \brief Check if the given undirected graph is bipartite or not
  1394   ///
  1395   /// The function checks if the given undirected \c graph graph is bipartite 
  1396   /// or not. The \ref Bfs algorithm is used to calculate the result.
  1397   /// \param graph The undirected graph.
  1398   /// \return %True if \c graph is bipartite, %false otherwise.
  1399   /// \sa bipartitePartitions
  1400   ///
  1401   /// \author Balazs Attila Mihaly  
  1402   template<typename UGraph>
  1403   inline bool bipartite(const UGraph &graph){
  1404     checkConcept<concept::UGraph, UGraph>();
  1405     
  1406     typedef typename UGraph::NodeIt NodeIt;
  1407     typedef typename UGraph::EdgeIt EdgeIt;
  1408     
  1409     Bfs<UGraph> bfs(graph);
  1410     bfs.init();
  1411     for(NodeIt i(graph);i!=INVALID;++i){
  1412       if(!bfs.reached(i)){
  1413 	bfs.run(i);
  1414       }
  1415     }
  1416     for(EdgeIt i(graph);i!=INVALID;++i){
  1417       if(bfs.dist(graph.source(i))==bfs.dist(graph.target(i)))return false;
  1418     }
  1419     return true;
  1420   };
  1421   
  1422   /// \ingroup topology
  1423   ///
  1424   /// \brief Check if the given undirected graph is bipartite or not
  1425   ///
  1426   /// The function checks if the given undirected graph is bipartite 
  1427   /// or not. The  \ref  Bfs  algorithm  is   used  to  calculate the result. 
  1428   /// During the execution, the \c partMap will be set as the two 
  1429   /// partitions of the graph.
  1430   /// \param graph The undirected graph.
  1431   /// \retval partMap A writable bool map of nodes. It will be set as the
  1432   /// two partitions of the graph. 
  1433   /// \return %True if \c graph is bipartite, %false otherwise.
  1434   ///
  1435   /// \author Balazs Attila Mihaly  
  1436   ///
  1437   /// \image html bipartite_partitions.png
  1438   /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth
  1439   template<typename UGraph, typename NodeMap>
  1440   inline bool bipartitePartitions(const UGraph &graph, NodeMap &partMap){
  1441     checkConcept<concept::UGraph, UGraph>();
  1442     
  1443     typedef typename UGraph::Node Node;
  1444     typedef typename UGraph::NodeIt NodeIt;
  1445     typedef typename UGraph::EdgeIt EdgeIt;
  1446   
  1447     Bfs<UGraph> bfs(graph);
  1448     bfs.init();
  1449     for(NodeIt i(graph);i!=INVALID;++i){
  1450       if(!bfs.reached(i)){
  1451 	bfs.addSource(i);
  1452 	for(Node j=bfs.processNextNode();!bfs.emptyQueue();
  1453 	    j=bfs.processNextNode()){
  1454 	  partMap.set(j,bfs.dist(j)%2==0);
  1455 	}
  1456       }
  1457     }
  1458     for(EdgeIt i(graph);i!=INVALID;++i){
  1459       if(bfs.dist(graph.source(i)) == bfs.dist(graph.target(i)))return false;
  1460     }
  1461     return true;
  1462   };
  1463    
  1464 } //namespace lemon
  1465 
  1466 #endif //LEMON_TOPOLOGY_H