New version of XML reader/writer.
Now, there are only a single XmlIo class both for reading and writing.
2 * lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_DIJKSTRA_H
18 #define LEMON_DIJKSTRA_H
22 ///\brief Dijkstra algorithm.
24 ///\todo getPath() should be implemented! (also for BFS and DFS)
25 ///\todo dijkstraZero() solution should be revised.
27 #include <lemon/list_graph.h>
28 #include <lemon/bin_heap.h>
29 #include <lemon/invalid.h>
30 #include <lemon/error.h>
31 #include <lemon/maps.h>
35 template<class T> T dijkstraZero() {return 0;}
37 ///Default traits class of Dijkstra class.
39 ///Default traits class of Dijkstra class.
40 ///\param GR Graph type.
41 ///\param LM Type of length map.
42 template<class GR, class LM>
43 struct DijkstraDefaultTraits
45 ///The graph type the algorithm runs on.
47 ///The type of the map that stores the edge lengths.
49 ///The type of the map that stores the edge lengths.
50 ///It must meet the \ref concept::ReadMap "ReadMap" concept.
52 //The type of the length of the edges.
53 typedef typename LM::Value Value;
54 /// The cross reference type used by heap.
56 /// The cross reference type used by heap.
57 /// Usually it is \c Graph::NodeMap<int>.
58 typedef typename Graph::template NodeMap<int> HeapCrossRef;
59 ///Instantiates a HeapCrossRef.
61 ///This function instantiates a \ref HeapCrossRef.
62 /// \param G is the graph, to which we would like to define the
64 /// \todo The graph alone may be insufficient for the initialization
65 static HeapCrossRef *createHeapCrossRef(const GR &G)
67 return new HeapCrossRef(G);
70 ///The heap type used by Dijkstra algorithm.
72 ///The heap type used by Dijkstra algorithm.
76 typedef BinHeap<typename Graph::Node, typename LM::Value,
77 typename GR::template NodeMap<int>,
78 std::less<Value> > Heap;
80 static Heap *createHeap(HeapCrossRef& R)
85 ///\brief The type of the map that stores the last
86 ///edges of the shortest paths.
88 ///The type of the map that stores the last
89 ///edges of the shortest paths.
90 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
92 typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
93 ///Instantiates a PredMap.
95 ///This function instantiates a \ref PredMap.
96 ///\param G is the graph, to which we would like to define the PredMap.
97 ///\todo The graph alone may be insufficient for the initialization
98 static PredMap *createPredMap(const GR &G)
100 return new PredMap(G);
103 ///The type of the map that stores whether a nodes is processed.
105 ///The type of the map that stores whether a nodes is processed.
106 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
107 ///By default it is a NullMap.
108 ///\todo If it is set to a real map,
109 ///Dijkstra::processed() should read this.
110 ///\todo named parameter to set this type, function to read and write.
111 typedef NullMap<typename Graph::Node,bool> ProcessedMap;
112 ///Instantiates a ProcessedMap.
114 ///This function instantiates a \ref ProcessedMap.
115 ///\param g is the graph, to which
116 ///we would like to define the \ref ProcessedMap
118 static ProcessedMap *createProcessedMap(const GR &g)
120 static ProcessedMap *createProcessedMap(const GR &)
123 return new ProcessedMap();
125 ///The type of the map that stores the dists of the nodes.
127 ///The type of the map that stores the dists of the nodes.
128 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
130 typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
131 ///Instantiates a DistMap.
133 ///This function instantiates a \ref DistMap.
134 ///\param G is the graph, to which we would like to define the \ref DistMap
135 static DistMap *createDistMap(const GR &G)
137 return new DistMap(G);
141 ///%Dijkstra algorithm class.
143 /// \ingroup flowalgs
144 ///This class provides an efficient implementation of %Dijkstra algorithm.
145 ///The edge lengths are passed to the algorithm using a
146 ///\ref concept::ReadMap "ReadMap",
147 ///so it is easy to change it to any kind of length.
149 ///The type of the length is determined by the
150 ///\ref concept::ReadMap::Value "Value" of the length map.
152 ///It is also possible to change the underlying priority heap.
154 ///\param GR The graph type the algorithm runs on. The default value
155 ///is \ref ListGraph. The value of GR is not used directly by
156 ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
157 ///\param LM This read-only EdgeMap determines the lengths of the
158 ///edges. It is read once for each edge, so the map may involve in
159 ///relatively time consuming process to compute the edge length if
160 ///it is necessary. The default map type is \ref
161 ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>". The value
162 ///of LM is not used directly by Dijkstra, it is only passed to \ref
163 ///DijkstraDefaultTraits. \param TR Traits class to set
164 ///various data types used by the algorithm. The default traits
165 ///class is \ref DijkstraDefaultTraits
166 ///"DijkstraDefaultTraits<GR,LM>". See \ref
167 ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
170 ///\author Jacint Szabo and Alpar Juttner
171 ///\todo A compare object would be nice.
174 template <typename GR,
178 template <typename GR=ListGraph,
179 typename LM=typename GR::template EdgeMap<int>,
180 typename TR=DijkstraDefaultTraits<GR,LM> >
185 * \brief \ref Exception for uninitialized parameters.
187 * This error represents problems in the initialization
188 * of the parameters of the algorithms.
190 class UninitializedParameter : public lemon::UninitializedParameter {
192 virtual const char* exceptionName() const {
193 return "lemon::Dijkstra::UninitializedParameter";
198 ///The type of the underlying graph.
199 typedef typename TR::Graph Graph;
201 typedef typename Graph::Node Node;
203 typedef typename Graph::NodeIt NodeIt;
205 typedef typename Graph::Edge Edge;
207 typedef typename Graph::OutEdgeIt OutEdgeIt;
209 ///The type of the length of the edges.
210 typedef typename TR::LengthMap::Value Value;
211 ///The type of the map that stores the edge lengths.
212 typedef typename TR::LengthMap LengthMap;
213 ///\brief The type of the map that stores the last
214 ///edges of the shortest paths.
215 typedef typename TR::PredMap PredMap;
216 ///The type of the map indicating if a node is processed.
217 typedef typename TR::ProcessedMap ProcessedMap;
218 ///The type of the map that stores the dists of the nodes.
219 typedef typename TR::DistMap DistMap;
220 ///The cross reference type used for the current heap.
221 typedef typename TR::HeapCrossRef HeapCrossRef;
222 ///The heap type used by the dijkstra algorithm.
223 typedef typename TR::Heap Heap;
225 /// Pointer to the underlying graph.
227 /// Pointer to the length map
228 const LengthMap *length;
229 ///Pointer to the map of predecessors edges.
231 ///Indicates if \ref _pred is locally allocated (\c true) or not.
233 ///Pointer to the map of distances.
235 ///Indicates if \ref _dist is locally allocated (\c true) or not.
237 ///Pointer to the map of processed status of the nodes.
238 ProcessedMap *_processed;
239 ///Indicates if \ref _processed is locally allocated (\c true) or not.
240 bool local_processed;
241 ///Pointer to the heap cross references.
242 HeapCrossRef *_heap_cross_ref;
243 ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
244 bool local_heap_cross_ref;
245 ///Pointer to the heap.
247 ///Indicates if \ref _heap is locally allocated (\c true) or not.
250 ///Creates the maps if necessary.
252 ///\todo Error if \c G or are \c NULL. What about \c length?
253 ///\todo Better memory allocation (instead of new).
258 _pred = Traits::createPredMap(*G);
262 _dist = Traits::createDistMap(*G);
265 local_processed = true;
266 _processed = Traits::createProcessedMap(*G);
268 if (!_heap_cross_ref) {
269 local_heap_cross_ref = true;
270 _heap_cross_ref = Traits::createHeapCrossRef(*G);
274 _heap = Traits::createHeap(*_heap_cross_ref);
280 typedef Dijkstra Create;
282 ///\name Named template parameters
287 struct DefPredMapTraits : public Traits {
289 static PredMap *createPredMap(const Graph &G)
291 throw UninitializedParameter();
294 ///\ref named-templ-param "Named parameter" for setting PredMap type
296 ///\ref named-templ-param "Named parameter" for setting PredMap type
300 : public Dijkstra< Graph, LengthMap, DefPredMapTraits<T> > {
301 typedef Dijkstra< Graph, LengthMap, DefPredMapTraits<T> > Create;
305 struct DefDistMapTraits : public Traits {
307 static DistMap *createDistMap(const Graph &G)
309 throw UninitializedParameter();
312 ///\ref named-templ-param "Named parameter" for setting DistMap type
314 ///\ref named-templ-param "Named parameter" for setting DistMap type
318 : public Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > {
319 typedef Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > Create;
323 struct DefProcessedMapTraits : public Traits {
324 typedef T ProcessedMap;
325 static ProcessedMap *createProcessedMap(const Graph &G)
327 throw UninitializedParameter();
330 ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
332 ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
335 struct DefProcessedMap
336 : public Dijkstra< Graph, LengthMap, DefProcessedMapTraits<T> > {
337 typedef Dijkstra< Graph, LengthMap, DefProcessedMapTraits<T> > Create;
340 struct DefGraphProcessedMapTraits : public Traits {
341 typedef typename Graph::template NodeMap<bool> ProcessedMap;
342 static ProcessedMap *createProcessedMap(const Graph &G)
344 return new ProcessedMap(G);
347 ///\brief \ref named-templ-param "Named parameter"
348 ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
350 ///\ref named-templ-param "Named parameter"
351 ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
352 ///If you don't set it explicitely, it will be automatically allocated.
354 struct DefProcessedMapToBeDefaultMap
355 : public Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> {
356 typedef Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> Create;
359 template <class H, class CR>
360 struct DefHeapTraits : public Traits {
361 typedef CR HeapCrossRef;
363 static HeapCrossRef *createHeapCrossRef(const Graph &G) {
364 return new HeapCrossRef(G);
366 static Heap *createHeap(HeapCrossRef &R)
371 ///\ref named-templ-param "Named parameter" for setting heap and cross
374 ///\ref named-templ-param "Named parameter" for setting heap and cross
377 template <class H, class CR = typename Graph::template NodeMap<int> >
379 : public Dijkstra< Graph, LengthMap, DefHeapTraits<H, CR> > {
380 typedef Dijkstra< Graph, LengthMap, DefHeapTraits<H, CR> > Create;
394 ///\param _G the graph the algorithm will run on.
395 ///\param _length the length map used by the algorithm.
396 Dijkstra(const Graph& _G, const LengthMap& _length) :
397 G(&_G), length(&_length),
398 _pred(NULL), local_pred(false),
399 _dist(NULL), local_dist(false),
400 _processed(NULL), local_processed(false),
401 _heap_cross_ref(NULL), local_heap_cross_ref(false),
402 _heap(NULL), local_heap(false)
408 if(local_pred) delete _pred;
409 if(local_dist) delete _dist;
410 if(local_processed) delete _processed;
411 if(local_heap_cross_ref) delete _heap_cross_ref;
412 if(local_heap) delete _heap;
415 ///Sets the length map.
417 ///Sets the length map.
418 ///\return <tt> (*this) </tt>
419 Dijkstra &lengthMap(const LengthMap &m)
425 ///Sets the map storing the predecessor edges.
427 ///Sets the map storing the predecessor edges.
428 ///If you don't use this function before calling \ref run(),
429 ///it will allocate one. The destuctor deallocates this
430 ///automatically allocated map, of course.
431 ///\return <tt> (*this) </tt>
432 Dijkstra &predMap(PredMap &m)
442 ///Sets the map storing the distances calculated by the algorithm.
444 ///Sets the map storing the distances calculated by the algorithm.
445 ///If you don't use this function before calling \ref run(),
446 ///it will allocate one. The destuctor deallocates this
447 ///automatically allocated map, of course.
448 ///\return <tt> (*this) </tt>
449 Dijkstra &distMap(DistMap &m)
460 void finalizeNodeData(Node v,Value dst)
462 _processed->set(v,true);
467 ///\name Execution control
468 ///The simplest way to execute the algorithm is to use
469 ///one of the member functions called \c run(...).
471 ///If you need more control on the execution,
472 ///first you must call \ref init(), then you can add several source nodes
473 ///with \ref addSource().
474 ///Finally \ref start() will perform the actual path
479 ///Initializes the internal data structures.
481 ///Initializes the internal data structures.
487 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
488 _pred->set(u,INVALID);
489 _processed->set(u,false);
490 _heap_cross_ref->set(u,Heap::PRE_HEAP);
494 ///Adds a new source node.
496 ///Adds a new source node to the priority heap.
498 ///The optional second parameter is the initial distance of the node.
500 ///It checks if the node has already been added to the heap and
501 ///It is pushed to the heap only if either it was not in the heap
502 ///or the shortest path found till then is longer then \c dst.
503 void addSource(Node s,Value dst=dijkstraZero<Value>())
505 if(_heap->state(s) != Heap::IN_HEAP) {
507 } else if((*_heap)[s]<dst) {
509 _pred->set(s,INVALID);
513 ///Processes the next node in the priority heap
515 ///Processes the next node in the priority heap.
517 ///\return The processed node.
519 ///\warning The priority heap must not be empty!
520 Node processNextNode()
523 Value oldvalue=_heap->prio();
525 finalizeNodeData(v,oldvalue);
527 for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
529 switch(_heap->state(w)) {
531 _heap->push(w,oldvalue+(*length)[e]);
535 if ( oldvalue+(*length)[e] < (*_heap)[w] ) {
536 _heap->decrease(w, oldvalue+(*length)[e]);
540 case Heap::POST_HEAP:
547 ///Next node to be processed.
549 ///Next node to be processed.
551 ///\return The next node to be processed or INVALID if the priority heap
555 return _heap->empty()?_heap->top():INVALID;
558 ///\brief Returns \c false if there are nodes
559 ///to be processed in the priority heap
561 ///Returns \c false if there are nodes
562 ///to be processed in the priority heap
563 bool emptyQueue() { return _heap->empty(); }
564 ///Returns the number of the nodes to be processed in the priority heap
566 ///Returns the number of the nodes to be processed in the priority heap
568 int queueSize() { return _heap->size(); }
570 ///Executes the algorithm.
572 ///Executes the algorithm.
574 ///\pre init() must be called and at least one node should be added
575 ///with addSource() before using this function.
577 ///This method runs the %Dijkstra algorithm from the root node(s)
580 ///shortest path to each node. The algorithm computes
581 ///- The shortest path tree.
582 ///- The distance of each node from the root(s).
586 while ( !_heap->empty() ) processNextNode();
589 ///Executes the algorithm until \c dest is reached.
591 ///Executes the algorithm until \c dest is reached.
593 ///\pre init() must be called and at least one node should be added
594 ///with addSource() before using this function.
596 ///This method runs the %Dijkstra algorithm from the root node(s)
599 ///shortest path to \c dest. The algorithm computes
600 ///- The shortest path to \c dest.
601 ///- The distance of \c dest from the root(s).
603 void start(Node dest)
605 while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
606 if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
609 ///Executes the algorithm until a condition is met.
611 ///Executes the algorithm until a condition is met.
613 ///\pre init() must be called and at least one node should be added
614 ///with addSource() before using this function.
616 ///\param nm must be a bool (or convertible) node map. The algorithm
617 ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
618 template<class NodeBoolMap>
619 void start(const NodeBoolMap &nm)
621 while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
622 if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
625 ///Runs %Dijkstra algorithm from node \c s.
627 ///This method runs the %Dijkstra algorithm from a root node \c s
630 ///shortest path to each node. The algorithm computes
631 ///- The shortest path tree.
632 ///- The distance of each node from the root.
634 ///\note d.run(s) is just a shortcut of the following code.
646 ///Finds the shortest path between \c s and \c t.
648 ///Finds the shortest path between \c s and \c t.
650 ///\return The length of the shortest s---t path if there exists one,
652 ///\note Apart from the return value, d.run(s) is
653 ///just a shortcut of the following code.
659 Value run(Node s,Node t) {
663 return (*_pred)[t]==INVALID?dijkstraZero<Value>():(*_dist)[t];
668 ///\name Query Functions
669 ///The result of the %Dijkstra algorithm can be obtained using these
671 ///Before the use of these functions,
672 ///either run() or start() must be called.
676 ///Copies the shortest path to \c t into \c p
678 ///This function copies the shortest path to \c t into \c p.
679 ///If it \c t is a source itself or unreachable, then it does not
681 ///\todo Is it the right way to handle unreachable nodes?
682 ///\return Returns \c true if a path to \c t was actually copied to \c p,
683 ///\c false otherwise.
686 bool getPath(P &p,Node t)
690 typename P::Builder b(p);
691 for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
692 b.pushFront(pred(t));
699 ///The distance of a node from the root.
701 ///Returns the distance of a node from the root.
702 ///\pre \ref run() must be called before using this function.
703 ///\warning If node \c v in unreachable from the root the return value
704 ///of this funcion is undefined.
705 Value dist(Node v) const { return (*_dist)[v]; }
707 ///Returns the 'previous edge' of the shortest path tree.
709 ///For a node \c v it returns the 'previous edge' of the shortest path tree,
710 ///i.e. it returns the last edge of a shortest path from the root to \c
711 ///v. It is \ref INVALID
712 ///if \c v is unreachable from the root or if \c v=s. The
713 ///shortest path tree used here is equal to the shortest path tree used in
714 ///\ref predNode(). \pre \ref run() must be called before using
716 ///\todo predEdge could be a better name.
717 Edge pred(Node v) const { return (*_pred)[v]; }
719 ///Returns the 'previous node' of the shortest path tree.
721 ///For a node \c v it returns the 'previous node' of the shortest path tree,
722 ///i.e. it returns the last but one node from a shortest path from the
723 ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
724 ///\c v=s. The shortest path tree used here is equal to the shortest path
725 ///tree used in \ref pred(). \pre \ref run() must be called before
726 ///using this function.
727 Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
728 G->source((*_pred)[v]); }
730 ///Returns a reference to the NodeMap of distances.
732 ///Returns a reference to the NodeMap of distances. \pre \ref run() must
733 ///be called before using this function.
734 const DistMap &distMap() const { return *_dist;}
736 ///Returns a reference to the shortest path tree map.
738 ///Returns a reference to the NodeMap of the edges of the
739 ///shortest path tree.
740 ///\pre \ref run() must be called before using this function.
741 const PredMap &predMap() const { return *_pred;}
743 ///Checks if a node is reachable from the root.
745 ///Returns \c true if \c v is reachable from the root.
746 ///\warning The source nodes are inditated as unreached.
747 ///\pre \ref run() must be called before using this function.
749 bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
751 ///Checks if a node is processed.
753 ///Returns \c true if \c v is processed, i.e. the shortest
754 ///path to \c v has already found.
755 ///\pre \ref run() must be called before using this function.
757 bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
766 ///Default traits class of Dijkstra function.
768 ///Default traits class of Dijkstra function.
769 ///\param GR Graph type.
770 ///\param LM Type of length map.
771 template<class GR, class LM>
772 struct DijkstraWizardDefaultTraits
774 ///The graph type the algorithm runs on.
776 ///The type of the map that stores the edge lengths.
778 ///The type of the map that stores the edge lengths.
779 ///It must meet the \ref concept::ReadMap "ReadMap" concept.
780 typedef LM LengthMap;
781 //The type of the length of the edges.
782 typedef typename LM::Value Value;
783 ///The heap type used by Dijkstra algorithm.
785 /// The cross reference type used by heap.
787 /// The cross reference type used by heap.
788 /// Usually it is \c Graph::NodeMap<int>.
789 typedef typename Graph::template NodeMap<int> HeapCrossRef;
790 ///Instantiates a HeapCrossRef.
792 ///This function instantiates a \ref HeapCrossRef.
793 /// \param G is the graph, to which we would like to define the
795 /// \todo The graph alone may be insufficient for the initialization
796 static HeapCrossRef *createHeapCrossRef(const GR &G)
798 return new HeapCrossRef(G);
801 ///The heap type used by Dijkstra algorithm.
803 ///The heap type used by Dijkstra algorithm.
807 typedef BinHeap<typename Graph::Node, typename LM::Value,
808 typename GR::template NodeMap<int>,
809 std::less<Value> > Heap;
811 static Heap *createHeap(HeapCrossRef& R)
816 ///\brief The type of the map that stores the last
817 ///edges of the shortest paths.
819 ///The type of the map that stores the last
820 ///edges of the shortest paths.
821 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
823 typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
824 ///Instantiates a PredMap.
826 ///This function instantiates a \ref PredMap.
827 ///\param g is the graph, to which we would like to define the PredMap.
828 ///\todo The graph alone may be insufficient for the initialization
830 static PredMap *createPredMap(const GR &g)
832 static PredMap *createPredMap(const GR &)
835 return new PredMap();
837 ///The type of the map that stores whether a nodes is processed.
839 ///The type of the map that stores whether a nodes is processed.
840 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
841 ///By default it is a NullMap.
842 ///\todo If it is set to a real map,
843 ///Dijkstra::processed() should read this.
844 ///\todo named parameter to set this type, function to read and write.
845 typedef NullMap<typename Graph::Node,bool> ProcessedMap;
846 ///Instantiates a ProcessedMap.
848 ///This function instantiates a \ref ProcessedMap.
849 ///\param g is the graph, to which
850 ///we would like to define the \ref ProcessedMap
852 static ProcessedMap *createProcessedMap(const GR &g)
854 static ProcessedMap *createProcessedMap(const GR &)
857 return new ProcessedMap();
859 ///The type of the map that stores the dists of the nodes.
861 ///The type of the map that stores the dists of the nodes.
862 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
864 typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
865 ///Instantiates a DistMap.
867 ///This function instantiates a \ref DistMap.
868 ///\param g is the graph, to which we would like to define the \ref DistMap
870 static DistMap *createDistMap(const GR &g)
872 static DistMap *createDistMap(const GR &)
875 return new DistMap();
879 /// Default traits used by \ref DijkstraWizard
881 /// To make it easier to use Dijkstra algorithm
882 ///we have created a wizard class.
883 /// This \ref DijkstraWizard class needs default traits,
884 ///as well as the \ref Dijkstra class.
885 /// The \ref DijkstraWizardBase is a class to be the default traits of the
886 /// \ref DijkstraWizard class.
887 /// \todo More named parameters are required...
888 template<class GR,class LM>
889 class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
892 typedef DijkstraWizardDefaultTraits<GR,LM> Base;
894 /// Type of the nodes in the graph.
895 typedef typename Base::Graph::Node Node;
897 /// Pointer to the underlying graph.
899 /// Pointer to the length map
901 ///Pointer to the map of predecessors edges.
903 ///Pointer to the map of distances.
905 ///Pointer to the source node.
911 /// This constructor does not require parameters, therefore it initiates
912 /// all of the attributes to default values (0, INVALID).
913 DijkstraWizardBase() : _g(0), _length(0), _pred(0),
914 _dist(0), _source(INVALID) {}
918 /// This constructor requires some parameters,
919 /// listed in the parameters list.
920 /// Others are initiated to 0.
921 /// \param g is the initial value of \ref _g
922 /// \param l is the initial value of \ref _length
923 /// \param s is the initial value of \ref _source
924 DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
925 _g((void *)&g), _length((void *)&l), _pred(0),
926 _dist(0), _source(s) {}
930 /// A class to make the usage of Dijkstra algorithm easier
932 /// This class is created to make it easier to use Dijkstra algorithm.
933 /// It uses the functions and features of the plain \ref Dijkstra,
934 /// but it is much simpler to use it.
936 /// Simplicity means that the way to change the types defined
937 /// in the traits class is based on functions that returns the new class
938 /// and not on templatable built-in classes.
939 /// When using the plain \ref Dijkstra
940 /// the new class with the modified type comes from
941 /// the original class by using the ::
942 /// operator. In the case of \ref DijkstraWizard only
943 /// a function have to be called and it will
944 /// return the needed class.
946 /// It does not have own \ref run method. When its \ref run method is called
947 /// it initiates a plain \ref Dijkstra class, and calls the \ref
948 /// Dijkstra::run method of it.
950 class DijkstraWizard : public TR
954 ///The type of the underlying graph.
955 typedef typename TR::Graph Graph;
957 typedef typename Graph::Node Node;
959 typedef typename Graph::NodeIt NodeIt;
961 typedef typename Graph::Edge Edge;
963 typedef typename Graph::OutEdgeIt OutEdgeIt;
965 ///The type of the map that stores the edge lengths.
966 typedef typename TR::LengthMap LengthMap;
967 ///The type of the length of the edges.
968 typedef typename LengthMap::Value Value;
969 ///\brief The type of the map that stores the last
970 ///edges of the shortest paths.
971 typedef typename TR::PredMap PredMap;
972 ///The type of the map that stores the dists of the nodes.
973 typedef typename TR::DistMap DistMap;
974 ///The heap type used by the dijkstra algorithm.
975 typedef typename TR::Heap Heap;
978 DijkstraWizard() : TR() {}
980 /// Constructor that requires parameters.
982 /// Constructor that requires parameters.
983 /// These parameters will be the default values for the traits class.
984 DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
988 DijkstraWizard(const TR &b) : TR(b) {}
992 ///Runs Dijkstra algorithm from a given node.
994 ///Runs Dijkstra algorithm from a given node.
995 ///The node can be given by the \ref source function.
998 if(Base::_source==INVALID) throw UninitializedParameter();
999 Dijkstra<Graph,LengthMap,TR>
1000 dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
1001 if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
1002 if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
1003 dij.run(Base::_source);
1006 ///Runs Dijkstra algorithm from the given node.
1008 ///Runs Dijkstra algorithm from the given node.
1009 ///\param s is the given source.
1017 struct DefPredMapBase : public Base {
1019 static PredMap *createPredMap(const Graph &) { return 0; };
1020 DefPredMapBase(const TR &b) : TR(b) {}
1023 ///\brief \ref named-templ-param "Named parameter"
1024 ///function for setting PredMap type
1026 /// \ref named-templ-param "Named parameter"
1027 ///function for setting PredMap type
1030 DijkstraWizard<DefPredMapBase<T> > predMap(const T &t)
1032 Base::_pred=(void *)&t;
1033 return DijkstraWizard<DefPredMapBase<T> >(*this);
1037 struct DefDistMapBase : public Base {
1039 static DistMap *createDistMap(const Graph &) { return 0; };
1040 DefDistMapBase(const TR &b) : TR(b) {}
1043 ///\brief \ref named-templ-param "Named parameter"
1044 ///function for setting DistMap type
1046 /// \ref named-templ-param "Named parameter"
1047 ///function for setting DistMap type
1050 DijkstraWizard<DefDistMapBase<T> > distMap(const T &t)
1052 Base::_dist=(void *)&t;
1053 return DijkstraWizard<DefDistMapBase<T> >(*this);
1056 /// Sets the source node, from which the Dijkstra algorithm runs.
1058 /// Sets the source node, from which the Dijkstra algorithm runs.
1059 /// \param s is the source node.
1060 DijkstraWizard<TR> &source(Node s)
1068 ///Function type interface for Dijkstra algorithm.
1070 /// \ingroup flowalgs
1071 ///Function type interface for Dijkstra algorithm.
1073 ///This function also has several
1074 ///\ref named-templ-func-param "named parameters",
1075 ///they are declared as the members of class \ref DijkstraWizard.
1077 ///example shows how to use these parameters.
1079 /// dijkstra(g,length,source).predMap(preds).run();
1081 ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
1082 ///to the end of the parameter list.
1083 ///\sa DijkstraWizard
1085 template<class GR, class LM>
1086 DijkstraWizard<DijkstraWizardBase<GR,LM> >
1087 dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
1089 return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
1092 } //END OF NAMESPACE LEMON