lemon/tabu_search.h
author deba
Tue, 21 Nov 2006 18:22:08 +0000
changeset 2306 42cce226b87b
parent 2067 cd414bfbe38b
child 2370 ed6539025f27
permissions -rw-r--r--
BfsVisitor
Bipartite partitions based on visitors

topology_demo.cc => scaleToA4 works without extra parameters
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 
    20 #ifndef LEMON_TABU_SEARCH_H
    21 #define LEMON_TABU_SEARCH_H
    22 
    23 /// \ingroup experimental
    24 /// \file
    25 /// \brief TabuSearch algorithm.
    26 ///
    27 /// \author Szabadkai Mark
    28 
    29 #include <lemon/bits/utility.h>
    30 #include <lemon/error.h>
    31 #include <lemon/time_measure.h>
    32 #include <functional>
    33 #include <deque>
    34 
    35 
    36 namespace lemon {
    37 
    38   /// \brief Default Traits for TabuSearch class.
    39   /// 
    40   /// This template defines the needed types for the \ref TabuSearch class.
    41   /// Is main purpos is to simplify the main class's template interface,
    42   /// but it provides the EdgeIt type, passing to the concrete graph wheter
    43   /// it is directed or undirected.
    44 #ifdef DOXYGEN
    45   template< typename GRAPH, typename VALUE, 
    46             typename HEIGHTMAP, typename BETTER, bool UNDIR >
    47 #else
    48   template< typename GRAPH, typename VALUE,
    49             typename HEIGHTMAP = typename GRAPH::template NodeMap<VALUE>,
    50             typename BETTER = std::less<VALUE>,
    51             bool UNDIR = UndirectedTagIndicator<GRAPH>::value >
    52 #endif
    53   struct TabuSearchDefaultTraits {
    54     typedef  VALUE  Value; 
    55     typedef  BETTER  Better;
    56 
    57     typedef  GRAPH  Graph;
    58     typedef  typename GRAPH::Node  Node;
    59     typedef  HEIGHTMAP  HeightMap;
    60 
    61     typedef  typename GRAPH::IncEdgeIt  EdgeIt;
    62   };
    63 
    64   template< typename GRAPH, typename VALUE, 
    65             typename HEIGHTMAP, typename BETTER >
    66   struct TabuSearchDefaultTraits< GRAPH, VALUE, HEIGHTMAP, BETTER, false > {
    67     typedef  VALUE  Value;
    68     typedef  BETTER  Better;
    69 
    70     typedef  GRAPH  Graph;
    71     typedef  typename GRAPH::Node  Node;
    72     typedef  HEIGHTMAP  HeightMap;
    73 
    74     typedef  typename GRAPH::OutEdgeIt  EdgeIt;
    75   };
    76 
    77 
    78 
    79   /// \brief Policy hierarchy to controll the search algorithm.
    80   ///
    81   /// The fallowing template hierarchy offers a clean interface to define own
    82   /// policies, and combine existing ones.
    83   template< typename TS >
    84   struct TabuSearchPolicyConcept {
    85     void  target( TS *ts ) {}
    86 
    87     void  reset()  {}
    88     bool  onStep() { return false; }
    89     bool  onStick() { return false; }
    90     bool  onImprove( const typename TS::Value &best ) { return false; }
    91   };
    92 
    93   template< typename TS >
    94   struct YesPolicy {
    95     void  target( TS *ts ) {}
    96 
    97     void  reset()  {}
    98     bool  onStep() { return true; }
    99     bool  onStick() { return true; }
   100     bool  onImprove( const typename TS::Value &best ) { return true; }
   101   };
   102 
   103   template< typename TS >
   104   struct NoPolicy : public TabuSearchPolicyConcept<TS> {};
   105 
   106   /// \brief Some basic methode, how tow Policies can be combined
   107   struct PolicyAndCombination {
   108     static bool  evaluate( const bool r1, const bool r2 ) {
   109       return r1 && r2;
   110     }
   111   };
   112 
   113   struct PolicyOrCombination {
   114     static bool  evaluate( const bool r1, const bool r2 ) {
   115       return r1 || r2;
   116     }
   117   };
   118 
   119   /// \brief CombinePolicies
   120   ///
   121   /// It combines tow policies using the given combination methode (mainly
   122   /// some of the basic logical methodes) to create a new one.
   123 #ifdef DOXYGEN
   124   template< template<typename> class CP1, template<typename> class CP2, 
   125             typename COMBINATION >
   126 #else
   127   template< template<typename> class CP1, template<typename> class CP2,
   128             typename COMBINATION = PolicyAndCombination >
   129 #endif
   130   struct CombinePolicies {
   131     template< typename TS >
   132     struct Policy {
   133       typedef CP1<TS>  Policy1;
   134       typedef CP2<TS>  Policy2;
   135       
   136       Policy1  policy1;
   137       Policy2  policy2;
   138 
   139       inline Policy() : policy1(), policy2() {}
   140       inline Policy( const Policy1 &cp1, const Policy2 &cp2 ) 
   141         : policy1(cp1), policy2(cp2) {}
   142 
   143       void  target( TS *ts ) {
   144         policy1.target(ts), policy2.target(ts);
   145       };
   146 
   147       void  reset() {
   148         policy1.reset(), policy2.reset();
   149       }
   150 
   151       bool  onStep() {
   152         return cmb.evaluate( policy1.onStep(), policy2.onStep() );
   153       }
   154 
   155       bool  onStick() {
   156         return cmb.evaluate( policy1.onStick(), policy2.onStick() );
   157       }
   158 
   159       bool  onImprove( const typename TS::Value &best ) {
   160         return cmb.evaluate( policy1.onImprove(best), 
   161                              policy2.onImprove(best) );
   162       }
   163 
   164     private:
   165       COMBINATION cmb;
   166     };
   167   };
   168 
   169 
   170   /// \brief IterationPolicy limits the number of iterations and the
   171   /// number of iterations without improvement
   172   template< typename TS >
   173   struct IterationPolicy {
   174     IterationPolicy() : _it_lim(100000), _noimpr_it_lim(5000) {}
   175     IterationPolicy( const long int itl, const long int noimpritl )
   176       : _it_lim(itl), _noimpr_it_lim(noimpritl)
   177     {}
   178 
   179     void  target( TS *ts ) {}
   180 
   181     void  reset() {
   182       _it = _noimpr_it = 0;
   183     }
   184 
   185     bool  onStep() {
   186       ++_it; ++_noimpr_it;
   187       return (_it <= _it_lim) && (_noimpr_it <= _noimpr_it_lim);
   188     }
   189 		
   190     bool  onStick() {
   191       return false;
   192     }
   193 
   194     bool  onImprove( const typename TS::Value &best ) {
   195       _noimpr_it = 0;
   196       return true;
   197     }
   198 
   199     long int  iterationLimit() const {
   200       return _it_lim;
   201     }
   202 
   203     void  iterationLimit( const long int itl ) {
   204       _it_lim = itl;
   205     }
   206 
   207     long int  noImprovementIterationLimit() const {
   208       return _noimpr_it_lim;
   209     }
   210 
   211     void  noImprovementIterationLimit( const long int noimpritl ) {
   212       _noimpr_it_lim = noimpritl;
   213     }
   214 
   215   private:
   216     long int  _it_lim, _noimpr_it_lim;
   217     long int  _it, _noimpr_it;
   218   };
   219 
   220   /// \brief HeightPolicy stops the search when a given height is reached or
   221   /// exceeds
   222   template< typename TS >
   223   struct HeightPolicy {
   224     typedef typename TS::Value  Value;
   225 
   226     HeightPolicy() : _height_lim(), _found(false) {}
   227     HeightPolicy( const Value &hl ) : _height_lim(hl), _found(false) {}
   228 
   229     void  target( TS *ts ) {}
   230 
   231     void  reset() {
   232       _found = false;
   233     }
   234 
   235     bool  onStep() {
   236       return !_found;
   237     }
   238 
   239     bool  onStick() {
   240       return false;
   241     }
   242 
   243     bool  onImprove( const Value &best ) {
   244       typename TS::Better  better;
   245       _found = better(best, _height_lim) || (best == _height_lim);
   246       return !_found;
   247     }
   248 
   249     Value  heightLimi() const {
   250       return _height_lim;
   251     }
   252 
   253     void  heightLimi( const Value &hl ) {
   254       _height_lim = hl;
   255     }
   256 
   257   private:
   258     Value  _height_lim;
   259     bool  _found;
   260   };
   261 
   262   /// \brief TimePolicy limits the time for searching.
   263   template< typename TS >
   264   struct TimePolicy {
   265     TimePolicy() : _time_lim(60.0), _timeisup(false) {}
   266     TimePolicy( const double tl ) : _time_lim(tl), _timeisup(false) {}
   267 
   268     void  target( TS *ts ) {}
   269 
   270     void  reset() {
   271       _timeisup = false;
   272       _t.reset();
   273     }
   274 
   275     bool  onStep() {
   276       update();
   277       return !_timeisup;
   278     }
   279 
   280     bool  onStick() {
   281       return false;
   282     }
   283 
   284     bool  onImprove( const typename TS::Value &best ) {
   285       update();
   286       return !_timeisup;
   287     }
   288 
   289     double timeLimit() const {
   290       return _time_lim;
   291     }
   292 
   293     void  setTimeLimit( const double tl ) {
   294       _time_lim = tl;
   295       update();
   296     }
   297 
   298   private:
   299     lemon::Timer  _t;
   300     double  _time_lim;
   301     bool  _timeisup;
   302 
   303     inline void  update() {
   304       _timeisup = _t.realTime() > _time_lim;
   305     }
   306   };
   307 
   308 
   309 
   310   /// \brief TabuSearch main class
   311   ///
   312   /// This class offers the implementation of tabu-search algorithm. The
   313   /// tabu-serach is a local-search. It starts from a specified point of the
   314   /// problem's graph representation, and in every step it goes to the localy
   315   /// best next Node except those in tabu set. The maximum size of this tabu
   316   /// set defines how many Node will be remembered. The best Node ever found
   317   /// will also stored, so we wont lose it, even is the search continues.
   318   /// The class can be used on any kind of Graph and with any kind of Value
   319   /// with a total-settlement on it.
   320   ///
   321   /// \param _Graph The graph type the algorithm runs on.
   322   /// \param _Value The values' type associated to the nodes.
   323   /// \param _Policy Controlls the search. Determinates when to stop, or how
   324   /// manage stuck search. Default value is \ref IterationPolicy .
   325   /// \param _Traits Collection of needed types. Default value is
   326   /// \ref TabuSearchDefaultTraits .
   327   ///
   328   /// \author Szabadkai Mark
   329 #ifdef DOXYGEN
   330   template< typename GRAPH, typename VALUE, template<typename> class POLICY, typename TRAITS >
   331 #else
   332   template< typename GRAPH, typename VALUE,
   333             template<typename> class POLICY = IterationPolicy,
   334             typename TRAITS = TabuSearchDefaultTraits<GRAPH, VALUE> >
   335 #endif
   336   class TabuSearch
   337   {
   338   public:
   339 
   340     /// \brief Thrown by setting the size of the tabu-set and the given size
   341     /// is less than 2.
   342     class BadParameterError : public lemon::LogicError {
   343     public:
   344       virtual const char* what() const throw() {
   345         return "lemon::TabuSearch::BadParameterError";
   346       }
   347     };
   348 
   349     ///Public types
   350     typedef  TabuSearch<GRAPH,VALUE,POLICY,TRAITS>  SelfType;
   351 
   352     typedef  typename TRAITS::Graph  Graph;
   353     typedef  typename TRAITS::Node  Node;
   354     typedef  typename TRAITS::Value  Value;
   355     typedef  typename TRAITS::HeightMap  HeightMap;
   356     typedef  typename TRAITS::Better  Better;
   357     typedef  typename std::deque< Node >::const_iterator  TabuIterator;
   358 
   359     typedef  POLICY<SelfType>  Policy;
   360 
   361   protected:
   362     typedef  typename TRAITS::EdgeIt  EdgeIt;
   363 
   364     const Graph  &gr;
   365     const HeightMap  &height;
   366     /// The tabu set. Teh current node is the first
   367     std::deque< Node >  tabu;
   368     /// Maximal tabu size
   369     unsigned int  mts;
   370     /// The best Node found
   371     Node  b;
   372 
   373     Better  better;
   374     Policy  pol;
   375 
   376   public:
   377     /// \brief Constructor
   378     ///
   379     /// \param graph the graph the algorithm will run on.
   380     /// \param hm the height map used by the algorithm.
   381     /// \param tabusz the maximal size of the tabu set. Default value is 3
   382     /// \param p the Policy controlling the search.
   383     TabuSearch( const Graph &graph, const HeightMap &hm, 
   384                 const int tabusz = 3, Policy p = Policy() )
   385       : gr(graph), height(hm), mts(tabusz), pol(p)
   386     {
   387       pol.target(this);
   388     }
   389 
   390     /// \brief Destructor
   391     ~TabuSearch() {
   392       pol.target(NULL);
   393     }
   394 
   395     /// Set/Get the size of the tabu set
   396     void  tabuSize( const unsigned int size )
   397     {
   398       if( size < 2 )
   399       throw BadParameterError( "Tabu size must be at least 2!" );
   400       mts = size;
   401       while( mts < tabu.size() )
   402       tabu.pop_back();
   403     }
   404 
   405     unsigned int  tabuSize() const {
   406       return mts;
   407     }
   408 
   409     /// Set/Get Policy
   410     void  policy( Policy p ) {
   411       pol.target(NULL);
   412       pol = p;
   413       pol.target(this);
   414     }
   415 		
   416     Policy& policy()  {
   417       return pol;
   418     }
   419 
   420     /// \name Execution control
   421     /// The simplest way to execute the algorithm is to use the member
   422     /// functions called \c run( 'startnode' ).
   423     ///@{
   424 
   425     /// \brief Initializes the internal data.
   426     ///
   427     /// \param startn The start node where the search begins.
   428     void  init( const Node startn ) {
   429       tabu.clear();
   430       tabu.push_front( startn );
   431       b = startn;
   432       pol.reset();
   433     }
   434 
   435     /// \brief Does one iteration
   436     ///
   437     /// If the Policy allows it searches for the best next node, then steps
   438     /// onto it.
   439     /// \return %False if one Policy condition wants to stop the search.
   440     bool  step()
   441     {
   442       ///Request premmision from ControllPolicy
   443       if( !pol.onStep() )
   444       return false;
   445 	
   446       ///Find the best next potential node
   447       Node n; bool found = false;
   448       for( EdgeIt e(gr,tabu[0]); e != INVALID; ++e )
   449       {
   450         Node m = (gr.source(e) == tabu[0]) ? gr.target(e) : gr.source(e);
   451         bool wrong = false;
   452         for( int i = 1; i != (signed int)tabu.size(); ++i )
   453           if( m == tabu[i] ) {
   454             wrong = true;
   455             break;
   456           }
   457         if( wrong )
   458           continue;
   459 
   460         if( !found ) {
   461           n = m;
   462           found = true;
   463         } else
   464           if( better(height[m], height[n]) ) {
   465             n = m;
   466           }
   467       }
   468 
   469       ///Handle stuck search
   470       if( !found ) {
   471         return pol.onStick();
   472       }
   473 
   474       ///Move on...
   475       tabu.push_front(n);
   476       while( mts < tabu.size() ) {
   477         tabu.pop_back();
   478       }
   479       if( better(height[n], height[b]) ) {
   480         b = n;
   481         if( !pol.onImprove(height[b]) )
   482         return false;
   483       }
   484 
   485       return true;
   486     }
   487 
   488     /// \brief Runs a search while the Policy stops it.
   489     ///
   490     /// \param startn The start node where the search begins.
   491     inline void  run( const Node startn ) {
   492       std::cin.unsetf( std::ios_base::skipws );
   493       char c;
   494       init( startn );
   495       while( step() )
   496       std::cin >> c;
   497       std::cin.setf( std::ios_base::skipws );
   498     }
   499 
   500     ///@}
   501 
   502     /// \name Query Functions
   503     /// The result of the TabuSearch algorithm can be obtained using these
   504     /// functions.\n
   505     ///@{
   506 
   507     /// \brief The node, the search is standing on.
   508     inline Node  current() const {
   509       return tabu[0];
   510     }
   511 
   512     /// \brief The best node found until now.
   513     inline Node  best() const {
   514       return b;
   515     }
   516 
   517     /// \brief Beginning to iterate on the current tabu set.
   518     inline TabuIterator  tabu_begin() const {
   519       return tabu.begin();
   520     }
   521 
   522     /// \brief Ending to iterate on the current tabu set.
   523     inline TabuIterator  tabu_end() const {
   524       return tabu.end();
   525     }
   526 
   527     ///@}
   528   };
   529 }
   530 #endif