src/hugo/minlengthpaths.h
author alpar
Sun, 19 Sep 2004 12:26:42 +0000
changeset 882 46974f296c4a
parent 853 4cb8f31c1ff8
permissions -rw-r--r--
This was forgotten to add from the previous commit.
     1 // -*- c++ -*-
     2 #ifndef HUGO_MINLENGTHPATHS_H
     3 #define HUGO_MINLENGTHPATHS_H
     4 
     5 ///\ingroup flowalgs
     6 ///\file
     7 ///\brief An algorithm for finding k paths of minimal total length.
     8 
     9 
    10 #include <hugo/maps.h>
    11 #include <vector>
    12 #include <hugo/mincostflows.h>
    13 
    14 namespace hugo {
    15 
    16 /// \addtogroup flowalgs
    17 /// @{
    18 
    19   ///\brief Implementation of an algorithm for finding k edge-disjoint paths between 2 nodes 
    20   /// of minimal total length 
    21   ///
    22   /// The class \ref hugo::MinLengthPaths implements
    23   /// an algorithm for finding k edge-disjoint paths
    24   /// from a given source node to a given target node in an
    25   /// edge-weighted directed graph having minimal total weight (length).
    26   ///
    27   ///\warning Length values should be nonnegative.
    28   /// 
    29   ///\param Graph The directed graph type the algorithm runs on.
    30   ///\param LengthMap The type of the length map (values should be nonnegative).
    31   ///
    32   ///\author Attila Bernath
    33   template <typename Graph, typename LengthMap>
    34   class MinLengthPaths{
    35 
    36 
    37     typedef typename LengthMap::ValueType Length;
    38     
    39     typedef typename Graph::Node Node;
    40     typedef typename Graph::NodeIt NodeIt;
    41     typedef typename Graph::Edge Edge;
    42     typedef typename Graph::OutEdgeIt OutEdgeIt;
    43     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    44 
    45     typedef ConstMap<Edge,int> ConstMap;
    46 
    47     //Input
    48     const Graph& G;
    49 
    50     //Auxiliary variables
    51     //This is the capacity map for the mincostflow problem
    52     ConstMap const1map;
    53     //This MinCostFlows instance will actually solve the problem
    54     MinCostFlows<Graph, LengthMap, ConstMap> mincost_flow;
    55 
    56     //Container to store found paths
    57     std::vector< std::vector<Edge> > paths;
    58 
    59   public :
    60 
    61 
    62     /// The constructor of the class.
    63     
    64     ///\param _G The directed graph the algorithm runs on. 
    65     ///\param _length The length (weight or cost) of the edges. 
    66     MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G),
    67       const1map(1), mincost_flow(_G, _length, const1map){}
    68 
    69     ///Runs the algorithm.
    70 
    71     ///Runs the algorithm.
    72     ///Returns k if there are at least k edge-disjoint paths from s to t.
    73     ///Otherwise it returns the number of found edge-disjoint paths from s to t.
    74     ///
    75     ///\param s The source node.
    76     ///\param t The target node.
    77     ///\param k How many paths are we looking for?
    78     ///
    79     int run(Node s, Node t, int k) {
    80 
    81       int i = mincost_flow.run(s,t,k);
    82     
    83 
    84       //Let's find the paths
    85       //We put the paths into stl vectors (as an inner representation). 
    86       //In the meantime we lose the information stored in 'reversed'.
    87       //We suppose the lengths to be positive now.
    88 
    89       //We don't want to change the flow of mincost_flow, so we make a copy
    90       //The name here suggests that the flow has only 0/1 values.
    91       EdgeIntMap reversed(G); 
    92 
    93       for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) 
    94 	reversed[e] = mincost_flow.getFlow()[e];
    95       
    96       paths.clear();
    97       //total_length=0;
    98       paths.resize(k);
    99       for (int j=0; j<i; ++j){
   100 	Node n=s;
   101 	OutEdgeIt e;
   102 
   103 	while (n!=t){
   104 
   105 
   106 	  G.first(e,n);
   107 	  
   108 	  while (!reversed[e]){
   109 	    ++e;
   110 	  }
   111 	  n = G.head(e);
   112 	  paths[j].push_back(e);
   113 	  //total_length += length[e];
   114 	  reversed[e] = 1-reversed[e];
   115 	}
   116 	
   117       }
   118       return i;
   119     }
   120 
   121     
   122     ///Returns the total length of the paths
   123     
   124     ///This function gives back the total length of the found paths.
   125     ///\pre \ref run() must
   126     ///be called before using this function.
   127     Length totalLength(){
   128       return mincost_flow.totalLength();
   129     }
   130 
   131     ///Returns the found flow.
   132 
   133     ///This function returns a const reference to the EdgeMap \c flow.
   134     ///\pre \ref run() must
   135     ///be called before using this function.
   136     const EdgeIntMap &getFlow() const { return mincost_flow.flow;}
   137 
   138     /// Returns the optimal dual solution
   139     
   140     ///This function returns a const reference to the NodeMap
   141     ///\c potential (the dual solution).
   142     /// \pre \ref run() must be called before using this function.
   143     const EdgeIntMap &getPotential() const { return mincost_flow.potential;}
   144 
   145     ///Checks whether the complementary slackness holds.
   146 
   147     ///This function checks, whether the given solution is optimal.
   148     ///It should return true after calling \ref run() 
   149     ///Currently this function only checks optimality,
   150     ///doesn't bother with feasibility
   151     ///It is meant for testing purposes.
   152     ///
   153     bool checkComplementarySlackness(){
   154       return mincost_flow.checkComplementarySlackness();
   155     }
   156 
   157     ///Read the found paths.
   158     
   159     ///This function gives back the \c j-th path in argument p.
   160     ///Assumes that \c run() has been run and nothing changed since then.
   161     /// \warning It is assumed that \c p is constructed to
   162     ///be a path of graph \c G.
   163     ///If \c j is not less than the result of previous \c run,
   164     ///then the result here will be an empty path (\c j can be 0 as well).
   165     ///
   166     ///\param Path The type of the path structure to put the result to (must meet hugo path concept).
   167     ///\param p The path to put the result to 
   168     ///\param j Which path you want to get from the found paths (in a real application you would get the found paths iteratively)
   169     template<typename Path>
   170     void getPath(Path& p, size_t j){
   171 
   172       p.clear();
   173       if (j>paths.size()-1){
   174 	return;
   175       }
   176       typename Path::Builder B(p);
   177       for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
   178 	  i!=paths[j].end(); ++i ){
   179 	B.pushBack(*i);
   180       }
   181 
   182       B.commit();
   183     }
   184 
   185   }; //class MinLengthPaths
   186 
   187   ///@}
   188 
   189 } //namespace hugo
   190 
   191 #endif //HUGO_MINLENGTHPATHS_H