src/include/fib_heap.h
author marci
Mon, 26 Apr 2004 14:25:51 +0000
changeset 414 3fd2eec272e0
parent 373 259ea2d741a2
child 430 60e4627e8c74
permissions -rw-r--r--
gcc-3.4.0
     1 // -*- C++ -*-
     2 
     3 #ifndef HUGO_FIB_HEAP_H
     4 #define HUGO_FIB_HEAP_H
     5 
     6 ///\file
     7 ///\brief Fibonacci Heap implementation.
     8 
     9 #include <vector>
    10 #include <functional>
    11 #include <math.h>
    12 
    13 namespace hugo {
    14   
    15   /// An implementation of the Fibonacci Heap.
    16 
    17   /**
    18      This class implements the \e Fibonacci \e heap data structure. A \e heap
    19      is a data structure for storing items with specified values called \e
    20      priorities, such that finding the item with minimum priority with respect
    21      to \e Compare is efficient. In a heap one can change the priority of an
    22      item, add or erase an item, etc.
    23 
    24      The methods \ref increase and \ref erase are not efficient in a Fibonacci
    25      heap. In case of many calls to these operations, it is better to use a
    26      \e binary \e heap.
    27      
    28      \param Item The type of the items to be stored.  
    29      \param Prio The type of the priority of the items.
    30      \param ItemIntMap A read and writable Item int map, for the usage of
    31      the heap.
    32      \param Compare A class for the comparison of the priorities. The
    33      default is \c std::less<Prio>.
    34 
    35   */
    36 
    37 #ifdef DOXYGEN
    38   template <typename Item, 
    39 	    typename Prio, 
    40 	    typename ItemIntMap, 
    41 	    typename Compare>
    42 #else
    43   template <typename Item, 
    44 	    typename Prio, 
    45 	    typename ItemIntMap, 
    46 	    typename Compare = std::less<Prio> >
    47 #endif
    48   class FibHeap {
    49   public:     
    50     typedef Prio PrioType;
    51     
    52   private:
    53     class store;
    54     
    55     std::vector<store> container;
    56     int minimum;
    57     ItemIntMap &iimap;
    58     Compare comp;
    59     int num_items;
    60     
    61     ///\todo It is use nowhere
    62     ///\todo It doesn't conform to the naming conventions.
    63   public:
    64     enum state_enum {
    65       IN_HEAP = 0,
    66       PRE_HEAP = -1,
    67       POST_HEAP = -2
    68     };
    69     
    70     FibHeap(ItemIntMap &_iimap) : minimum(0), iimap(_iimap), num_items() {} 
    71     FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(0), 
    72       iimap(_iimap), comp(_comp), num_items() {}
    73     
    74     ///The number of items stored in the heap.
    75 
    76     /**
    77        Returns the number of items stored in the heap.
    78     */
    79     int size() const { return num_items; }
    80 
    81     ///Checks if the heap stores no items.
    82     
    83     /**
    84        Returns \c true iff the heap stores no items.
    85     */
    86     bool empty() const { return num_items==0; }
    87 
    88     ///\c item gets to the heap with priority \c value independently if \c item was already there.
    89 
    90     /**
    91        This method calls \ref push(\c item, \c value) if \c item is not
    92        stored in the heap and it calls \ref decrease(\c item, \c value) or
    93        \ref increase(\c item, \c value) otherwise.
    94     */
    95     void set (Item const item, PrioType const value); 
    96     
    97     ///Adds \c item to the heap with priority \c value. 
    98     
    99     /**
   100        Adds \c item to the heap with priority \c value. 
   101        \pre \c item must not be stored in the heap. 
   102     */
   103     void push (Item const item, PrioType const value);
   104     
   105     
   106     ///Returns the item having the minimum priority w.r.t.  Compare.
   107     
   108     /**
   109        This method returns the item having the minimum priority w.r.t.  Compare. 
   110        \pre The heap must be nonempty.
   111     */
   112     Item top() const { return container[minimum].name; }
   113     
   114 
   115     ///Returns the minimum priority w.r.t.  Compare.
   116 
   117     /**
   118        It returns the minimum priority w.r.t.  Compare.
   119        \pre The heap must be nonempty.
   120     */
   121     PrioType prio() const { return container[minimum].prio; }
   122     
   123 
   124     ///Returns the priority of \c item.
   125 
   126     /**
   127        It returns the priority of \c item.
   128        \pre \c item must be in the heap.
   129     */
   130     PrioType& operator[](const Item& item) { 
   131       return container[iimap[item]].prio; 
   132     }
   133     
   134     ///Returns the priority of \c item.
   135     
   136     /**
   137        It returns the priority of \c item.
   138        \pre \c item must be in the heap.
   139     */
   140     const PrioType& operator[](const Item& item) const { 
   141       return container[iimap[item]].prio; 
   142     }
   143 
   144 
   145     ///Deletes the item with minimum priority w.r.t.  Compare.
   146 
   147     /**
   148     This method deletes the item with minimum priority w.r.t. 
   149     Compare from the heap.
   150     \pre The heap must be non-empty.
   151     */
   152     void pop();
   153 
   154     ///Deletes \c item from the heap.
   155 
   156     /**
   157        This method deletes \c item from the heap, if \c item was already
   158        stored in the heap. It is quite inefficient in Fibonacci heaps.
   159     */
   160     void erase (const Item& item); 
   161 
   162     ///Decreases the priority of \c item to \c value.
   163 
   164     /**
   165        This method decreases the priority of \c item to \c value.
   166        \pre \c item must be stored in the heap with priority at least \c
   167        value w.r.t.  Compare.
   168     */
   169     void decrease (Item item, PrioType const value); 
   170 
   171 
   172     ///Increases the priority of \c item to \c value.
   173 
   174     /**
   175        This method sets the priority of \c item to \c value. Though
   176        there is no precondition on the priority of \c item, this
   177        method should be used only if there is a need to really \e increase
   178        (w.r.t.  Compare) the priority of \c item, because this
   179        method is inefficient.
   180     */
   181     void increase (Item item, PrioType const value) {
   182       erase(item);
   183       push(item, value);
   184     }
   185 
   186 
   187     ///Tells if \c item is in, was already in, or has never been in the heap.
   188 
   189     /**
   190        This method returns PRE_HEAP if \c item has never been in the
   191        heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   192        otherwise. In the latter case it is possible that \c item will
   193        get back to the heap again.
   194     */
   195     state_enum state(const Item &item) const {
   196       int i=iimap[item];
   197       if( i>=0 ) {
   198 	if ( container[i].in ) i=0;
   199 	else i=-2; 
   200       }
   201       return state_enum(i);
   202     }    
   203     
   204   private:
   205     
   206     void balance();
   207     void makeroot(int c);
   208     void cut(int a, int b);
   209     void cascade(int a);
   210     void fuse(int a, int b);
   211     void unlace(int a);
   212 
   213 
   214     class store {
   215       friend class FibHeap;
   216       
   217       Item name;
   218       int parent;
   219       int left_neighbor;
   220       int right_neighbor;
   221       int child;
   222       int degree;  
   223       bool marked;
   224       bool in;
   225       PrioType prio;
   226       
   227       store() : parent(-1), child(-1), degree(), marked(false), in(true) {} 
   228     };
   229   };    
   230  
   231 
   232 
   233     // **********************************************************************
   234     //  IMPLEMENTATIONS
   235     // **********************************************************************
   236     
   237   template <typename Item, typename Prio, typename ItemIntMap, 
   238     typename Compare>
   239   void FibHeap<Item, Prio, ItemIntMap, Compare>::set 
   240   (Item const item, PrioType const value) 
   241   {
   242     int i=iimap[item];
   243     if ( i >= 0 && container[i].in ) {
   244       if ( comp(value, container[i].prio) ) decrease(item, value); 
   245       if ( comp(container[i].prio, value) ) increase(item, value); 
   246     } else push(item, value);
   247   }
   248     
   249   template <typename Item, typename Prio, typename ItemIntMap, 
   250     typename Compare>
   251   void FibHeap<Item, Prio, ItemIntMap, Compare>::push 
   252   (Item const item, PrioType const value) {
   253       int i=iimap[item];      
   254       if ( i < 0 ) {
   255 	int s=container.size();
   256 	iimap.set( item, s );	
   257 	store st;
   258 	st.name=item;
   259 	container.push_back(st);
   260 	i=s;
   261       } else {
   262 	container[i].parent=container[i].child=-1;
   263 	container[i].degree=0;
   264 	container[i].in=true;
   265 	container[i].marked=false;
   266       }
   267 
   268       if ( num_items ) {
   269 	container[container[minimum].right_neighbor].left_neighbor=i;
   270 	container[i].right_neighbor=container[minimum].right_neighbor;
   271 	container[minimum].right_neighbor=i;
   272 	container[i].left_neighbor=minimum;
   273 	if ( comp( value, container[minimum].prio) ) minimum=i; 
   274       } else {
   275 	container[i].right_neighbor=container[i].left_neighbor=i;
   276 	minimum=i;	
   277       }
   278       container[i].prio=value;
   279       ++num_items;
   280     }
   281     
   282   template <typename Item, typename Prio, typename ItemIntMap, 
   283     typename Compare>
   284   void FibHeap<Item, Prio, ItemIntMap, Compare>::pop() {
   285       /*The first case is that there are only one root.*/
   286       if ( container[minimum].left_neighbor==minimum ) {
   287 	container[minimum].in=false;
   288 	if ( container[minimum].degree!=0 ) { 
   289 	  makeroot(container[minimum].child);
   290 	  minimum=container[minimum].child;
   291 	  balance();
   292 	}
   293       } else {
   294 	int right=container[minimum].right_neighbor;
   295 	unlace(minimum);
   296 	container[minimum].in=false;
   297 	if ( container[minimum].degree > 0 ) {
   298 	  int left=container[minimum].left_neighbor;
   299 	  int child=container[minimum].child;
   300 	  int last_child=container[child].left_neighbor;
   301 	
   302 	  makeroot(child);
   303 	  
   304 	  container[left].right_neighbor=child;
   305 	  container[child].left_neighbor=left;
   306 	  container[right].left_neighbor=last_child;
   307 	  container[last_child].right_neighbor=right;
   308 	}
   309 	minimum=right;
   310 	balance();
   311       } // the case where there are more roots
   312       --num_items;   
   313     }
   314 
   315 
   316   template <typename Item, typename Prio, typename ItemIntMap, 
   317     typename Compare>
   318   void FibHeap<Item, Prio, ItemIntMap, Compare>::erase 
   319   (const Item& item) {
   320       int i=iimap[item];
   321       
   322       if ( i >= 0 && container[i].in ) { 	
   323 	if ( container[i].parent!=-1 ) {
   324 	  int p=container[i].parent;
   325 	  cut(i,p);	    
   326 	  cascade(p);
   327 	}
   328 	minimum=i;     //As if its prio would be -infinity
   329 	pop();
   330       }
   331   }
   332     
   333   template <typename Item, typename Prio, typename ItemIntMap, 
   334     typename Compare>
   335   void FibHeap<Item, Prio, ItemIntMap, Compare>::decrease 
   336   (Item item, PrioType const value) {
   337       int i=iimap[item];
   338       container[i].prio=value;
   339       int p=container[i].parent;
   340       
   341       if ( p!=-1 && comp(value, container[p].prio) ) {
   342 	cut(i,p);	    
   343 	cascade(p);
   344       }      
   345       if ( comp(value, container[minimum].prio) ) minimum=i; 
   346   }
   347  
   348 
   349   template <typename Item, typename Prio, typename ItemIntMap, 
   350     typename Compare>
   351   void FibHeap<Item, Prio, ItemIntMap, Compare>::balance() {      
   352 
   353     int maxdeg=int( floor( 2.08*log(double(container.size()))))+1;
   354   
   355     std::vector<int> A(maxdeg,-1); 
   356     
   357     /*
   358      *Recall that now minimum does not point to the minimum prio element.
   359      *We set minimum to this during balance().
   360      */
   361     int anchor=container[minimum].left_neighbor; 
   362     int next=minimum; 
   363     bool end=false; 
   364     	
   365        do {
   366 	int active=next;
   367 	if ( anchor==active ) end=true;
   368 	int d=container[active].degree;
   369 	next=container[active].right_neighbor;
   370 
   371 	while (A[d]!=-1) {	  
   372 	  if( comp(container[active].prio, container[A[d]].prio) ) {
   373 	    fuse(active,A[d]); 
   374 	  } else { 
   375 	    fuse(A[d],active);
   376 	    active=A[d];
   377 	  } 
   378 	  A[d]=-1;
   379 	  ++d;
   380 	}	
   381 	A[d]=active;
   382        } while ( !end );
   383 
   384 
   385        while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
   386        int s=minimum;
   387        int m=minimum;
   388        do {  
   389 	 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
   390 	 s=container[s].right_neighbor;
   391        } while ( s != m );
   392     }
   393 
   394   template <typename Item, typename Prio, typename ItemIntMap, 
   395     typename Compare>
   396   void FibHeap<Item, Prio, ItemIntMap, Compare>::makeroot 
   397   (int c) {
   398       int s=c;
   399       do {  
   400 	container[s].parent=-1;
   401 	s=container[s].right_neighbor;
   402       } while ( s != c );
   403     }
   404   
   405   
   406   template <typename Item, typename Prio, typename ItemIntMap, 
   407     typename Compare>
   408   void FibHeap<Item, Prio, ItemIntMap, Compare>::cut 
   409   (int a, int b) {    
   410     /*
   411      *Replacing a from the children of b.
   412      */
   413     --container[b].degree;
   414     
   415     if ( container[b].degree !=0 ) {
   416       int child=container[b].child;
   417       if ( child==a ) 
   418 	container[b].child=container[child].right_neighbor;
   419       unlace(a);
   420     }
   421     
   422     
   423     /*Lacing a to the roots.*/
   424     int right=container[minimum].right_neighbor;
   425     container[minimum].right_neighbor=a;
   426     container[a].left_neighbor=minimum;
   427     container[a].right_neighbor=right;
   428     container[right].left_neighbor=a;
   429     
   430     container[a].parent=-1;
   431     container[a].marked=false;
   432   }
   433   
   434 
   435   template <typename Item, typename Prio, typename ItemIntMap, 
   436     typename Compare>
   437   void FibHeap<Item, Prio, ItemIntMap, Compare>::cascade 
   438   (int a) 
   439     {
   440       if ( container[a].parent!=-1 ) {
   441 	int p=container[a].parent;
   442 	
   443 	if ( container[a].marked==false ) container[a].marked=true;
   444 	else {
   445 	  cut(a,p);
   446 	  cascade(p);
   447 	}
   448       }
   449     }
   450 
   451 
   452   template <typename Item, typename Prio, typename ItemIntMap, 
   453     typename Compare>
   454   void FibHeap<Item, Prio, ItemIntMap, Compare>::fuse 
   455   (int a, int b) {
   456       unlace(b);
   457       
   458       /*Lacing b under a.*/
   459       container[b].parent=a;
   460 
   461       if (container[a].degree==0) {
   462 	container[b].left_neighbor=b;
   463 	container[b].right_neighbor=b;
   464 	container[a].child=b;	
   465       } else {
   466 	int child=container[a].child;
   467 	int last_child=container[child].left_neighbor;
   468 	container[child].left_neighbor=b;
   469 	container[b].right_neighbor=child;
   470 	container[last_child].right_neighbor=b;
   471 	container[b].left_neighbor=last_child;
   472       }
   473 
   474       ++container[a].degree;
   475       
   476       container[b].marked=false;
   477     }
   478 
   479   
   480   /*
   481    *It is invoked only if a has siblings.
   482    */
   483   template <typename Item, typename Prio, typename ItemIntMap, 
   484     typename Compare>
   485   void FibHeap<Item, Prio, ItemIntMap, Compare>::unlace 
   486   (int a) {      
   487       int leftn=container[a].left_neighbor;
   488       int rightn=container[a].right_neighbor;
   489       container[leftn].right_neighbor=rightn;
   490       container[rightn].left_neighbor=leftn;
   491   }
   492   
   493 } //namespace hugo
   494 #endif