lemon/johnson.h
author deba
Mon, 03 Oct 2005 14:22:10 +0000
changeset 1702 44d495c659b5
child 1710 f531c16dd923
permissions -rw-r--r--
Bugfix in list_graph
     1 /* -*- C++ -*-
     2  * lemon/johnson.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_JOHNSON_H
    18 #define LEMON_JOHNSON_H
    19 
    20 ///\ingroup flowalgs
    21 /// \file
    22 /// \brief Johnson algorithm.
    23 ///
    24 
    25 #include <lemon/list_graph.h>
    26 #include <lemon/graph_utils.h>
    27 #include <lemon/dfs.h>
    28 #include <lemon/dijkstra.h>
    29 #include <lemon/belmann_ford.h>
    30 #include <lemon/invalid.h>
    31 #include <lemon/error.h>
    32 #include <lemon/maps.h>
    33 
    34 #include <limits>
    35 
    36 namespace lemon {
    37 
    38   /// \brief Default OperationTraits for the Johnson algorithm class.
    39   ///  
    40   /// It defines all computational operations and constants which are
    41   /// used in the Floyd-Warshall algorithm. The default implementation
    42   /// is based on the numeric_limits class. If the numeric type does not
    43   /// have infinity value then the maximum value is used as extremal
    44   /// infinity value.
    45   template <
    46     typename Value, 
    47     bool has_infinity = std::numeric_limits<Value>::has_infinity>
    48   struct JohnsonDefaultOperationTraits {
    49     /// \brief Gives back the zero value of the type.
    50     static Value zero() {
    51       return static_cast<Value>(0);
    52     }
    53     /// \brief Gives back the positive infinity value of the type.
    54     static Value infinity() {
    55       return std::numeric_limits<Value>::infinity();
    56     }
    57     /// \brief Gives back the sum of the given two elements.
    58     static Value plus(const Value& left, const Value& right) {
    59       return left + right;
    60     }
    61     /// \brief Gives back true only if the first value less than the second.
    62     static bool less(const Value& left, const Value& right) {
    63       return left < right;
    64     }
    65   };
    66 
    67   template <typename Value>
    68   struct JohnsonDefaultOperationTraits<Value, false> {
    69     static Value zero() {
    70       return static_cast<Value>(0);
    71     }
    72     static Value infinity() {
    73       return std::numeric_limits<Value>::max();
    74     }
    75     static Value plus(const Value& left, const Value& right) {
    76       if (left == infinity() || right == infinity()) return infinity();
    77       return left + right;
    78     }
    79     static bool less(const Value& left, const Value& right) {
    80       return left < right;
    81     }
    82   };
    83   
    84   /// \brief Default traits class of Johnson class.
    85   ///
    86   /// Default traits class of Johnson class.
    87   /// \param _Graph Graph type.
    88   /// \param _LegthMap Type of length map.
    89   template<class _Graph, class _LengthMap>
    90   struct JohnsonDefaultTraits {
    91     /// The graph type the algorithm runs on. 
    92     typedef _Graph Graph;
    93 
    94     /// \brief The type of the map that stores the edge lengths.
    95     ///
    96     /// The type of the map that stores the edge lengths.
    97     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    98     typedef _LengthMap LengthMap;
    99 
   100     // The type of the length of the edges.
   101     typedef typename _LengthMap::Value Value;
   102 
   103     /// \brief Operation traits for belmann-ford algorithm.
   104     ///
   105     /// It defines the infinity type on the given Value type
   106     /// and the used operation.
   107     /// \see JohnsonDefaultOperationTraits
   108     typedef JohnsonDefaultOperationTraits<Value> OperationTraits;
   109  
   110     /// \brief The type of the map that stores the last edges of the 
   111     /// shortest paths.
   112     /// 
   113     /// The type of the map that stores the last
   114     /// edges of the shortest paths.
   115     /// It must be a matrix map with \c Graph::Edge value type.
   116     ///
   117     typedef NodeMatrixMap<Graph, typename Graph::Edge> PredMap;
   118 
   119     /// \brief Instantiates a PredMap.
   120     /// 
   121     /// This function instantiates a \ref PredMap. 
   122     /// \param G is the graph, to which we would like to define the PredMap.
   123     /// \todo The graph alone may be insufficient for the initialization
   124     static PredMap *createPredMap(const _Graph& graph) {
   125       return new PredMap(graph);
   126     }
   127 
   128     /// \brief The type of the map that stores the dists of the nodes.
   129     ///
   130     /// The type of the map that stores the dists of the nodes.
   131     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   132     ///
   133     typedef NodeMatrixMap<Graph, Value> DistMap;
   134 
   135     /// \brief Instantiates a DistMap.
   136     ///
   137     /// This function instantiates a \ref DistMap. 
   138     /// \param G is the graph, to which we would like to define the 
   139     /// \ref DistMap
   140     static DistMap *createDistMap(const _Graph& graph) {
   141       return new DistMap(graph);
   142     }
   143 
   144   };
   145 
   146   /// \brief Johnson algorithm class.
   147   ///
   148   /// \ingroup flowalgs
   149   /// This class provides an efficient implementation of \c Johnson 
   150   /// algorithm. The edge lengths are passed to the algorithm using a
   151   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   152   /// kind of length.
   153   ///
   154   /// The type of the length is determined by the
   155   /// \ref concept::ReadMap::Value "Value" of the length map.
   156   ///
   157   /// \param _Graph The graph type the algorithm runs on. The default value
   158   /// is \ref ListGraph. The value of _Graph is not used directly by
   159   /// Johnson, it is only passed to \ref JohnsonDefaultTraits.
   160   /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   161   /// edges. It is read once for each edge, so the map may involve in
   162   /// relatively time consuming process to compute the edge length if
   163   /// it is necessary. The default map type is \ref
   164   /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   165   /// of _LengthMap is not used directly by Johnson, it is only passed 
   166   /// to \ref JohnsonDefaultTraits.  \param _Traits Traits class to set
   167   /// various data types used by the algorithm.  The default traits
   168   /// class is \ref JohnsonDefaultTraits
   169   /// "JohnsonDefaultTraits<_Graph,_LengthMap>".  See \ref
   170   /// JohnsonDefaultTraits for the documentation of a Johnson traits
   171   /// class.
   172   ///
   173   /// \author Balazs Dezso
   174 
   175   template <typename _Graph=ListGraph,
   176 	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   177 	    typename _Traits=JohnsonDefaultTraits<_Graph,_LengthMap> >
   178   class Johnson {
   179   public:
   180     
   181     /// \brief \ref Exception for uninitialized parameters.
   182     ///
   183     /// This error represents problems in the initialization
   184     /// of the parameters of the algorithms.
   185 
   186     class UninitializedParameter : public lemon::UninitializedParameter {
   187     public:
   188       virtual const char* exceptionName() const {
   189 	return "lemon::Johnson::UninitializedParameter";
   190       }
   191     };
   192 
   193     typedef _Traits Traits;
   194     ///The type of the underlying graph.
   195     typedef typename _Traits::Graph Graph;
   196 
   197     typedef typename Graph::Node Node;
   198     typedef typename Graph::NodeIt NodeIt;
   199     typedef typename Graph::Edge Edge;
   200     typedef typename Graph::EdgeIt EdgeIt;
   201     
   202     /// \brief The type of the length of the edges.
   203     typedef typename _Traits::LengthMap::Value Value;
   204     /// \brief The type of the map that stores the edge lengths.
   205     typedef typename _Traits::LengthMap LengthMap;
   206     /// \brief The type of the map that stores the last
   207     /// edges of the shortest paths. The type of the PredMap
   208     /// is a matrix map for Edges
   209     typedef typename _Traits::PredMap PredMap;
   210     /// \brief The type of the map that stores the dists of the nodes.
   211     /// The type of the DistMap is a matrix map for Values
   212     typedef typename _Traits::DistMap DistMap;
   213     /// \brief The operation traits.
   214     typedef typename _Traits::OperationTraits OperationTraits;
   215   private:
   216     /// Pointer to the underlying graph.
   217     const Graph *graph;
   218     /// Pointer to the length map
   219     const LengthMap *length;
   220     ///Pointer to the map of predecessors edges.
   221     PredMap *_pred;
   222     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   223     bool local_pred;
   224     ///Pointer to the map of distances.
   225     DistMap *_dist;
   226     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   227     bool local_dist;
   228 
   229     /// Creates the maps if necessary.
   230     void create_maps() {
   231       if(!_pred) {
   232 	local_pred = true;
   233 	_pred = Traits::createPredMap(*graph);
   234       }
   235       if(!_dist) {
   236 	local_dist = true;
   237 	_dist = Traits::createDistMap(*graph);
   238       }
   239     }
   240     
   241   public :
   242  
   243     /// \name Named template parameters
   244 
   245     ///@{
   246 
   247     template <class T>
   248     struct DefPredMapTraits : public Traits {
   249       typedef T PredMap;
   250       static PredMap *createPredMap(const Graph& graph) {
   251 	throw UninitializedParameter();
   252       }
   253     };
   254 
   255     /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   256     /// type
   257     /// \ref named-templ-param "Named parameter" for setting PredMap type
   258     ///
   259     template <class T>
   260     class DefPredMap 
   261       : public Johnson< Graph, LengthMap, DefPredMapTraits<T> > {};
   262     
   263     template <class T>
   264     struct DefDistMapTraits : public Traits {
   265       typedef T DistMap;
   266       static DistMap *createDistMap(const Graph& graph) {
   267 	throw UninitializedParameter();
   268       }
   269     };
   270     /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   271     /// type
   272     ///
   273     /// \ref named-templ-param "Named parameter" for setting DistMap type
   274     ///
   275     template <class T>
   276     class DefDistMap 
   277       : public Johnson< Graph, LengthMap, DefDistMapTraits<T> > {};
   278     
   279     template <class T>
   280     struct DefOperationTraitsTraits : public Traits {
   281       typedef T OperationTraits;
   282     };
   283     
   284     /// \brief \ref named-templ-param "Named parameter" for setting 
   285     /// OperationTraits type
   286     ///
   287     /// \ref named-templ-param "Named parameter" for setting PredMap type
   288     template <class T>
   289     class DefOperationTraits
   290       : public Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > {};
   291     
   292     ///@}
   293 
   294   public:      
   295     
   296     /// \brief Constructor.
   297     ///
   298     /// \param _graph the graph the algorithm will run on.
   299     /// \param _length the length map used by the algorithm.
   300     Johnson(const Graph& _graph, const LengthMap& _length) :
   301       graph(&_graph), length(&_length),
   302       _pred(0), local_pred(false),
   303       _dist(0), local_dist(false) {}
   304     
   305     ///Destructor.
   306     ~Johnson() {
   307       if(local_pred) delete _pred;
   308       if(local_dist) delete _dist;
   309     }
   310 
   311     /// \brief Sets the length map.
   312     ///
   313     /// Sets the length map.
   314     /// \return \c (*this)
   315     Johnson &lengthMap(const LengthMap &m) {
   316       length = &m;
   317       return *this;
   318     }
   319 
   320     /// \brief Sets the map storing the predecessor edges.
   321     ///
   322     /// Sets the map storing the predecessor edges.
   323     /// If you don't use this function before calling \ref run(),
   324     /// it will allocate one. The destuctor deallocates this
   325     /// automatically allocated map, of course.
   326     /// \return \c (*this)
   327     Johnson &predMap(PredMap &m) {
   328       if(local_pred) {
   329 	delete _pred;
   330 	local_pred=false;
   331       }
   332       _pred = &m;
   333       return *this;
   334     }
   335 
   336     /// \brief Sets the map storing the distances calculated by the algorithm.
   337     ///
   338     /// Sets the map storing the distances calculated by the algorithm.
   339     /// If you don't use this function before calling \ref run(),
   340     /// it will allocate one. The destuctor deallocates this
   341     /// automatically allocated map, of course.
   342     /// \return \c (*this)
   343     Johnson &distMap(DistMap &m) {
   344       if(local_dist) {
   345 	delete _dist;
   346 	local_dist=false;
   347       }
   348       _dist = &m;
   349       return *this;
   350     }
   351 
   352     ///\name Execution control
   353     /// The simplest way to execute the algorithm is to use
   354     /// one of the member functions called \c run(...).
   355     /// \n
   356     /// If you need more control on the execution,
   357     /// Finally \ref start() will perform the actual path
   358     /// computation.
   359 
   360     ///@{
   361 
   362     /// \brief Initializes the internal data structures.
   363     /// 
   364     /// Initializes the internal data structures.
   365     void init() {
   366       create_maps();
   367     }
   368     
   369     /// \brief Executes the algorithm.
   370     ///
   371     /// This method runs the %Johnson algorithm in order to compute 
   372     /// the shortest path to each node pairs. The algorithm 
   373     /// computes 
   374     /// - The shortest path tree for each node.
   375     /// - The distance between each node pairs.
   376     void start() {
   377       typename BelmannFord<Graph, LengthMap>::
   378       template DefOperationTraits<OperationTraits>::
   379       BelmannFord belmannford(*graph, *length);
   380       
   381       belmannford.init();
   382 
   383       typename Graph::template NodeMap<bool> initial(*graph, false);
   384 
   385       {
   386 	Dfs<Graph> dfs(*graph);
   387 
   388 	dfs.init();
   389 	for (NodeIt it(*graph); it != INVALID; ++it) {
   390 	  if (!dfs.reached(it)) {
   391 	    dfs.addSource(it);
   392 	    while (!dfs.emptyQueue()) {
   393 	      Edge edge = dfs.processNextEdge();
   394 	      initial.set(graph->target(edge), false);
   395 	    }
   396 	    initial.set(it, true);
   397 	  }
   398 	}
   399 	for (NodeIt it(*graph); it != INVALID; ++it) {
   400 	  if (initial[it]) {
   401 	    belmannford.addSource(it);
   402 	  }
   403 	}
   404       }
   405 
   406       belmannford.start();
   407 
   408       for (NodeIt it(*graph); it != INVALID; ++it) {
   409 	typedef PotentialDifferenceMap<Graph, 
   410 	  typename BelmannFord<Graph, LengthMap>::DistMap> PotDiffMap;
   411 	PotDiffMap potdiff(*graph, belmannford.distMap());
   412 	typedef SubMap<LengthMap, PotDiffMap> ShiftLengthMap;
   413 	ShiftLengthMap shiftlen(*length, potdiff);
   414 	Dijkstra<Graph, ShiftLengthMap> dijkstra(*graph, shiftlen); 
   415 	dijkstra.run(it);
   416 	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   417 	  if (dijkstra.reached(jt)) {
   418 	    _dist->set(it, jt, dijkstra.dist(jt) + 
   419 		       belmannford.dist(jt) - belmannford.dist(it));
   420 	    _pred->set(it, jt, dijkstra.pred(jt));
   421 	  } else {
   422 	    _dist->set(it, jt, OperationTraits::infinity());
   423 	    _pred->set(it, jt, INVALID);
   424 	  }
   425 	}
   426       }
   427     }
   428     
   429     /// \brief Runs %Johnson algorithm.
   430     ///    
   431     /// This method runs the %Johnson algorithm from a each node
   432     /// in order to compute the shortest path to each node pairs. 
   433     /// The algorithm computes
   434     /// - The shortest path tree for each node.
   435     /// - The distance between each node pairs.
   436     ///
   437     /// \note d.run(s) is just a shortcut of the following code.
   438     /// \code
   439     ///  d.init();
   440     ///  d.start();
   441     /// \endcode
   442     void run() {
   443       init();
   444       start();
   445     }
   446     
   447     ///@}
   448 
   449     /// \name Query Functions
   450     /// The result of the %Johnson algorithm can be obtained using these
   451     /// functions.\n
   452     /// Before the use of these functions,
   453     /// either run() or start() must be called.
   454     
   455     ///@{
   456 
   457     /// \brief Copies the shortest path to \c t into \c p
   458     ///    
   459     /// This function copies the shortest path to \c t into \c p.
   460     /// If it \c t is a source itself or unreachable, then it does not
   461     /// alter \c p.
   462     /// \todo Is it the right way to handle unreachable nodes?
   463     /// \return Returns \c true if a path to \c t was actually copied to \c p,
   464     /// \c false otherwise.
   465     /// \sa DirPath
   466     template <typename Path>
   467     bool getPath(Path &p, Node source, Node target) {
   468       if (connected(source, target)) {
   469 	p.clear();
   470 	typename Path::Builder b(target);
   471 	for(b.setStartNode(target); pred(source, target) != INVALID;
   472 	    target = predNode(target)) {
   473 	  b.pushFront(pred(source, target));
   474 	}
   475 	b.commit();
   476 	return true;
   477       }
   478       return false;
   479     }
   480 	  
   481     /// \brief The distance between two nodes.
   482     ///
   483     /// Returns the distance between two nodes.
   484     /// \pre \ref run() must be called before using this function.
   485     /// \warning If node \c v in unreachable from the root the return value
   486     /// of this funcion is undefined.
   487     Value dist(Node source, Node target) const { 
   488       return (*_dist)(source, target); 
   489     }
   490 
   491     /// \brief Returns the 'previous edge' of the shortest path tree.
   492     ///
   493     /// For the node \c node it returns the 'previous edge' of the shortest 
   494     /// path tree to direction of the node \c root 
   495     /// i.e. it returns the last edge of a shortest path from the node \c root 
   496     /// to \c node. It is \ref INVALID if \c node is unreachable from the root
   497     /// or if \c node=root. The shortest path tree used here is equal to the 
   498     /// shortest path tree used in \ref predNode(). 
   499     /// \pre \ref run() must be called before using this function.
   500     /// \todo predEdge could be a better name.
   501     Edge pred(Node root, Node node) const { 
   502       return (*_pred)(root, node); 
   503     }
   504 
   505     /// \brief Returns the 'previous node' of the shortest path tree.
   506     ///
   507     /// For a node \c node it returns the 'previous node' of the shortest path 
   508     /// tree to direction of the node \c root, i.e. it returns the last but 
   509     /// one node from a shortest path from the \c root to \c node. It is 
   510     /// INVALID if \c node is unreachable from the root or if \c node=root. 
   511     /// The shortest path tree used here is equal to the 
   512     /// shortest path tree used in \ref pred().  
   513     /// \pre \ref run() must be called before using this function.
   514     Node predNode(Node root, Node node) const { 
   515       return (*_pred)(root, node) == INVALID ? 
   516       INVALID : graph->source((*_pred)(root, node)); 
   517     }
   518     
   519     /// \brief Returns a reference to the matrix node map of distances.
   520     ///
   521     /// Returns a reference to the matrix node map of distances. 
   522     ///
   523     /// \pre \ref run() must be called before using this function.
   524     const DistMap &distMap() const { return *_dist;}
   525  
   526     /// \brief Returns a reference to the shortest path tree map.
   527     ///
   528     /// Returns a reference to the matrix node map of the edges of the
   529     /// shortest path tree.
   530     /// \pre \ref run() must be called before using this function.
   531     const PredMap &predMap() const { return *_pred;}
   532  
   533     /// \brief Checks if a node is reachable from the root.
   534     ///
   535     /// Returns \c true if \c v is reachable from the root.
   536     /// \pre \ref run() must be called before using this function.
   537     ///
   538     bool connected(Node source, Node target) { 
   539       return (*_dist)(source, target) != OperationTraits::infinity(); 
   540     }
   541     
   542     ///@}
   543   };
   544  
   545 } //END OF NAMESPACE LEMON
   546 
   547 #endif