Several changes. \n If new map is added to mapstorage it emits signal with the name of the new map. This was important, because from now on not only tha mapwin should be updated. \n Furthermore algobox gets a pointer to mapstorage instead of only the mapnames from it. This is important because without it it would be complicated to pass all of the required maps to algobox.
2 * lemon/bezier.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_BEZIER_H
18 #define LEMON_BEZIER_H
22 ///\brief Classes to compute with Bezier curves.
24 ///Up to now this file is used internally by \ref graph_to_eps.h
26 ///\author Alpar Juttner
34 typedef xy<double> xy;
36 static xy conv(xy x,xy y,double t) {return (1-t)*x+t*y;}
39 class Bezier1 : public BezierBase
45 Bezier1(xy _p1, xy _p2) :p1(_p1), p2(_p2) {}
47 xy operator()(double t) const
49 // return conv(conv(p1,p2,t),conv(p2,p3,t),t);
52 Bezier1 before(double t) const
54 return Bezier1(p1,conv(p1,p2,t));
57 Bezier1 after(double t) const
59 return Bezier1(conv(p1,p2,t),p2);
62 Bezier1 revert() const { return Bezier1(p2,p1);}
63 Bezier1 operator()(double a,double b) const { return before(b).after(a/b); }
64 xy grad() const { return p2-p1; }
65 xy norm() const { return rot90(p2-p1); }
66 xy grad(double) const { return grad(); }
67 xy norm(double t) const { return rot90(grad(t)); }
70 class Bezier2 : public BezierBase
76 Bezier2(xy _p1, xy _p2, xy _p3) :p1(_p1), p2(_p2), p3(_p3) {}
77 Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {}
78 xy operator()(double t) const
80 // return conv(conv(p1,p2,t),conv(p2,p3,t),t);
81 return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3;
83 Bezier2 before(double t) const
87 return Bezier2(p1,q,conv(q,r,t));
90 Bezier2 after(double t) const
94 return Bezier2(conv(q,r,t),r,p3);
96 Bezier2 revert() const { return Bezier2(p3,p2,p1);}
97 Bezier2 operator()(double a,double b) const { return before(b).after(a/b); }
98 Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
99 Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); }
100 xy grad(double t) const { return grad()(t); }
101 xy norm(double t) const { return rot90(grad(t)); }
104 class Bezier3 : public BezierBase
110 Bezier3(xy _p1, xy _p2, xy _p3, xy _p4) :p1(_p1), p2(_p2), p3(_p3), p4(_p4) {}
111 Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)),
112 p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {}
113 Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)),
114 p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {}
116 xy operator()(double t) const
118 // return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t);
119 return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+
120 (3*t*t*(1-t))*p3+(t*t*t)*p4;
122 Bezier3 before(double t) const
130 return Bezier3(p1,p,a,c);
133 Bezier3 after(double t) const
141 return Bezier3(c,b,r,p4);
143 Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);}
144 Bezier3 operator()(double a,double b) const { return before(b).after(a/b); }
145 Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); }
146 Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1),
149 xy grad(double t) const { return grad()(t); }
150 xy norm(double t) const { return rot90(grad(t)); }
152 template<class R,class F,class S,class D>
153 R recSplit(F &_f,const S &_s,D _d) const
155 const xy a=(p1+p2)/2;
156 const xy b=(p2+p3)/2;
157 const xy c=(p3+p4)/2;
161 R f1=_f(Bezier3(p1,a,d,e),_d);
162 R f2=_f(Bezier3(e,d,c,p4),_d);
168 } //END OF NAMESPACE LEMON
170 #endif // LEMON_BEZIER_H