lemon/kruskal.h
author deba
Wed, 12 Jul 2006 10:34:07 +0000
changeset 2129 43849d6e280a
parent 2084 59769591eb60
child 2205 c20b0eb92a33
permissions -rw-r--r--
Resolving: Bug #52
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_KRUSKAL_H
    20 #define LEMON_KRUSKAL_H
    21 
    22 #include <algorithm>
    23 #include <vector>
    24 #include <lemon/unionfind.h>
    25 #include <lemon/bits/utility.h>
    26 #include <lemon/bits/traits.h>
    27 
    28 ///\ingroup spantree
    29 ///\file
    30 ///\brief Kruskal's algorithm to compute a minimum cost tree
    31 ///
    32 ///Kruskal's algorithm to compute a minimum cost tree.
    33 ///
    34 ///\todo The file still needs some clean-up.
    35 
    36 namespace lemon {
    37 
    38   /// \addtogroup spantree
    39   /// @{
    40 
    41   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    42 
    43   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    44   /// Due to hard C++ hacking, it accepts various input and output types.
    45   ///
    46   /// \param g The graph the algorithm runs on.
    47   /// It can be either \ref concept::Graph "directed" or 
    48   /// \ref concept::UGraph "undirected".
    49   /// If the graph is directed, the algorithm consider it to be 
    50   /// undirected by disregarding the direction of the edges.
    51   ///
    52   /// \param in This object is used to describe the edge costs. It can be one
    53   /// of the following choices.
    54   /// - An STL compatible 'Forward Container'
    55   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    56   /// where \c X is the type of the costs. The pairs indicates the edges along
    57   /// with the assigned cost. <em>They must be in a
    58   /// cost-ascending order.</em>
    59   /// - Any readable Edge map. The values of the map indicate the edge costs.
    60   ///
    61   /// \retval out Here we also have a choise.
    62   /// - Is can be a writable \c bool edge map. 
    63   /// After running the algorithm
    64   /// this will contain the found minimum cost spanning tree: the value of an
    65   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    66   /// be set to \c false. The value of each edge will be set exactly once.
    67   /// - It can also be an iteraror of an STL Container with
    68   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
    69   /// The algorithm copies the elements of the found tree into this sequence.
    70   /// For example, if we know that the spanning tree of the graph \c g has
    71   /// say 53 edges, then
    72   /// we can put its edges into a STL vector \c tree with a code like this.
    73   ///\code
    74   /// std::vector<Edge> tree(53);
    75   /// kruskal(g,cost,tree.begin());
    76   ///\endcode
    77   /// Or if we don't know in advance the size of the tree, we can write this.
    78   ///\code
    79   /// std::vector<Edge> tree;
    80   /// kruskal(g,cost,std::back_inserter(tree));
    81   ///\endcode
    82   ///
    83   /// \return The cost of the found tree.
    84   ///
    85   /// \warning If kruskal is run on an
    86   /// \ref lemon::concept::UGraph "undirected graph", be sure that the
    87   /// map storing the tree is also undirected
    88   /// (e.g. ListUGraph::UEdgeMap<bool>, otherwise the values of the
    89   /// half of the edges will not be set.
    90   ///
    91   /// \todo Discuss the case of undirected graphs: In this case the algorithm
    92   /// also require <tt>Edge</tt>s instead of <tt>UEdge</tt>s, as some
    93   /// people would expect. So, one should be careful not to add both of the
    94   /// <tt>Edge</tt>s belonging to a certain <tt>UEdge</tt>.
    95   /// (\ref kruskal() and \ref KruskalMapInput are kind enough to do so.)
    96 
    97 #ifdef DOXYGEN
    98   template <class GR, class IN, class OUT>
    99   typename IN::value_type::second_type
   100   kruskal(GR const& g, IN const& in, 
   101 	  OUT& out)
   102 #else
   103   template <class GR, class IN, class OUT>
   104   typename IN::value_type::second_type
   105   kruskal(GR const& g, IN const& in, 
   106 	  OUT& out,
   107 // 	  typename IN::value_type::first_type = typename GR::Edge()
   108 // 	  ,typename OUT::Key = OUT::Key()
   109 // 	  //,typename OUT::Key = typename GR::Edge()
   110 	  const typename IN::value_type::first_type * = 
   111 	  (const typename IN::value_type::first_type *)(0),
   112 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
   113 	  )
   114 #endif
   115   {
   116     typedef typename IN::value_type::second_type EdgeCost;
   117     typedef typename GR::template NodeMap<int> NodeIntMap;
   118     typedef typename GR::Node Node;
   119 
   120     NodeIntMap comp(g, -1);
   121     UnionFind<Node,NodeIntMap> uf(comp); 
   122       
   123     EdgeCost tot_cost = 0;
   124     for (typename IN::const_iterator p = in.begin(); 
   125 	 p!=in.end(); ++p ) {
   126       if ( uf.join(g.target((*p).first),
   127 		   g.source((*p).first)) ) {
   128 	out.set((*p).first, true);
   129 	tot_cost += (*p).second;
   130       }
   131       else {
   132 	out.set((*p).first, false);
   133       }
   134     }
   135     return tot_cost;
   136   }
   137 
   138  
   139   /// @}
   140 
   141   
   142   /* A work-around for running Kruskal with const-reference bool maps... */
   143 
   144   /// Helper class for calling kruskal with "constant" output map.
   145 
   146   /// Helper class for calling kruskal with output maps constructed
   147   /// on-the-fly.
   148   ///
   149   /// A typical examle is the following call:
   150   /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
   151   /// Here, the third argument is a temporary object (which wraps around an
   152   /// iterator with a writable bool map interface), and thus by rules of C++
   153   /// is a \c const object. To enable call like this exist this class and
   154   /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
   155   /// third argument.
   156   template<class Map>
   157   class NonConstMapWr {
   158     const Map &m;
   159   public:
   160     typedef typename Map::Key Key;
   161     typedef typename Map::Value Value;
   162 
   163     NonConstMapWr(const Map &_m) : m(_m) {}
   164 
   165     template<class Key>
   166     void set(Key const& k, Value const &v) const { m.set(k,v); }
   167   };
   168 
   169   template <class GR, class IN, class OUT>
   170   inline
   171   typename IN::value_type::second_type
   172   kruskal(GR const& g, IN const& edges, OUT const& out_map,
   173 // 	  typename IN::value_type::first_type = typename GR::Edge(),
   174 // 	  typename OUT::Key = GR::Edge()
   175 	  const typename IN::value_type::first_type * = 
   176 	  (const typename IN::value_type::first_type *)(0),
   177 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
   178 	  )
   179   {
   180     NonConstMapWr<OUT> map_wr(out_map);
   181     return kruskal(g, edges, map_wr);
   182   }  
   183 
   184   /* ** ** Input-objects ** ** */
   185 
   186   /// Kruskal's input source.
   187  
   188   /// Kruskal's input source.
   189   ///
   190   /// In most cases you possibly want to use the \ref kruskal() instead.
   191   ///
   192   /// \sa makeKruskalMapInput()
   193   ///
   194   ///\param GR The type of the graph the algorithm runs on.
   195   ///\param Map An edge map containing the cost of the edges.
   196   ///\par
   197   ///The cost type can be any type satisfying
   198   ///the STL 'LessThan comparable'
   199   ///concept if it also has an operator+() implemented. (It is necessary for
   200   ///computing the total cost of the tree).
   201   ///
   202   template<class GR, class Map>
   203   class KruskalMapInput
   204     : public std::vector< std::pair<typename GR::Edge,
   205 				    typename Map::Value> > {
   206     
   207   public:
   208     typedef std::vector< std::pair<typename GR::Edge,
   209 				   typename Map::Value> > Parent;
   210     typedef typename Parent::value_type value_type;
   211 
   212   private:
   213     class comparePair {
   214     public:
   215       bool operator()(const value_type& a,
   216 		      const value_type& b) {
   217 	return a.second < b.second;
   218       }
   219     };
   220 
   221     template<class _GR>
   222     typename enable_if<UndirectedTagIndicator<_GR>,void>::type
   223     fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0) 
   224     {
   225       for(typename GR::UEdgeIt e(g);e!=INVALID;++e) 
   226 	push_back(value_type(g.direct(e, true), m[e]));
   227     }
   228 
   229     template<class _GR>
   230     typename disable_if<UndirectedTagIndicator<_GR>,void>::type
   231     fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1) 
   232     {
   233       for(typename GR::EdgeIt e(g);e!=INVALID;++e) 
   234 	push_back(value_type(e, m[e]));
   235     }
   236     
   237     
   238   public:
   239 
   240     void sort() {
   241       std::sort(this->begin(), this->end(), comparePair());
   242     }
   243 
   244     KruskalMapInput(GR const& g, Map const& m) {
   245       fillWithEdges(g,m); 
   246       sort();
   247     }
   248   };
   249 
   250   /// Creates a KruskalMapInput object for \ref kruskal()
   251 
   252   /// It makes easier to use 
   253   /// \ref KruskalMapInput by making it unnecessary 
   254   /// to explicitly give the type of the parameters.
   255   ///
   256   /// In most cases you possibly
   257   /// want to use \ref kruskal() instead.
   258   ///
   259   ///\param g The type of the graph the algorithm runs on.
   260   ///\param m An edge map containing the cost of the edges.
   261   ///\par
   262   ///The cost type can be any type satisfying the
   263   ///STL 'LessThan Comparable'
   264   ///concept if it also has an operator+() implemented. (It is necessary for
   265   ///computing the total cost of the tree).
   266   ///
   267   ///\return An appropriate input source for \ref kruskal().
   268   ///
   269   template<class GR, class Map>
   270   inline
   271   KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
   272   {
   273     return KruskalMapInput<GR,Map>(g,m);
   274   }
   275   
   276   
   277 
   278   /* ** ** Output-objects: simple writable bool maps ** ** */
   279   
   280 
   281 
   282   /// A writable bool-map that makes a sequence of "true" keys
   283 
   284   /// A writable bool-map that creates a sequence out of keys that receives
   285   /// the value "true".
   286   ///
   287   /// \sa makeKruskalSequenceOutput()
   288   ///
   289   /// Very often, when looking for a min cost spanning tree, we want as
   290   /// output a container containing the edges of the found tree. For this
   291   /// purpose exist this class that wraps around an STL iterator with a
   292   /// writable bool map interface. When a key gets value "true" this key
   293   /// is added to sequence pointed by the iterator.
   294   ///
   295   /// A typical usage:
   296   ///\code
   297   /// std::vector<Graph::Edge> v;
   298   /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
   299   ///\endcode
   300   /// 
   301   /// For the most common case, when the input is given by a simple edge
   302   /// map and the output is a sequence of the tree edges, a special
   303   /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
   304   ///
   305   /// \warning Not a regular property map, as it doesn't know its Key
   306 
   307   template<class Iterator>
   308   class KruskalSequenceOutput {
   309     mutable Iterator it;
   310 
   311   public:
   312     typedef typename std::iterator_traits<Iterator>::value_type Key;
   313     typedef bool Value;
   314 
   315     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   316 
   317     template<typename Key>
   318     void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
   319   };
   320 
   321   template<class Iterator>
   322   inline
   323   KruskalSequenceOutput<Iterator>
   324   makeKruskalSequenceOutput(Iterator it) {
   325     return KruskalSequenceOutput<Iterator>(it);
   326   }
   327 
   328 
   329 
   330   /* ** ** Wrapper funtions ** ** */
   331 
   332 //   \brief Wrapper function to kruskal().
   333 //   Input is from an edge map, output is a plain bool map.
   334 //  
   335 //   Wrapper function to kruskal().
   336 //   Input is from an edge map, output is a plain bool map.
   337 //  
   338 //   \param g The type of the graph the algorithm runs on.
   339 //   \param in An edge map containing the cost of the edges.
   340 //   \par
   341 //   The cost type can be any type satisfying the
   342 //   STL 'LessThan Comparable'
   343 //   concept if it also has an operator+() implemented. (It is necessary for
   344 //   computing the total cost of the tree).
   345 //  
   346 //   \retval out This must be a writable \c bool edge map.
   347 //   After running the algorithm
   348 //   this will contain the found minimum cost spanning tree: the value of an
   349 //   edge will be set to \c true if it belongs to the tree, otherwise it will
   350 //   be set to \c false. The value of each edge will be set exactly once.
   351 //  
   352 //   \return The cost of the found tree.
   353 
   354   template <class GR, class IN, class RET>
   355   inline
   356   typename IN::Value
   357   kruskal(GR const& g,
   358 	  IN const& in,
   359 	  RET &out,
   360 	  //	  typename IN::Key = typename GR::Edge(),
   361 	  //typename IN::Key = typename IN::Key (),
   362 	  //	  typename RET::Key = typename GR::Edge()
   363 	  const typename IN::Key *  = (const typename IN::Key *)(0),
   364 	  const typename RET::Key * = (const typename RET::Key *)(0)
   365 	  )
   366   {
   367     return kruskal(g,
   368 		   KruskalMapInput<GR,IN>(g,in),
   369 		   out);
   370   }
   371 
   372 //   \brief Wrapper function to kruskal().
   373 //   Input is from an edge map, output is an STL Sequence.
   374 //  
   375 //   Wrapper function to kruskal().
   376 //   Input is from an edge map, output is an STL Sequence.
   377 //  
   378 //   \param g The type of the graph the algorithm runs on.
   379 //   \param in An edge map containing the cost of the edges.
   380 //   \par
   381 //   The cost type can be any type satisfying the
   382 //   STL 'LessThan Comparable'
   383 //   concept if it also has an operator+() implemented. (It is necessary for
   384 //   computing the total cost of the tree).
   385 //  
   386 //   \retval out This must be an iteraror of an STL Container with
   387 //   <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   388 //   The algorithm copies the elements of the found tree into this sequence.
   389 //   For example, if we know that the spanning tree of the graph \c g has
   390 //   say 53 edges, then
   391 //   we can put its edges into a STL vector \c tree with a code like this.
   392 //\code
   393 //   std::vector<Edge> tree(53);
   394 //   kruskal(g,cost,tree.begin());
   395 //\endcode
   396 //   Or if we don't know in advance the size of the tree, we can write this.
   397 //\code
   398 //   std::vector<Edge> tree;
   399 //   kruskal(g,cost,std::back_inserter(tree));
   400 //\endcode
   401 //  
   402 //   \return The cost of the found tree.
   403 //  
   404 //   \bug its name does not follow the coding style.
   405 
   406   template <class GR, class IN, class RET>
   407   inline
   408   typename IN::Value
   409   kruskal(const GR& g,
   410 	  const IN& in,
   411 	  RET out,
   412 	  const typename RET::value_type * = 
   413 	  (const typename RET::value_type *)(0)
   414 	  )
   415   {
   416     KruskalSequenceOutput<RET> _out(out);
   417     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   418   }
   419  
   420   template <class GR, class IN, class RET>
   421   inline
   422   typename IN::Value
   423   kruskal(const GR& g,
   424 	  const IN& in,
   425 	  RET *out
   426 	  )
   427   {
   428     KruskalSequenceOutput<RET*> _out(out);
   429     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   430   }
   431  
   432   /// @}
   433 
   434 } //namespace lemon
   435 
   436 #endif //LEMON_KRUSKAL_H