3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2007
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_CYCLE_CANCELING_H
20 #define LEMON_CYCLE_CANCELING_H
22 /// \ingroup min_cost_flow
25 /// \brief A cycle-canceling algorithm for finding a minimum cost flow.
28 #include <lemon/graph_adaptor.h>
29 #include <lemon/circulation.h>
31 /// \brief The used cycle-canceling method.
32 #define LIMITED_CYCLE_CANCELING
33 //#define MIN_MEAN_CYCLE_CANCELING
35 #ifdef LIMITED_CYCLE_CANCELING
36 #include <lemon/bellman_ford.h>
37 /// \brief The maximum number of iterations for the first execution
38 /// of the \ref lemon::BellmanFord "Bellman-Ford" algorithm.
39 /// It should be at least 2.
40 #define STARTING_LIMIT 2
41 /// \brief The iteration limit for the
42 /// \ref lemon::BellmanFord "Bellman-Ford" algorithm is multiplied by
43 /// <tt>ALPHA_MUL / ALPHA_DIV</tt> in every round.
44 /// <tt>ALPHA_MUL / ALPHA_DIV</tt> must be greater than 1.
46 /// \brief The iteration limit for the
47 /// \ref lemon::BellmanFord "Bellman-Ford" algorithm is multiplied by
48 /// <tt>ALPHA_MUL / ALPHA_DIV</tt> in every round.
49 /// <tt>ALPHA_MUL / ALPHA_DIV</tt> must be greater than 1.
52 //#define _ONLY_ONE_CYCLE_
53 //#define _NO_BACK_STEP_
54 //#define _DEBUG_ITER_
57 #ifdef MIN_MEAN_CYCLE_CANCELING
58 #include <lemon/min_mean_cycle.h>
59 #include <lemon/path.h>
64 /// \addtogroup min_cost_flow
67 /// \brief Implementation of a cycle-canceling algorithm for finding
68 /// a minimum cost flow.
70 /// \ref lemon::CycleCanceling "CycleCanceling" implements a
71 /// cycle-canceling algorithm for finding a minimum cost flow.
73 /// \param Graph The directed graph type the algorithm runs on.
74 /// \param LowerMap The type of the lower bound map.
75 /// \param CapacityMap The type of the capacity (upper bound) map.
76 /// \param CostMap The type of the cost (length) map.
77 /// \param SupplyMap The type of the supply map.
80 /// - Edge capacities and costs should be nonnegative integers.
81 /// However \c CostMap::Value should be signed type.
82 /// - Supply values should be signed integers.
83 /// - \c LowerMap::Value must be convertible to
84 /// \c CapacityMap::Value and \c CapacityMap::Value must be
85 /// convertible to \c SupplyMap::Value.
87 /// \author Peter Kovacs
89 template < typename Graph,
90 typename LowerMap = typename Graph::template EdgeMap<int>,
91 typename CapacityMap = LowerMap,
92 typename CostMap = typename Graph::template EdgeMap<int>,
93 typename SupplyMap = typename Graph::template NodeMap
94 <typename CapacityMap::Value> >
97 typedef typename Graph::Node Node;
98 typedef typename Graph::NodeIt NodeIt;
99 typedef typename Graph::Edge Edge;
100 typedef typename Graph::EdgeIt EdgeIt;
101 typedef typename Graph::InEdgeIt InEdgeIt;
102 typedef typename Graph::OutEdgeIt OutEdgeIt;
104 typedef typename LowerMap::Value Lower;
105 typedef typename CapacityMap::Value Capacity;
106 typedef typename CostMap::Value Cost;
107 typedef typename SupplyMap::Value Supply;
108 typedef typename Graph::template EdgeMap<Capacity> CapacityRefMap;
109 typedef typename Graph::template NodeMap<Supply> SupplyRefMap;
111 typedef ResGraphAdaptor< const Graph, Capacity,
112 CapacityRefMap, CapacityRefMap > ResGraph;
113 typedef typename ResGraph::Node ResNode;
114 typedef typename ResGraph::NodeIt ResNodeIt;
115 typedef typename ResGraph::Edge ResEdge;
116 typedef typename ResGraph::EdgeIt ResEdgeIt;
120 /// \brief The type of the flow map.
121 typedef CapacityRefMap FlowMap;
125 /// \brief Map adaptor class for handling residual edge costs.
126 class ResCostMap : public MapBase<ResEdge, Cost>
130 const CostMap &cost_map;
134 ResCostMap(const CostMap &_cost) : cost_map(_cost) {}
136 Cost operator[](const ResEdge &e) const {
137 return ResGraph::forward(e) ? cost_map[e] : -cost_map[e];
140 }; //class ResCostMap
144 /// \brief The directed graph the algorithm runs on.
146 /// \brief The original lower bound map.
147 const LowerMap *lower;
148 /// \brief The modified capacity map.
149 CapacityRefMap capacity;
150 /// \brief The cost map.
152 /// \brief The modified supply map.
154 /// \brief The sum of supply values equals zero.
157 /// \brief The current flow.
159 /// \brief The residual graph.
161 /// \brief The residual cost map.
166 /// \brief General constructor of the class (with lower bounds).
168 /// General constructor of the class (with lower bounds).
170 /// \param _graph The directed graph the algorithm runs on.
171 /// \param _lower The lower bounds of the edges.
172 /// \param _capacity The capacities (upper bounds) of the edges.
173 /// \param _cost The cost (length) values of the edges.
174 /// \param _supply The supply values of the nodes (signed).
175 CycleCanceling( const Graph &_graph,
176 const LowerMap &_lower,
177 const CapacityMap &_capacity,
178 const CostMap &_cost,
179 const SupplyMap &_supply ) :
180 graph(_graph), lower(&_lower), capacity(_graph), cost(_cost),
181 supply(_graph), flow(_graph, 0),
182 res_graph(_graph, capacity, flow), res_cost(cost)
184 // Removing nonzero lower bounds
185 capacity = subMap(_capacity, _lower);
187 for (NodeIt n(graph); n != INVALID; ++n) {
188 Supply s = _supply[n];
189 for (InEdgeIt e(graph, n); e != INVALID; ++e)
191 for (OutEdgeIt e(graph, n); e != INVALID; ++e)
193 sum += (supply[n] = s);
195 valid_supply = sum == 0;
198 /// \brief General constructor of the class (without lower bounds).
200 /// General constructor of the class (without lower bounds).
202 /// \param _graph The directed graph the algorithm runs on.
203 /// \param _capacity The capacities (upper bounds) of the edges.
204 /// \param _cost The cost (length) values of the edges.
205 /// \param _supply The supply values of the nodes (signed).
206 CycleCanceling( const Graph &_graph,
207 const CapacityMap &_capacity,
208 const CostMap &_cost,
209 const SupplyMap &_supply ) :
210 graph(_graph), lower(NULL), capacity(_capacity), cost(_cost),
211 supply(_supply), flow(_graph, 0),
212 res_graph(_graph, capacity, flow), res_cost(cost)
214 // Checking the sum of supply values
216 for (NodeIt n(graph); n != INVALID; ++n) sum += supply[n];
217 valid_supply = sum == 0;
221 /// \brief Simple constructor of the class (with lower bounds).
223 /// Simple constructor of the class (with lower bounds).
225 /// \param _graph The directed graph the algorithm runs on.
226 /// \param _lower The lower bounds of the edges.
227 /// \param _capacity The capacities (upper bounds) of the edges.
228 /// \param _cost The cost (length) values of the edges.
229 /// \param _s The source node.
230 /// \param _t The target node.
231 /// \param _flow_value The required amount of flow from node \c _s
232 /// to node \c _t (i.e. the supply of \c _s and the demand of
234 CycleCanceling( const Graph &_graph,
235 const LowerMap &_lower,
236 const CapacityMap &_capacity,
237 const CostMap &_cost,
239 Supply _flow_value ) :
240 graph(_graph), lower(&_lower), capacity(_graph), cost(_cost),
241 supply(_graph), flow(_graph, 0),
242 res_graph(_graph, capacity, flow), res_cost(cost)
244 // Removing nonzero lower bounds
245 capacity = subMap(_capacity, _lower);
246 for (NodeIt n(graph); n != INVALID; ++n) {
248 if (n == _s) s = _flow_value;
249 if (n == _t) s = -_flow_value;
250 for (InEdgeIt e(graph, n); e != INVALID; ++e)
252 for (OutEdgeIt e(graph, n); e != INVALID; ++e)
259 /// \brief Simple constructor of the class (without lower bounds).
261 /// Simple constructor of the class (without lower bounds).
263 /// \param _graph The directed graph the algorithm runs on.
264 /// \param _capacity The capacities (upper bounds) of the edges.
265 /// \param _cost The cost (length) values of the edges.
266 /// \param _s The source node.
267 /// \param _t The target node.
268 /// \param _flow_value The required amount of flow from node \c _s
269 /// to node \c _t (i.e. the supply of \c _s and the demand of
271 CycleCanceling( const Graph &_graph,
272 const CapacityMap &_capacity,
273 const CostMap &_cost,
275 Supply _flow_value ) :
276 graph(_graph), lower(NULL), capacity(_capacity), cost(_cost),
277 supply(_graph, 0), flow(_graph, 0),
278 res_graph(_graph, capacity, flow), res_cost(cost)
280 supply[_s] = _flow_value;
281 supply[_t] = -_flow_value;
285 /// \brief Returns a const reference to the flow map.
287 /// Returns a const reference to the flow map.
289 /// \pre \ref run() must be called before using this function.
290 const FlowMap& flowMap() const {
294 /// \brief Returns the total cost of the found flow.
296 /// Returns the total cost of the found flow. The complexity of the
297 /// function is \f$ O(e) \f$.
299 /// \pre \ref run() must be called before using this function.
300 Cost totalCost() const {
302 for (EdgeIt e(graph); e != INVALID; ++e)
303 c += flow[e] * cost[e];
307 /// \brief Runs the algorithm.
309 /// Runs the algorithm.
311 /// \return \c true if a feasible flow can be found.
313 return init() && start();
318 /// \brief Initializes the algorithm.
320 // Checking the sum of supply values
322 for (NodeIt n(graph); n != INVALID; ++n) sum += supply[n];
323 if (sum != 0) return false;
325 // Finding a feasible flow
326 Circulation< Graph, Capacity, ConstMap<Edge, Capacity>,
327 CapacityRefMap, SupplyMap >::DefFlowMap<FlowMap>::Create
328 circulation( graph, constMap<Edge>((Capacity)0),
330 circulation.flowMap(flowMap);
331 return circulation.run();
334 #ifdef LIMITED_CYCLE_CANCELING
335 /// \brief Executes a cycle-canceling algorithm using
336 /// \ref lemon::BellmanFord "Bellman-Ford" algorithm with limited
339 typename BellmanFord<ResGraph, ResCostMap>::PredMap pred(res_graph);
340 typename ResGraph::template NodeMap<int> visited(res_graph);
341 std::vector<ResEdge> cycle;
342 int node_num = countNodes(graph);
347 int length_bound = STARTING_LIMIT;
348 bool optimal = false;
350 BellmanFord<ResGraph, ResCostMap> bf(res_graph, res_cost);
354 bool cycle_found = false;
355 while (!cycle_found) {
356 #ifdef _NO_BACK_STEP_
357 int curr_iter_num = length_bound <= node_num ?
358 length_bound - iter_num : node_num - iter_num;
360 int curr_iter_num = iter_num + length_bound <= node_num ?
361 length_bound : node_num - iter_num;
363 iter_num += curr_iter_num;
364 int real_iter_num = curr_iter_num;
365 for (int i = 0; i < curr_iter_num; ++i) {
366 if (bf.processNextWeakRound()) {
371 if (real_iter_num < curr_iter_num) {
375 // Searching for node disjoint negative cycles
376 for (ResNodeIt n(res_graph); n != INVALID; ++n)
379 for (ResNodeIt n(res_graph); n != INVALID; ++n) {
380 if (visited[n] > 0) continue;
382 ResNode u = pred[n] == INVALID ?
383 INVALID : res_graph.source(pred[n]);
384 while (u != INVALID && visited[u] == 0) {
386 u = pred[u] == INVALID ?
387 INVALID : res_graph.source(pred[u]);
389 if (u != INVALID && visited[u] == id) {
390 // Finding the negative cycle
395 Capacity d = res_graph.rescap(e);
396 while (res_graph.source(e) != u) {
397 cycle.push_back(e = pred[res_graph.source(e)]);
398 if (res_graph.rescap(e) < d)
399 d = res_graph.rescap(e);
404 // Augmenting along the cycle
405 for (int i = 0; i < cycle.size(); ++i)
406 res_graph.augment(cycle[i], d);
407 #ifdef _ONLY_ONE_CYCLE_
415 length_bound = length_bound * ALPHA_MUL / ALPHA_DIV;
420 std::cout << "Limited cycle-canceling algorithm finished. "
421 << "Found " << cycle_num << " negative cycles."
425 // Handling nonzero lower bounds
427 for (EdgeIt e(graph); e != INVALID; ++e)
428 flow[e] += (*lower)[e];
434 #ifdef MIN_MEAN_CYCLE_CANCELING
435 /// \brief Executes the minimum mean cycle-canceling algorithm
436 /// using \ref lemon::MinMeanCycle "MinMeanCycle" class.
438 typedef Path<ResGraph> ResPath;
439 MinMeanCycle<ResGraph, ResCostMap> mmc(res_graph, res_cost);
445 mmc.cyclePath(cycle).init();
446 if (mmc.findMinMean()) {
447 while (mmc.cycleLength() < 0) {
454 // Finding the largest flow amount that can be augmented
457 for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e) {
458 if (delta == 0 || res_graph.rescap(e) < delta)
459 delta = res_graph.rescap(e);
462 // Augmenting along the cycle
463 for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e)
464 res_graph.augment(e, delta);
466 // Finding the minimum cycle mean for the modified residual
469 if (!mmc.findMinMean()) break;
474 std::cout << "Minimum mean cycle-canceling algorithm finished. "
475 << "Found " << cycle_num << " negative cycles."
479 // Handling nonzero lower bounds
481 for (EdgeIt e(graph); e != INVALID; ++e)
482 flow[e] += (*lower)[e];
488 }; //class CycleCanceling
494 #endif //LEMON_CYCLE_CANCELING_H