src/work/marci/experiment/edmonds_karp_1.h
author marci
Sat, 03 Apr 2004 17:26:46 +0000
changeset 281 3fefabfd00b7
child 298 315d826faa8f
permissions -rw-r--r--
One more experimental study about dereferation vs optimization
     1 // -*- c++ -*-
     2 #ifndef HUGO_EDMONDS_KARP_H
     3 #define HUGO_EDMONDS_KARP_H
     4 
     5 #include <algorithm>
     6 #include <list>
     7 #include <iterator>
     8 
     9 #include <bfs_iterator_1.h>
    10 #include <invalid.h>
    11 #include <graph_wrapper_1.h>
    12 
    13 namespace hugo {
    14 
    15   template<typename Graph, typename Number, typename FlowMap, typename CapacityMap>
    16   class ResGraph {
    17   public:
    18     typedef typename Graph::Node Node;
    19     typedef typename Graph::NodeIt NodeIt;
    20   private:
    21     typedef typename Graph::SymEdgeIt OldSymEdgeIt;
    22     const Graph& G;
    23     FlowMap& flow;
    24     const CapacityMap& capacity;
    25   public:
    26     ResGraph(const Graph& _G, FlowMap& _flow, 
    27 	     const CapacityMap& _capacity) : 
    28       G(_G), flow(_flow), capacity(_capacity) { }
    29 
    30     class Edge; 
    31     class OutEdgeIt; 
    32     friend class Edge; 
    33     friend class OutEdgeIt; 
    34 
    35     class Edge {
    36       friend class ResGraph<Graph, Number, FlowMap, CapacityMap>;
    37     protected:
    38       const ResGraph<Graph, Number, FlowMap, CapacityMap>* resG;
    39       OldSymEdgeIt sym;
    40     public:
    41       Edge() { } 
    42       //Edge(const Edge& e) : resG(e.resG), sym(e.sym) { }
    43       Number free() const { 
    44 	if (resG->G.aNode(sym)==resG->G.tail(sym)) { 
    45 	  return (resG->capacity.get(sym)-resG->flow.get(sym)); 
    46 	} else { 
    47 	  return (resG->flow.get(sym)); 
    48 	}
    49       }
    50       bool valid() const { return sym.valid(); }
    51       void augment(Number a) const {
    52 	if (resG->G.aNode(sym)==resG->G.tail(sym)) { 
    53 	  resG->flow.set(sym, resG->flow.get(sym)+a);
    54 	  //resG->flow[sym]+=a;
    55 	} else { 
    56 	  resG->flow.set(sym, resG->flow.get(sym)-a);
    57 	  //resG->flow[sym]-=a;
    58 	}
    59       }
    60     };
    61 
    62     class OutEdgeIt : public Edge {
    63       friend class ResGraph<Graph, Number, FlowMap, CapacityMap>;
    64     public:
    65       OutEdgeIt() { }
    66       //OutEdgeIt(const OutEdgeIt& e) { resG=e.resG; sym=e.sym; }
    67     private:
    68       OutEdgeIt(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _resG, Node v) { 
    69       	resG=&_resG;
    70 	sym=resG->G.template first<OldSymEdgeIt>(v);
    71 	while( sym.valid() && !(free()>0) ) { ++sym; }
    72       }
    73     public:
    74       OutEdgeIt& operator++() { 
    75 	++sym; 
    76 	while( sym.valid() && !(free()>0) ) { ++sym; }
    77 	return *this; 
    78       }
    79     };
    80 
    81     void /*getF*/first(OutEdgeIt& e, Node v) const { 
    82       e=OutEdgeIt(*this, v); 
    83     }
    84     void /*getF*/first(NodeIt& v) const { G./*getF*/first(v); }
    85     
    86     template< typename It >
    87     It first() const { 
    88       It e;      
    89       /*getF*/first(e);
    90       return e; 
    91     }
    92 
    93     template< typename It >
    94     It first(Node v) const { 
    95       It e;
    96       /*getF*/first(e, v);
    97       return e; 
    98     }
    99 
   100     Node tail(Edge e) const { return G.aNode(e.sym); }
   101     Node head(Edge e) const { return G.bNode(e.sym); }
   102 
   103     Node aNode(OutEdgeIt e) const { return G.aNode(e.sym); }
   104     Node bNode(OutEdgeIt e) const { return G.bNode(e.sym); }
   105 
   106     int id(Node v) const { return G.id(v); }
   107 
   108     template <typename S>
   109     class NodeMap {
   110       typename Graph::NodeMap<S> node_map; 
   111     public:
   112       NodeMap(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _G) : node_map(_G.G) { }
   113       NodeMap(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _G, S a) : node_map(_G.G, a) { }
   114       void set(Node nit, S a) { node_map.set(nit, a); }
   115       S get(Node nit) const { return node_map.get(nit); }
   116       S& operator[](Node nit) { return node_map[nit]; } 
   117       const S& operator[](Node nit) const { return node_map[nit]; } 
   118     };
   119 
   120   };
   121 
   122 
   123   template<typename Graph, typename Number, typename FlowMap, typename CapacityMap>
   124   class ResGraph2 {
   125   public:
   126     typedef typename Graph::Node Node;
   127     typedef typename Graph::NodeIt NodeIt;
   128   private:
   129     //typedef typename Graph::SymEdgeIt OldSymEdgeIt;
   130     typedef typename Graph::OutEdgeIt OldOutEdgeIt;
   131     typedef typename Graph::InEdgeIt OldInEdgeIt;
   132     
   133     const Graph& G;
   134     FlowMap& flow;
   135     const CapacityMap& capacity;
   136   public:
   137     ResGraph2(const Graph& _G, FlowMap& _flow, 
   138 	     const CapacityMap& _capacity) : 
   139       G(_G), flow(_flow), capacity(_capacity) { }
   140 
   141     class Edge; 
   142     class OutEdgeIt; 
   143     friend class Edge; 
   144     friend class OutEdgeIt; 
   145 
   146     class Edge {
   147       friend class ResGraph2<Graph, Number, FlowMap, CapacityMap>;
   148     protected:
   149       const ResGraph2<Graph, Number, FlowMap, CapacityMap>* resG;
   150       //OldSymEdgeIt sym;
   151       OldOutEdgeIt out;
   152       OldInEdgeIt in;
   153       bool out_or_in; //true, iff out
   154     public:
   155       Edge() : out_or_in(true) { } 
   156       Number free() const { 
   157 	if (out_or_in) { 
   158 	  return (resG->capacity.get(out)-resG->flow.get(out)); 
   159 	} else { 
   160 	  return (resG->flow.get(in)); 
   161 	}
   162       }
   163       bool valid() const { 
   164 	return out_or_in && out.valid() || in.valid(); }
   165       void augment(Number a) const {
   166 	if (out_or_in) { 
   167 	  resG->flow.set(out, resG->flow.get(out)+a);
   168 	} else { 
   169 	  resG->flow.set(in, resG->flow.get(in)-a);
   170 	}
   171       }
   172     };
   173 
   174     class OutEdgeIt : public Edge {
   175       friend class ResGraph2<Graph, Number, FlowMap, CapacityMap>;
   176     public:
   177       OutEdgeIt() { }
   178     private:
   179       OutEdgeIt(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _resG, Node v) { 
   180       	resG=&_resG;
   181 	out=resG->G.template first<OldOutEdgeIt>(v);
   182 	while( out.valid() && !(free()>0) ) { ++out; }
   183 	if (!out.valid()) {
   184 	  out_or_in=0;
   185 	  in=resG->G.template first<OldInEdgeIt>(v);
   186 	  while( in.valid() && !(free()>0) ) { ++in; }
   187 	}
   188       }
   189     public:
   190       OutEdgeIt& operator++() { 
   191 	if (out_or_in) {
   192 	  Node v=resG->G.aNode(out);
   193 	  ++out;
   194 	  while( out.valid() && !(free()>0) ) { ++out; }
   195 	  if (!out.valid()) {
   196 	    out_or_in=0;
   197 	    in=resG->G.template first<OldInEdgeIt>(v);
   198 	    while( in.valid() && !(free()>0) ) { ++in; }
   199 	  }
   200 	} else {
   201 	  ++in;
   202 	  while( in.valid() && !(free()>0) ) { ++in; } 
   203 	}
   204 	return *this; 
   205       }
   206     };
   207 
   208     void /*getF*/first(OutEdgeIt& e, Node v) const { 
   209       e=OutEdgeIt(*this, v); 
   210     }
   211     void /*getF*/first(NodeIt& v) const { G./*getF*/first(v); }
   212     
   213     template< typename It >
   214     It first() const { 
   215       It e;
   216       /*getF*/first(e);
   217       return e; 
   218     }
   219 
   220     template< typename It >
   221     It first(Node v) const { 
   222       It e;
   223       /*getF*/first(e, v);
   224       return e; 
   225     }
   226 
   227     Node tail(Edge e) const { 
   228       return ((e.out_or_in) ? G.aNode(e.out) : G.aNode(e.in)); }
   229     Node head(Edge e) const { 
   230       return ((e.out_or_in) ? G.bNode(e.out) : G.bNode(e.in)); }
   231 
   232     Node aNode(OutEdgeIt e) const { 
   233       return ((e.out_or_in) ? G.aNode(e.out) : G.aNode(e.in)); }
   234     Node bNode(OutEdgeIt e) const { 
   235       return ((e.out_or_in) ? G.bNode(e.out) : G.bNode(e.in)); }
   236 
   237     int id(Node v) const { return G.id(v); }
   238 
   239     template <typename S>
   240     class NodeMap {
   241       typename Graph::NodeMap<S> node_map; 
   242     public:
   243       NodeMap(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _G) : node_map(_G.G) { }
   244       NodeMap(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _G, S a) : node_map(_G.G, a) { }
   245       void set(Node nit, S a) { node_map.set(nit, a); }
   246       S get(Node nit) const { return node_map.get(nit); }
   247     };
   248   };
   249 
   250 
   251   template <typename GraphWrapper, typename Number, typename FlowMap, typename CapacityMap>
   252   class MaxFlow {
   253   protected:
   254     typedef GraphWrapper GW;
   255     typedef typename GW::Node Node;
   256     typedef typename GW::Edge Edge;
   257     typedef typename GW::EdgeIt EdgeIt;
   258     typedef typename GW::OutEdgeIt OutEdgeIt;
   259     typedef typename GW::InEdgeIt InEdgeIt;
   260     //const Graph* G;
   261     //GW gw;
   262     const GW* g;
   263     Node s;
   264     Node t;
   265     FlowMap* flow;
   266     const CapacityMap* capacity;
   267     typedef ResGraphWrapper<const GW, Number, FlowMap, CapacityMap > ResGW;
   268     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
   269     typedef typename ResGW::Edge ResGWEdge;
   270   public:
   271 
   272     MaxFlow(const GW& _g, Node _s, Node _t, FlowMap& _flow, const CapacityMap& _capacity) : 
   273       g(&_g), s(_s), t(_t), flow(&_flow), capacity(&_capacity) { }
   274 
   275     bool augmentOnShortestPath() {
   276       ResGW res_graph(*g, *flow, *capacity);
   277       bool _augment=false;
   278       
   279       typedef typename ResGW::NodeMap<bool> ReachedMap;
   280       BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
   281       bfs.pushAndSetReached(s);
   282 	
   283       typename ResGW::NodeMap<ResGWEdge> pred(res_graph); 
   284       pred.set(s, INVALID);
   285       
   286       typename ResGW::NodeMap<Number> free(res_graph);
   287 	
   288       //searching for augmenting path
   289       while ( !bfs.finished() ) { 
   290 	ResGWOutEdgeIt e=bfs;
   291 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   292 	  Node v=res_graph.tail(e);
   293 	  Node w=res_graph.head(e);
   294 	  pred.set(w, e);
   295 	  if (res_graph.valid(pred.get(v))) {
   296 	    free.set(w, std::min(free.get(v), res_graph.resCap(e)));
   297 	  } else {
   298 	    free.set(w, res_graph.resCap(e)); 
   299 	  }
   300 	  if (res_graph.head(e)==t) { _augment=true; break; }
   301 	}
   302 	
   303 	++bfs;
   304       } //end of searching augmenting path
   305 
   306       if (_augment) {
   307 	Node n=t;
   308 	Number augment_value=free.get(t);
   309 	while (res_graph.valid(pred.get(n))) { 
   310 	  ResGWEdge e=pred.get(n);
   311 	  res_graph.augment(e, augment_value); 
   312 	  n=res_graph.tail(e);
   313 	}
   314       }
   315 
   316       return _augment;
   317     }
   318 
   319     template<typename MapGraphWrapper> 
   320     class DistanceMap {
   321     protected:
   322       const MapGraphWrapper* g;
   323       typename MapGraphWrapper::NodeMap<int> dist; 
   324     public:
   325       DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
   326       void set(const typename MapGraphWrapper::Node& n, int a) { dist[n]=a; }
   327       int get(const typename MapGraphWrapper::Node& n) const { return dist[n]; }
   328       bool get(const typename MapGraphWrapper::Edge& e) const { 
   329 	return (dist.get(g->tail(e))<dist.get(g->head(e))); 
   330       }
   331     };
   332 
   333     template<typename MutableGraph> bool augmentOnBlockingFlow() {      
   334       typedef MutableGraph MG;
   335       bool _augment=false;
   336 
   337       ResGW res_graph(*g, *flow, *capacity);
   338 
   339       typedef typename ResGW::NodeMap<bool> ReachedMap;
   340       BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
   341 
   342       bfs.pushAndSetReached(s);
   343       //typename ResGW::NodeMap<int> dist(res_graph); //filled up with 0's
   344       DistanceMap<ResGW> dist(res_graph);
   345       while ( !bfs.finished() ) { 
   346 	ResGWOutEdgeIt e=bfs;
   347 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   348 	  dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
   349 	}
   350 	++bfs;
   351       } //computing distances from s in the residual graph
   352 
   353       MG F;
   354       typedef SubGraphWrapper<ResGW, DistanceMap<ResGW> > FilterResGW;
   355       FilterResGW filter_res_graph(res_graph, dist);
   356       typename ResGW::NodeMap<typename MG::Node> res_graph_to_F(res_graph);
   357       {
   358 	typename ResGW::NodeIt n;
   359 	for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
   360 	  res_graph_to_F.set(n, F.addNode());
   361 	}
   362       }
   363 
   364       typename MG::Node sF=res_graph_to_F.get(s);
   365       typename MG::Node tF=res_graph_to_F.get(t);
   366       typename MG::EdgeMap<ResGWEdge> original_edge(F);
   367       typename MG::EdgeMap<Number> residual_capacity(F);
   368 
   369       //Making F to the graph containing the edges of the residual graph 
   370       //which are in some shortest paths
   371       {
   372 	typename FilterResGW::EdgeIt e;
   373 	for(filter_res_graph.first(e); filter_res_graph.valid(e); filter_res_graph.next(e)) {
   374 	  //if (dist.get(res_graph.head(e))==dist.get(res_graph.tail(e))+1) {
   375 	  typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e)));
   376 	  original_edge.update();
   377 	  original_edge.set(f, e);
   378 	  residual_capacity.update();
   379 	  residual_capacity.set(f, res_graph.resCap(e));
   380 	  //} 
   381 	}
   382       }
   383 
   384       bool __augment=true;
   385 
   386       while (__augment) {
   387 	__augment=false;
   388 	//computing blocking flow with dfs
   389 	typedef typename TrivGraphWrapper<MG>::NodeMap<bool> BlockingReachedMap;
   390 	DfsIterator5< TrivGraphWrapper<MG>, BlockingReachedMap > dfs(F);
   391 	typename MG::NodeMap<typename MG::Edge> pred(F);
   392 	pred.set(sF, INVALID);
   393 	//invalid iterators for sources
   394 
   395 	typename MG::NodeMap<Number> free(F);
   396 
   397 	dfs.pushAndSetReached(sF);      
   398 	while (!dfs.finished()) {
   399 	  ++dfs;
   400 	  if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
   401 	    if (dfs.isBNodeNewlyReached()) {
   402 	      typename MG::Node v=F.aNode(dfs);
   403 	      typename MG::Node w=F.bNode(dfs);
   404 	      pred.set(w, dfs);
   405 	      if (F.valid(pred.get(v))) {
   406 		free.set(w, std::min(free.get(v), residual_capacity.get(dfs)));
   407 	      } else {
   408 		free.set(w, residual_capacity.get(dfs)); 
   409 	      }
   410 	      if (w==tF) { 
   411 		__augment=true; 
   412 		_augment=true;
   413 		break; 
   414 	      }
   415 	      
   416 	    } else {
   417 	      F.erase(/*typename MG::OutEdgeIt*/(dfs));
   418 	    }
   419 	  } 
   420 	}
   421 
   422 	if (__augment) {
   423 	  typename MG::Node n=tF;
   424 	  Number augment_value=free.get(tF);
   425 	  while (F.valid(pred.get(n))) { 
   426 	    typename MG::Edge e=pred.get(n);
   427 	    res_graph.augment(original_edge.get(e), augment_value); 
   428 	    n=F.tail(e);
   429 	    if (residual_capacity.get(e)==augment_value) 
   430 	      F.erase(e); 
   431 	    else 
   432 	      residual_capacity.set(e, residual_capacity.get(e)-augment_value);
   433 	  }
   434 	}
   435 	
   436       }
   437             
   438       return _augment;
   439     }
   440 
   441     template<typename MutableGraph> bool augmentOnBlockingFlow1() {      
   442       typedef MutableGraph MG;
   443       bool _augment=false;
   444 
   445       ResGW res_graph(*g, *flow, *capacity);
   446 
   447       //bfs for distances on the residual graph
   448       typedef typename ResGW::NodeMap<bool> ReachedMap;
   449       BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
   450       bfs.pushAndSetReached(s);
   451       typename ResGW::NodeMap<int> dist(res_graph); //filled up with 0's
   452 
   453       //F will contain the physical copy of the residual graph
   454       //with the set of edges which are on shortest paths
   455       MG F;
   456       typename ResGW::NodeMap<typename MG::Node> res_graph_to_F(res_graph);
   457       {
   458 	typename ResGW::NodeIt n;
   459 	for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
   460 	  res_graph_to_F.set(n, F.addNode());
   461 	}
   462       }
   463 
   464       typename MG::Node sF=res_graph_to_F.get(s);
   465       typename MG::Node tF=res_graph_to_F.get(t);
   466       typename MG::EdgeMap<ResGWEdge> original_edge(F);
   467       typename MG::EdgeMap<Number> residual_capacity(F);
   468 
   469       while ( !bfs.finished() ) { 
   470 	ResGWOutEdgeIt e=bfs;
   471 	if (res_graph.valid(e)) {
   472 	  if (bfs.isBNodeNewlyReached()) {
   473 	    dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
   474 	    typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e)));
   475 	    original_edge.update();
   476 	    original_edge.set(f, e);
   477 	    residual_capacity.update();
   478 	    residual_capacity.set(f, res_graph.resCap(e));
   479 	  } else {
   480 	    if (dist.get(res_graph.head(e))==(dist.get(res_graph.tail(e))+1)) {
   481 	      typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e)));
   482 	      original_edge.update();
   483 	      original_edge.set(f, e);
   484 	      residual_capacity.update();
   485 	      residual_capacity.set(f, res_graph.resCap(e));
   486 	    }
   487 	  }
   488 	}
   489 	++bfs;
   490       } //computing distances from s in the residual graph
   491 
   492       bool __augment=true;
   493 
   494       while (__augment) {
   495 	__augment=false;
   496 	//computing blocking flow with dfs
   497 	typedef typename TrivGraphWrapper<MG>::NodeMap<bool> BlockingReachedMap;
   498 	DfsIterator5< TrivGraphWrapper<MG>, BlockingReachedMap > dfs(F);
   499 	typename MG::NodeMap<typename MG::Edge> pred(F);
   500 	pred.set(sF, INVALID);
   501 	//invalid iterators for sources
   502 
   503 	typename MG::NodeMap<Number> free(F);
   504 
   505 	dfs.pushAndSetReached(sF);      
   506 	while (!dfs.finished()) {
   507 	  ++dfs;
   508 	  if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
   509 	    if (dfs.isBNodeNewlyReached()) {
   510 	      typename MG::Node v=F.aNode(dfs);
   511 	      typename MG::Node w=F.bNode(dfs);
   512 	      pred.set(w, dfs);
   513 	      if (F.valid(pred.get(v))) {
   514 		free.set(w, std::min(free.get(v), residual_capacity.get(dfs)));
   515 	      } else {
   516 		free.set(w, residual_capacity.get(dfs)); 
   517 	      }
   518 	      if (w==tF) { 
   519 		__augment=true; 
   520 		_augment=true;
   521 		break; 
   522 	      }
   523 	      
   524 	    } else {
   525 	      F.erase(/*typename MG::OutEdgeIt*/(dfs));
   526 	    }
   527 	  } 
   528 	}
   529 
   530 	if (__augment) {
   531 	  typename MG::Node n=tF;
   532 	  Number augment_value=free.get(tF);
   533 	  while (F.valid(pred.get(n))) { 
   534 	    typename MG::Edge e=pred.get(n);
   535 	    res_graph.augment(original_edge.get(e), augment_value); 
   536 	    n=F.tail(e);
   537 	    if (residual_capacity.get(e)==augment_value) 
   538 	      F.erase(e); 
   539 	    else 
   540 	      residual_capacity.set(e, residual_capacity.get(e)-augment_value);
   541 	  }
   542 	}
   543 	
   544       }
   545             
   546       return _augment;
   547     }
   548 
   549     bool augmentOnBlockingFlow2() {
   550       bool _augment=false;
   551 
   552       ResGW res_graph(*g, *flow, *capacity);
   553 
   554       typedef typename ResGW::NodeMap<bool> ReachedMap;
   555       BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
   556 
   557       bfs.pushAndSetReached(s);
   558       DistanceMap<ResGW> dist(res_graph);
   559       while ( !bfs.finished() ) { 
   560  	ResGWOutEdgeIt e=bfs;
   561  	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   562  	  dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
   563  	}
   564 	++bfs;
   565       } //computing distances from s in the residual graph
   566 
   567       //Subgraph containing the edges on some shortest paths
   568       typedef SubGraphWrapper<ResGW, DistanceMap<ResGW> > FilterResGW;
   569       FilterResGW filter_res_graph(res_graph, dist);
   570 
   571       //Subgraph, which is able to delete edges which are already 
   572       //met by the dfs
   573       typename FilterResGW::NodeMap<typename FilterResGW::OutEdgeIt> 
   574  	first_out_edges(filter_res_graph);
   575       typename FilterResGW::NodeIt v;
   576       for(filter_res_graph.first(v); filter_res_graph.valid(v); 
   577  	  filter_res_graph.next(v)) 
   578       {
   579  	typename FilterResGW::OutEdgeIt e;
   580  	filter_res_graph.first(e, v);
   581  	first_out_edges.set(v, e);
   582       }
   583       typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
   584 	NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
   585       ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
   586 
   587       bool __augment=true;
   588 
   589       while (__augment) {
   590 
   591  	__augment=false;
   592  	//computing blocking flow with dfs
   593 	typedef typename ErasingResGW::NodeMap<bool> BlockingReachedMap;
   594  	DfsIterator5< ErasingResGW, BlockingReachedMap > 
   595  	  dfs(erasing_res_graph);
   596  	typename ErasingResGW::NodeMap<typename ErasingResGW::OutEdgeIt> 
   597  	  pred(erasing_res_graph); 
   598  	pred.set(s, INVALID);
   599  	//invalid iterators for sources
   600 
   601  	typename ErasingResGW::NodeMap<Number> free(erasing_res_graph);
   602 
   603  	dfs.pushAndSetReached(s);
   604  	while (!dfs.finished()) {
   605  	  ++dfs;
   606  	  if (erasing_res_graph.valid(
   607  		/*typename ErasingResGW::OutEdgeIt*/(dfs))) 
   608  	  { 
   609  	    if (dfs.isBNodeNewlyReached()) {
   610 	  
   611  	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
   612  	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
   613 
   614  	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
   615  	      if (erasing_res_graph.valid(pred.get(v))) {
   616  		free.set(w, std::min(free.get(v), res_graph.resCap(dfs)));
   617  	      } else {
   618  		free.set(w, res_graph.resCap(dfs)); 
   619  	      }
   620 	      
   621  	      if (w==t) { 
   622  		__augment=true; 
   623  		_augment=true;
   624  		break; 
   625  	      }
   626 	    } else {
   627 	      erasing_res_graph.erase(dfs);
   628 	    }
   629 	  }
   630 	}	
   631 
   632  	if (__augment) {
   633  	  typename ErasingResGW::Node n=t;
   634  	  Number augment_value=free.get(n);
   635  	  while (erasing_res_graph.valid(pred.get(n))) { 
   636  	    typename ErasingResGW::OutEdgeIt e=pred.get(n);
   637  	    res_graph.augment(e, augment_value);
   638  	    n=erasing_res_graph.tail(e);
   639  	    if (res_graph.resCap(e)==0)
   640  	      erasing_res_graph.erase(e);
   641  	  }
   642  	}
   643       
   644       } //while (__augment) 
   645             
   646       return _augment;
   647     }
   648 
   649 //     bool augmentOnBlockingFlow2() {
   650 //       bool _augment=false;
   651 
   652 //       //typedef ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> EAugGraph;
   653 //       typedef FilterGraphWrapper< ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> > EAugGraph;
   654 //       typedef typename EAugGraph::OutEdgeIt EAugOutEdgeIt;
   655 //       typedef typename EAugGraph::Edge EAugEdge;
   656 
   657 //       EAugGraph res_graph(*G, *flow, *capacity);
   658 
   659 //       //typedef typename EAugGraph::NodeMap<bool> ReachedMap;
   660 //       BfsIterator5< 
   661 // 	ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>, 
   662 // 	/*typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt,*/ 
   663 // 	ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<bool> > bfs(res_graph);
   664       
   665 //       bfs.pushAndSetReached(s);
   666 
   667 //       typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::
   668 // 	NodeMap<int>& dist=res_graph.dist;
   669 
   670 //       while ( !bfs.finished() ) {
   671 // 	typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt e=bfs;
   672 // 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   673 // 	  dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
   674 // 	}
   675 // 	++bfs;	
   676 //       } //computing distances from s in the residual graph
   677 
   678 //       bool __augment=true;
   679 
   680 //       while (__augment) {
   681 
   682 // 	__augment=false;
   683 // 	//computing blocking flow with dfs
   684 // 	typedef typename EAugGraph::NodeMap<bool> BlockingReachedMap;
   685 // 	DfsIterator5< EAugGraph/*, EAugOutEdgeIt*/, BlockingReachedMap > 
   686 // 	  dfs(res_graph);
   687 // 	typename EAugGraph::NodeMap<EAugEdge> pred(res_graph); 
   688 // 	pred.set(s, EAugEdge(INVALID));
   689 // 	//invalid iterators for sources
   690 
   691 // 	typename EAugGraph::NodeMap<Number> free(res_graph);
   692 
   693 // 	dfs.pushAndSetReached(s);
   694 // 	while (!dfs.finished()) {
   695 // 	  ++dfs;
   696 // 	  if (res_graph.valid(EAugOutEdgeIt(dfs))) { 
   697 // 	    if (dfs.isBNodeNewlyReached()) {
   698 	  
   699 // 	      typename EAugGraph::Node v=res_graph.aNode(dfs);
   700 // 	      typename EAugGraph::Node w=res_graph.bNode(dfs);
   701 
   702 // 	      pred.set(w, EAugOutEdgeIt(dfs));
   703 // 	      if (res_graph.valid(pred.get(v))) {
   704 // 		free.set(w, std::min(free.get(v), res_graph.free(dfs)));
   705 // 	      } else {
   706 // 		free.set(w, res_graph.free(dfs)); 
   707 // 	      }
   708 	      
   709 // 	      if (w==t) { 
   710 // 		__augment=true; 
   711 // 		_augment=true;
   712 // 		break; 
   713 // 	      }
   714 // 	    } else {
   715 // 	      res_graph.erase(dfs);
   716 // 	    }
   717 // 	  } 
   718 
   719 // 	}
   720 
   721 // 	if (__augment) {
   722 // 	  typename EAugGraph::Node n=t;
   723 // 	  Number augment_value=free.get(t);
   724 // 	  while (res_graph.valid(pred.get(n))) { 
   725 // 	    EAugEdge e=pred.get(n);
   726 // 	    res_graph.augment(e, augment_value);
   727 // 	    n=res_graph.tail(e);
   728 // 	    if (res_graph.free(e)==0)
   729 // 	      res_graph.erase(e);
   730 // 	  }
   731 // 	}
   732       
   733 //       }
   734             
   735 //       return _augment;
   736 //     }
   737 
   738     void run() {
   739       //int num_of_augmentations=0;
   740       while (augmentOnShortestPath()) { 
   741 	//while (augmentOnBlockingFlow<MutableGraph>()) { 
   742 	//std::cout << ++num_of_augmentations << " ";
   743 	//std::cout<<std::endl;
   744       } 
   745     }
   746 
   747     template<typename MutableGraph> void run() {
   748       //int num_of_augmentations=0;
   749       //while (augmentOnShortestPath()) { 
   750 	while (augmentOnBlockingFlow<MutableGraph>()) { 
   751 	//std::cout << ++num_of_augmentations << " ";
   752 	//std::cout<<std::endl;
   753       } 
   754     }
   755 
   756     Number flowValue() { 
   757       Number a=0;
   758       OutEdgeIt e;
   759       for(g->first(e, s); g->valid(e); g->next(e)) {
   760 	a+=flow->get(e);
   761       }
   762       return a;
   763     }
   764 
   765   };
   766 
   767 
   768 //   template <typename Graph, typename Number, typename FlowMap, typename CapacityMap>
   769 //   class MaxMatching {
   770 //   public:
   771 //     typedef typename Graph::Node Node;
   772 //     typedef typename Graph::NodeIt NodeIt;
   773 //     typedef typename Graph::Edge Edge;
   774 //     typedef typename Graph::EdgeIt EdgeIt;
   775 //     typedef typename Graph::OutEdgeIt OutEdgeIt;
   776 //     typedef typename Graph::InEdgeIt InEdgeIt;
   777 
   778 //     typedef typename Graph::NodeMap<bool> SMap;
   779 //     typedef typename Graph::NodeMap<bool> TMap;
   780 //   private:
   781 //     const Graph* G;
   782 //     SMap* S;
   783 //     TMap* T;
   784 //     //Node s;
   785 //     //Node t;
   786 //     FlowMap* flow;
   787 //     const CapacityMap* capacity;
   788 //     typedef ResGraphWrapper<Graph, Number, FlowMap, CapacityMap > AugGraph;
   789 //     typedef typename AugGraph::OutEdgeIt AugOutEdgeIt;
   790 //     typedef typename AugGraph::Edge AugEdge;
   791 //     typename Graph::NodeMap<int> used; //0
   792 
   793 //   public:
   794 //     MaxMatching(const Graph& _G, SMap& _S, TMap& _T, FlowMap& _flow, const CapacityMap& _capacity) : 
   795 //       G(&_G), S(&_S), T(&_T), flow(&_flow), capacity(&_capacity), used(_G) { }
   796 //     bool augmentOnShortestPath() {
   797 //       AugGraph res_graph(*G, *flow, *capacity);
   798 //       bool _augment=false;
   799       
   800 //       typedef typename AugGraph::NodeMap<bool> ReachedMap;
   801 //       BfsIterator5< AugGraph, /*AugOutEdgeIt,*/ ReachedMap > bfs(res_graph);
   802 //       typename AugGraph::NodeMap<AugEdge> pred(res_graph); 
   803 //       for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
   804 // 	if ((S->get(s)) && (used.get(s)<1) ) {
   805 // 	  //Number u=0;
   806 // 	  //for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
   807 // 	  //u+=flow->get(e);
   808 // 	  //if (u<1) {
   809 // 	    bfs.pushAndSetReached(s);
   810 // 	    pred.set(s, AugEdge(INVALID));
   811 // 	    //}
   812 // 	}
   813 //       }
   814       
   815 //       typename AugGraph::NodeMap<Number> free(res_graph);
   816 	
   817 //       Node n;
   818 //       //searching for augmenting path
   819 //       while ( !bfs.finished() ) { 
   820 // 	AugOutEdgeIt e=bfs;
   821 // 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   822 // 	  Node v=res_graph.tail(e);
   823 // 	  Node w=res_graph.head(e);
   824 // 	  pred.set(w, e);
   825 // 	  if (res_graph.valid(pred.get(v))) {
   826 // 	    free.set(w, std::min(free.get(v), res_graph.free(e)));
   827 // 	  } else {
   828 // 	    free.set(w, res_graph.free(e)); 
   829 // 	  }
   830 // 	  n=res_graph.head(e);
   831 // 	  if (T->get(n) && (used.get(n)<1) ) { 
   832 // 	    //Number u=0;
   833 // 	    //for(InEdgeIt f=G->template first<InEdgeIt>(n); G->valid(f); G->next(f))
   834 // 	    //u+=flow->get(f);
   835 // 	    //if (u<1) {
   836 // 	      _augment=true; 
   837 // 	      break; 
   838 // 	      //}
   839 // 	  }
   840 // 	}
   841 	
   842 // 	++bfs;
   843 //       } //end of searching augmenting path
   844 
   845 //       if (_augment) {
   846 // 	//Node n=t;
   847 // 	used.set(n, 1); //mind2 vegen jav
   848 // 	Number augment_value=free.get(n);
   849 // 	while (res_graph.valid(pred.get(n))) { 
   850 // 	  AugEdge e=pred.get(n);
   851 // 	  res_graph.augment(e, augment_value); 
   852 // 	  n=res_graph.tail(e);
   853 // 	}
   854 // 	used.set(n, 1); //mind2 vegen jav
   855 //       }
   856 
   857 //       return _augment;
   858 //     }
   859 
   860 // //     template<typename MutableGraph> bool augmentOnBlockingFlow() {      
   861 // //       bool _augment=false;
   862 
   863 // //       AugGraph res_graph(*G, *flow, *capacity);
   864 
   865 // //       typedef typename AugGraph::NodeMap<bool> ReachedMap;
   866 // //       BfsIterator4< AugGraph, AugOutEdgeIt, ReachedMap > bfs(res_graph);
   867 
   868 
   869 
   870 
   871 
   872 // //       //typename AugGraph::NodeMap<AugEdge> pred(res_graph); 
   873 // //       for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
   874 // // 	if (S->get(s)) {
   875 // // 	  Number u=0;
   876 // // 	  for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
   877 // // 	    u+=flow->get(e);
   878 // // 	  if (u<1) {
   879 // // 	    bfs.pushAndSetReached(s);
   880 // // 	    //pred.set(s, AugEdge(INVALID));
   881 // // 	  }
   882 // // 	}
   883 // //       }
   884 
   885 
   886 
   887 
   888 // //       //bfs.pushAndSetReached(s);
   889 // //       typename AugGraph::NodeMap<int> dist(res_graph); //filled up with 0's
   890 // //       while ( !bfs.finished() ) { 
   891 // // 	AugOutEdgeIt e=bfs;
   892 // // 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   893 // // 	  dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
   894 // // 	}
   895 	
   896 // // 	++bfs;
   897 // //       } //computing distances from s in the residual graph
   898 
   899 // //       MutableGraph F;
   900 // //       typename AugGraph::NodeMap<typename MutableGraph::Node> 
   901 // // 	res_graph_to_F(res_graph);
   902 // //       for(typename AugGraph::NodeIt n=res_graph.template first<typename AugGraph::NodeIt>(); res_graph.valid(n); res_graph.next(n)) {
   903 // // 	res_graph_to_F.set(n, F.addNode());
   904 // //       }
   905       
   906 // //       typename MutableGraph::Node sF=res_graph_to_F.get(s);
   907 // //       typename MutableGraph::Node tF=res_graph_to_F.get(t);
   908 
   909 // //       typename MutableGraph::EdgeMap<AugEdge> original_edge(F);
   910 // //       typename MutableGraph::EdgeMap<Number> residual_capacity(F);
   911 
   912 // //       //Making F to the graph containing the edges of the residual graph 
   913 // //       //which are in some shortest paths
   914 // //       for(typename AugGraph::EdgeIt e=res_graph.template first<typename AugGraph::EdgeIt>(); res_graph.valid(e); res_graph.next(e)) {
   915 // // 	if (dist.get(res_graph.head(e))==dist.get(res_graph.tail(e))+1) {
   916 // // 	  typename MutableGraph::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e)));
   917 // // 	  original_edge.update();
   918 // // 	  original_edge.set(f, e);
   919 // // 	  residual_capacity.update();
   920 // // 	  residual_capacity.set(f, res_graph.free(e));
   921 // // 	} 
   922 // //       }
   923 
   924 // //       bool __augment=true;
   925 
   926 // //       while (__augment) {
   927 // // 	__augment=false;
   928 // // 	//computing blocking flow with dfs
   929 // // 	typedef typename MutableGraph::NodeMap<bool> BlockingReachedMap;
   930 // // 	DfsIterator4< MutableGraph, typename MutableGraph::OutEdgeIt, BlockingReachedMap > dfs(F);
   931 // // 	typename MutableGraph::NodeMap<typename MutableGraph::Edge> pred(F);
   932 // // 	pred.set(sF, typename MutableGraph::Edge(INVALID));
   933 // // 	//invalid iterators for sources
   934 
   935 // // 	typename MutableGraph::NodeMap<Number> free(F);
   936 
   937 // // 	dfs.pushAndSetReached(sF);      
   938 // // 	while (!dfs.finished()) {
   939 // // 	  ++dfs;
   940 // // 	  if (F.valid(typename MutableGraph::OutEdgeIt(dfs))) {
   941 // // 	    if (dfs.isBNodeNewlyReached()) {
   942 // // 	      typename MutableGraph::Node v=F.aNode(dfs);
   943 // // 	      typename MutableGraph::Node w=F.bNode(dfs);
   944 // // 	      pred.set(w, dfs);
   945 // // 	      if (F.valid(pred.get(v))) {
   946 // // 		free.set(w, std::min(free.get(v), residual_capacity.get(dfs)));
   947 // // 	      } else {
   948 // // 		free.set(w, residual_capacity.get(dfs)); 
   949 // // 	      }
   950 // // 	      if (w==tF) { 
   951 // // 		__augment=true; 
   952 // // 		_augment=true;
   953 // // 		break; 
   954 // // 	      }
   955 	      
   956 // // 	    } else {
   957 // // 	      F.erase(typename MutableGraph::OutEdgeIt(dfs));
   958 // // 	    }
   959 // // 	  } 
   960 // // 	}
   961 
   962 // // 	if (__augment) {
   963 // // 	  typename MutableGraph::Node n=tF;
   964 // // 	  Number augment_value=free.get(tF);
   965 // // 	  while (F.valid(pred.get(n))) { 
   966 // // 	    typename MutableGraph::Edge e=pred.get(n);
   967 // // 	    res_graph.augment(original_edge.get(e), augment_value); 
   968 // // 	    n=F.tail(e);
   969 // // 	    if (residual_capacity.get(e)==augment_value) 
   970 // // 	      F.erase(e); 
   971 // // 	    else 
   972 // // 	      residual_capacity.set(e, residual_capacity.get(e)-augment_value);
   973 // // 	  }
   974 // // 	}
   975 	
   976 // //       }
   977             
   978 // //       return _augment;
   979 // //     }
   980 //     bool augmentOnBlockingFlow2() {
   981 //       bool _augment=false;
   982 
   983 //       //typedef ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> EAugGraph;
   984 //       typedef FilterGraphWrapper< ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> > EAugGraph;
   985 //       typedef typename EAugGraph::OutEdgeIt EAugOutEdgeIt;
   986 //       typedef typename EAugGraph::Edge EAugEdge;
   987 
   988 //       EAugGraph res_graph(*G, *flow, *capacity);
   989 
   990 //       //typedef typename EAugGraph::NodeMap<bool> ReachedMap;
   991 //       BfsIterator5< 
   992 // 	ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>, 
   993 // 	/*typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt,*/ 
   994 // 	ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<bool> > bfs(res_graph);
   995 
   996 
   997 //       //typename AugGraph::NodeMap<AugEdge> pred(res_graph); 
   998 //       for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
   999 // 	if (S->get(s)) {
  1000 // 	  Number u=0;
  1001 // 	  for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
  1002 // 	    u+=flow->get(e);
  1003 // 	  if (u<1) {
  1004 // 	    bfs.pushAndSetReached(s);
  1005 // 	    //pred.set(s, AugEdge(INVALID));
  1006 // 	  }
  1007 // 	}
  1008 //       }
  1009 
  1010       
  1011 //       //bfs.pushAndSetReached(s);
  1012 
  1013 //       typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::
  1014 // 	NodeMap<int>& dist=res_graph.dist;
  1015 
  1016 //       while ( !bfs.finished() ) {
  1017 // 	typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt e=bfs;
  1018 // 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
  1019 // 	  dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
  1020 // 	}
  1021 // 	++bfs;	
  1022 //       } //computing distances from s in the residual graph
  1023 
  1024 //       bool __augment=true;
  1025 
  1026 //       while (__augment) {
  1027 
  1028 // 	__augment=false;
  1029 // 	//computing blocking flow with dfs
  1030 // 	typedef typename EAugGraph::NodeMap<bool> BlockingReachedMap;
  1031 // 	DfsIterator5< EAugGraph/*, EAugOutEdgeIt*/, BlockingReachedMap > 
  1032 // 	  dfs(res_graph);
  1033 // 	typename EAugGraph::NodeMap<EAugEdge> pred(res_graph, INVALID); 
  1034 // 	//pred.set(s, EAugEdge(INVALID));
  1035 // 	//invalid iterators for sources
  1036 
  1037 // 	typename EAugGraph::NodeMap<Number> free(res_graph);
  1038 
  1039 
  1040 // 	//typename AugGraph::NodeMap<AugEdge> pred(res_graph); 
  1041 //       for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
  1042 // 	if (S->get(s)) {
  1043 // 	  Number u=0;
  1044 // 	  for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
  1045 // 	    u+=flow->get(e);
  1046 // 	  if (u<1) {
  1047 // 	    dfs.pushAndSetReached(s);
  1048 // 	    //pred.set(s, AugEdge(INVALID));
  1049 // 	  }
  1050 // 	}
  1051 //       }
  1052 
  1053 
  1054 
  1055 //       //dfs.pushAndSetReached(s);
  1056 //       typename EAugGraph::Node n;
  1057 // 	while (!dfs.finished()) {
  1058 // 	  ++dfs;
  1059 // 	  if (res_graph.valid(EAugOutEdgeIt(dfs))) { 
  1060 // 	    if (dfs.isBNodeNewlyReached()) {
  1061 	  
  1062 // 	      typename EAugGraph::Node v=res_graph.aNode(dfs);
  1063 // 	      typename EAugGraph::Node w=res_graph.bNode(dfs);
  1064 
  1065 // 	      pred.set(w, EAugOutEdgeIt(dfs));
  1066 // 	      if (res_graph.valid(pred.get(v))) {
  1067 // 		free.set(w, std::min(free.get(v), res_graph.free(dfs)));
  1068 // 	      } else {
  1069 // 		free.set(w, res_graph.free(dfs)); 
  1070 // 	      }
  1071 	     
  1072 // 	      n=w;
  1073 // 	      if (T->get(w)) {
  1074 // 		Number u=0;
  1075 // 		for(InEdgeIt f=G->template first<InEdgeIt>(n); G->valid(f); G->next(f))
  1076 // 		  u+=flow->get(f);
  1077 // 		if (u<1) {
  1078 // 		  __augment=true; 
  1079 // 		  _augment=true;
  1080 // 		  break; 
  1081 // 		}
  1082 // 	      }
  1083 // 	    } else {
  1084 // 	      res_graph.erase(dfs);
  1085 // 	    }
  1086 // 	  } 
  1087 
  1088 // 	}
  1089 
  1090 // 	if (__augment) {
  1091 // 	  // typename EAugGraph::Node n=t;
  1092 // 	  Number augment_value=free.get(n);
  1093 // 	  while (res_graph.valid(pred.get(n))) { 
  1094 // 	    EAugEdge e=pred.get(n);
  1095 // 	    res_graph.augment(e, augment_value);
  1096 // 	    n=res_graph.tail(e);
  1097 // 	    if (res_graph.free(e)==0)
  1098 // 	      res_graph.erase(e);
  1099 // 	  }
  1100 // 	}
  1101       
  1102 //       }
  1103             
  1104 //       return _augment;
  1105 //     }
  1106 //     void run() {
  1107 //       //int num_of_augmentations=0;
  1108 //       while (augmentOnShortestPath()) { 
  1109 // 	//while (augmentOnBlockingFlow<MutableGraph>()) { 
  1110 // 	//std::cout << ++num_of_augmentations << " ";
  1111 // 	//std::cout<<std::endl;
  1112 //       } 
  1113 //     }
  1114 // //     template<typename MutableGraph> void run() {
  1115 // //       //int num_of_augmentations=0;
  1116 // //       //while (augmentOnShortestPath()) { 
  1117 // // 	while (augmentOnBlockingFlow<MutableGraph>()) { 
  1118 // // 	//std::cout << ++num_of_augmentations << " ";
  1119 // // 	//std::cout<<std::endl;
  1120 // //       } 
  1121 // //     } 
  1122 //     Number flowValue() { 
  1123 //       Number a=0;
  1124 //       EdgeIt e;
  1125 //       for(G->/*getF*/first(e); G->valid(e); G->next(e)) {
  1126 // 	a+=flow->get(e);
  1127 //       }
  1128 //       return a;
  1129 //     }
  1130 //   };
  1131 
  1132 
  1133 
  1134 
  1135 
  1136   
  1137 // //   template <typename Graph, typename Number, typename FlowMap, typename CapacityMap>
  1138 // //   class MaxFlow2 {
  1139 // //   public:
  1140 // //     typedef typename Graph::Node Node;
  1141 // //     typedef typename Graph::Edge Edge;
  1142 // //     typedef typename Graph::EdgeIt EdgeIt;
  1143 // //     typedef typename Graph::OutEdgeIt OutEdgeIt;
  1144 // //     typedef typename Graph::InEdgeIt InEdgeIt;
  1145 // //   private:
  1146 // //     const Graph& G;
  1147 // //     std::list<Node>& S;
  1148 // //     std::list<Node>& T;
  1149 // //     FlowMap& flow;
  1150 // //     const CapacityMap& capacity;
  1151 // //     typedef ResGraphWrapper<Graph, Number, FlowMap, CapacityMap > AugGraph;
  1152 // //     typedef typename AugGraph::OutEdgeIt AugOutEdgeIt;
  1153 // //     typedef typename AugGraph::Edge AugEdge;
  1154 // //     typename Graph::NodeMap<bool> SMap;
  1155 // //     typename Graph::NodeMap<bool> TMap;
  1156 // //   public:
  1157 // //     MaxFlow2(const Graph& _G, std::list<Node>& _S, std::list<Node>& _T, FlowMap& _flow, const CapacityMap& _capacity) : G(_G), S(_S), T(_T), flow(_flow), capacity(_capacity), SMap(_G), TMap(_G) { 
  1158 // //       for(typename std::list<Node>::const_iterator i=S.begin(); 
  1159 // // 	  i!=S.end(); ++i) { 
  1160 // // 	SMap.set(*i, true); 
  1161 // //       }
  1162 // //       for (typename std::list<Node>::const_iterator i=T.begin(); 
  1163 // // 	   i!=T.end(); ++i) { 
  1164 // // 	TMap.set(*i, true); 
  1165 // //       }
  1166 // //     }
  1167 // //     bool augment() {
  1168 // //       AugGraph res_graph(G, flow, capacity);
  1169 // //       bool _augment=false;
  1170 // //       Node reached_t_node;
  1171       
  1172 // //       typedef typename AugGraph::NodeMap<bool> ReachedMap;
  1173 // //       BfsIterator4< AugGraph, AugOutEdgeIt, ReachedMap > bfs(res_graph);
  1174 // //       for(typename std::list<Node>::const_iterator i=S.begin(); 
  1175 // // 	  i!=S.end(); ++i) {
  1176 // // 	bfs.pushAndSetReached(*i);
  1177 // //       }
  1178 // //       //bfs.pushAndSetReached(s);
  1179 	
  1180 // //       typename AugGraph::NodeMap<AugEdge> pred(res_graph); 
  1181 // //       //filled up with invalid iterators
  1182       
  1183 // //       typename AugGraph::NodeMap<Number> free(res_graph);
  1184 	
  1185 // //       //searching for augmenting path
  1186 // //       while ( !bfs.finished() ) { 
  1187 // // 	AugOutEdgeIt e=/*AugOutEdgeIt*/(bfs);
  1188 // // 	if (e.valid() && bfs.isBNodeNewlyReached()) {
  1189 // // 	  Node v=res_graph.tail(e);
  1190 // // 	  Node w=res_graph.head(e);
  1191 // // 	  pred.set(w, e);
  1192 // // 	  if (pred.get(v).valid()) {
  1193 // // 	    free.set(w, std::min(free.get(v), e.free()));
  1194 // // 	  } else {
  1195 // // 	    free.set(w, e.free()); 
  1196 // // 	  }
  1197 // // 	  if (TMap.get(res_graph.head(e))) { 
  1198 // // 	    _augment=true; 
  1199 // // 	    reached_t_node=res_graph.head(e);
  1200 // // 	    break; 
  1201 // // 	  }
  1202 // // 	}
  1203 	
  1204 // // 	++bfs;
  1205 // //       } //end of searching augmenting path
  1206 
  1207 // //       if (_augment) {
  1208 // // 	Node n=reached_t_node;
  1209 // // 	Number augment_value=free.get(reached_t_node);
  1210 // // 	while (pred.get(n).valid()) { 
  1211 // // 	  AugEdge e=pred.get(n);
  1212 // // 	  e.augment(augment_value); 
  1213 // // 	  n=res_graph.tail(e);
  1214 // // 	}
  1215 // //       }
  1216 
  1217 // //       return _augment;
  1218 // //     }
  1219 // //     void run() {
  1220 // //       while (augment()) { } 
  1221 // //     }
  1222 // //     Number flowValue() { 
  1223 // //       Number a=0;
  1224 // //       for(typename std::list<Node>::const_iterator i=S.begin(); 
  1225 // // 	  i!=S.end(); ++i) { 
  1226 // // 	for(OutEdgeIt e=G.template first<OutEdgeIt>(*i); e.valid(); ++e) {
  1227 // // 	  a+=flow.get(e);
  1228 // // 	}
  1229 // // 	for(InEdgeIt e=G.template first<InEdgeIt>(*i); e.valid(); ++e) {
  1230 // // 	  a-=flow.get(e);
  1231 // // 	}
  1232 // //       }
  1233 // //       return a;
  1234 // //     }
  1235 // //   };
  1236 
  1237 
  1238 } // namespace hugo
  1239 
  1240 #endif //HUGO_EDMONDS_KARP_H