This was forgotten to add from the previous commit.
6 #include <hugo/unionfind.h>
9 @defgroup spantree Minimum Cost Spanning Tree Algorithms
11 \brief This group containes the algorithms for finding a minimum cost spanning
14 This group containes the algorithms for finding a minimum cost spanning
20 ///\brief Kruskal's algorithm to compute a minimum cost tree
22 ///Kruskal's algorithm to compute a minimum cost tree.
26 /// \addtogroup spantree
29 /// Kruskal's algorithm to find a minimum cost tree of a graph.
31 /// This function runs Kruskal's algorithm to find a minimum cost tree.
32 /// \param G The graph the algorithm runs on. The algorithm considers the
33 /// graph to be undirected, the direction of the edges are not used.
35 /// \param in This object is used to describe the edge costs. It must
36 /// be an STL compatible 'Forward Container'
37 /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
38 /// where X is the type of the costs. It must contain every edge in
39 /// cost-ascending order.
41 /// For the sake of simplicity, there is a helper class KruskalMapInput,
43 /// simple edge map to an input of this form. Alternatively, you can use
44 /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
45 /// the edge costs are given by an edge map.
47 /// \retval out This must be a writable \c bool edge map.
48 /// After running the algorithm
49 /// this will contain the found minimum cost spanning tree: the value of an
50 /// edge will be set to \c true if it belongs to the tree, otherwise it will
51 /// be set to \c false. The value of each edge will be set exactly once.
53 /// \return The cost of the found tree.
55 template <class GR, class IN, class OUT>
56 typename IN::value_type::second_type
57 kruskal(GR const& G, IN const& in,
60 typedef typename IN::value_type::second_type EdgeCost;
61 typedef typename GR::template NodeMap<int> NodeIntMap;
62 typedef typename GR::Node Node;
64 NodeIntMap comp(G, -1);
65 UnionFind<Node,NodeIntMap> uf(comp);
67 EdgeCost tot_cost = 0;
68 for (typename IN::const_iterator p = in.begin();
70 if ( uf.join(G.head((*p).first),
71 G.tail((*p).first)) ) {
72 out.set((*p).first, true);
73 tot_cost += (*p).second;
76 out.set((*p).first, false);
82 /* A work-around for running Kruskal with const-reference bool maps... */
84 ///\bug What is this? Or why doesn't it work?
90 typedef typename Map::ValueType ValueType;
92 NonConstMapWr(const Map &_m) : m(_m) {}
94 template<class KeyType>
95 void set(KeyType const& k, ValueType const &v) const { m.set(k,v); }
98 template <class GR, class IN, class OUT>
100 typename IN::ValueType
101 kruskal(GR const& G, IN const& edges,
104 NonConstMapWr<OUT> map_wr(out_map);
105 return kruskal(G, edges, map_wr);
108 /* ** ** Input-objects ** ** */
110 /// Kruskal input source.
112 /// Kruskal input source.
114 /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
116 /// \sa makeKruskalMapInput()
118 ///\param GR The type of the graph the algorithm runs on.
119 ///\param Map An edge map containing the cost of the edges.
121 ///The cost type can be any type satisfying
122 ///the STL 'LessThan comparable'
123 ///concept if it also has an operator+() implemented. (It is necessary for
124 ///computing the total cost of the tree).
126 template<class GR, class Map>
127 class KruskalMapInput
128 : public std::vector< std::pair<typename GR::Edge,
129 typename Map::ValueType> > {
132 typedef std::vector< std::pair<typename GR::Edge,
133 typename Map::ValueType> > Parent;
134 typedef typename Parent::value_type value_type;
139 bool operator()(const value_type& a,
140 const value_type& b) {
141 return a.second < b.second;
148 std::sort(this->begin(), this->end(), comparePair());
151 KruskalMapInput(GR const& G, Map const& m) {
152 typedef typename GR::EdgeIt EdgeIt;
155 for(EdgeIt e(G);e!=INVALID;++e) push_back(make_pair(e, m[e]));
160 /// Creates a KruskalMapInput object for \ref kruskal()
162 /// It makes is easier to use
163 /// \ref KruskalMapInput by making it unnecessary
164 /// to explicitly give the type of the parameters.
166 /// In most cases you possibly
167 /// want to use the function kruskalEdgeMap() instead.
169 ///\param G The type of the graph the algorithm runs on.
170 ///\param m An edge map containing the cost of the edges.
172 ///The cost type can be any type satisfying the
173 ///STL 'LessThan Comparable'
174 ///concept if it also has an operator+() implemented. (It is necessary for
175 ///computing the total cost of the tree).
177 ///\return An appropriate input source for \ref kruskal().
179 template<class GR, class Map>
181 KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &G,const Map &m)
183 return KruskalMapInput<GR,Map>(G,m);
187 /* ** ** Output-objects: simple writable bool maps** ** */
189 /// A writable bool-map that makes a sequence of "true" keys
191 /// A writable bool-map that creates a sequence out of keys that receives
192 /// the value "true".
193 /// \warning Not a regular property map, as it doesn't know its KeyType
194 /// \bug Missing documentation.
195 /// \todo This class may be of wider usage, therefore it could move to
197 template<class Iterator>
198 class SequenceOutput {
202 typedef bool ValueType;
204 SequenceOutput(Iterator const &_it) : it(_it) {}
206 template<typename KeyType>
207 void set(KeyType const& k, bool v) const { if(v) {*it=k; ++it;} }
210 template<class Iterator>
212 SequenceOutput<Iterator>
213 makeSequenceOutput(Iterator it) {
214 return SequenceOutput<Iterator>(it);
217 /* ** ** Wrapper funtions ** ** */
220 /// \brief Wrapper function to kruskal().
221 /// Input is from an edge map, output is a plain bool map.
223 /// Wrapper function to kruskal().
224 /// Input is from an edge map, output is a plain bool map.
226 ///\param G The type of the graph the algorithm runs on.
227 ///\param in An edge map containing the cost of the edges.
229 ///The cost type can be any type satisfying the
230 ///STL 'LessThan Comparable'
231 ///concept if it also has an operator+() implemented. (It is necessary for
232 ///computing the total cost of the tree).
234 /// \retval out This must be a writable \c bool edge map.
235 /// After running the algorithm
236 /// this will contain the found minimum cost spanning tree: the value of an
237 /// edge will be set to \c true if it belongs to the tree, otherwise it will
238 /// be set to \c false. The value of each edge will be set exactly once.
240 /// \return The cost of the found tree.
243 template <class GR, class IN, class RET>
245 typename IN::ValueType
246 kruskalEdgeMap(GR const& G,
250 KruskalMapInput<GR,IN>(G,in),
254 /// \brief Wrapper function to kruskal().
255 /// Input is from an edge map, output is an STL Sequence.
257 /// Wrapper function to kruskal().
258 /// Input is from an edge map, output is an STL Sequence.
260 ///\param G The type of the graph the algorithm runs on.
261 ///\param in An edge map containing the cost of the edges.
263 ///The cost type can be any type satisfying the
264 ///STL 'LessThan Comparable'
265 ///concept if it also has an operator+() implemented. (It is necessary for
266 ///computing the total cost of the tree).
268 /// \retval out This must be an iteraror of an STL Container with
269 /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
270 /// The algorithm copies the elements of the found tree into this sequence.
271 /// For example, if we know that the spanning tree of the graph \c G has
272 /// say 53 edges then
273 /// we can put its edges into a STL vector \c tree with a code like this.
275 /// std::vector<Edge> tree(53);
276 /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin());
278 /// Or if we don't know in advance the size of the tree, we can write this.
280 /// std::vector<Edge> tree;
281 /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree));
284 /// \return The cost of the found tree.
286 /// \bug its name does not follow the coding style.
287 template <class GR, class IN, class RET>
289 typename IN::ValueType
290 kruskalEdgeMap_IteratorOut(const GR& G,
294 SequenceOutput<RET> _out(out);
296 KruskalMapInput<GR,IN>(G, in),
304 #endif //HUGO_KRUSKAL_H