3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_LIST_GRAPH_H
20 #define LEMON_LIST_GRAPH_H
24 ///\brief ListGraph, ListUGraph classes.
26 #include <lemon/bits/base_extender.h>
27 #include <lemon/bits/graph_extender.h>
29 #include <lemon/error.h>
40 int first_in, first_out;
46 int prev_in, prev_out;
47 int next_in, next_out;
50 std::vector<NodeT> nodes;
56 std::vector<EdgeT> edges;
62 typedef ListGraphBase Graph;
65 friend class ListGraphBase;
69 explicit Node(int pid) { id = pid;}
73 Node (Invalid) { id = -1; }
74 bool operator==(const Node& node) const {return id == node.id;}
75 bool operator!=(const Node& node) const {return id != node.id;}
76 bool operator<(const Node& node) const {return id < node.id;}
80 friend class ListGraphBase;
84 explicit Edge(int pid) { id = pid;}
88 Edge (Invalid) { id = -1; }
89 bool operator==(const Edge& edge) const {return id == edge.id;}
90 bool operator!=(const Edge& edge) const {return id != edge.id;}
91 bool operator<(const Edge& edge) const {return id < edge.id;}
97 : nodes(), first_node(-1),
98 first_free_node(-1), edges(), first_free_edge(-1) {}
101 int maxNodeId() const { return nodes.size()-1; }
102 int maxEdgeId() const { return edges.size()-1; }
104 Node source(Edge e) const { return Node(edges[e.id].source); }
105 Node target(Edge e) const { return Node(edges[e.id].target); }
108 void first(Node& node) const {
109 node.id = first_node;
112 void next(Node& node) const {
113 node.id = nodes[node.id].next;
117 void first(Edge& e) const {
120 n!=-1 && nodes[n].first_in == -1;
122 e.id = (n == -1) ? -1 : nodes[n].first_in;
125 void next(Edge& edge) const {
126 if (edges[edge.id].next_in != -1) {
127 edge.id = edges[edge.id].next_in;
130 for(n = nodes[edges[edge.id].target].next;
131 n!=-1 && nodes[n].first_in == -1;
133 edge.id = (n == -1) ? -1 : nodes[n].first_in;
137 void firstOut(Edge &e, const Node& v) const {
138 e.id = nodes[v.id].first_out;
140 void nextOut(Edge &e) const {
141 e.id=edges[e.id].next_out;
144 void firstIn(Edge &e, const Node& v) const {
145 e.id = nodes[v.id].first_in;
147 void nextIn(Edge &e) const {
148 e.id=edges[e.id].next_in;
152 static int id(Node v) { return v.id; }
153 static int id(Edge e) { return e.id; }
155 static Node nodeFromId(int id) { return Node(id);}
156 static Edge edgeFromId(int id) { return Edge(id);}
161 if(first_free_node==-1) {
163 nodes.push_back(NodeT());
166 first_free_node = nodes[n].next;
169 nodes[n].next = first_node;
170 if(first_node != -1) nodes[first_node].prev = n;
174 nodes[n].first_in = nodes[n].first_out = -1;
179 Edge addEdge(Node u, Node v) {
182 if (first_free_edge == -1) {
184 edges.push_back(EdgeT());
187 first_free_edge = edges[n].next_in;
190 edges[n].source = u.id;
191 edges[n].target = v.id;
193 edges[n].next_out = nodes[u.id].first_out;
194 if(nodes[u.id].first_out != -1) {
195 edges[nodes[u.id].first_out].prev_out = n;
198 edges[n].next_in = nodes[v.id].first_in;
199 if(nodes[v.id].first_in != -1) {
200 edges[nodes[v.id].first_in].prev_in = n;
203 edges[n].prev_in = edges[n].prev_out = -1;
205 nodes[u.id].first_out = nodes[v.id].first_in = n;
210 void erase(const Node& node) {
213 if(nodes[n].next != -1) {
214 nodes[nodes[n].next].prev = nodes[n].prev;
217 if(nodes[n].prev != -1) {
218 nodes[nodes[n].prev].next = nodes[n].next;
220 first_node = nodes[n].next;
223 nodes[n].next = first_free_node;
228 void erase(const Edge& edge) {
231 if(edges[n].next_in!=-1) {
232 edges[edges[n].next_in].prev_in = edges[n].prev_in;
235 if(edges[n].prev_in!=-1) {
236 edges[edges[n].prev_in].next_in = edges[n].next_in;
238 nodes[edges[n].target].first_in = edges[n].next_in;
242 if(edges[n].next_out!=-1) {
243 edges[edges[n].next_out].prev_out = edges[n].prev_out;
246 if(edges[n].prev_out!=-1) {
247 edges[edges[n].prev_out].next_out = edges[n].next_out;
249 nodes[edges[n].source].first_out = edges[n].next_out;
252 edges[n].next_in = first_free_edge;
260 first_node = first_free_node = first_free_edge = -1;
264 void changeTarget(Edge e, Node n)
266 if(edges[e.id].next_in != -1)
267 edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
268 if(edges[e.id].prev_in != -1)
269 edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
270 else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
271 if (nodes[n.id].first_in != -1) {
272 edges[nodes[n.id].first_in].prev_in = e.id;
274 edges[e.id].target = n.id;
275 edges[e.id].prev_in = -1;
276 edges[e.id].next_in = nodes[n.id].first_in;
277 nodes[n.id].first_in = e.id;
279 void changeSource(Edge e, Node n)
281 if(edges[e.id].next_out != -1)
282 edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
283 if(edges[e.id].prev_out != -1)
284 edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
285 else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
286 if (nodes[n.id].first_out != -1) {
287 edges[nodes[n.id].first_out].prev_out = e.id;
289 edges[e.id].source = n.id;
290 edges[e.id].prev_out = -1;
291 edges[e.id].next_out = nodes[n.id].first_out;
292 nodes[n.id].first_out = e.id;
297 typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
299 /// \addtogroup graphs
302 ///A list graph class.
304 ///This is a simple and fast graph implementation.
306 ///It conforms to the \ref concepts::Graph "Graph concept" and it
307 ///also provides several additional useful extra functionalities.
308 ///The most of the member functions and nested classes are
309 ///documented only in the concept class.
311 ///An important extra feature of this graph implementation is that
312 ///its maps are real \ref concepts::ReferenceMap "reference map"s.
314 ///\sa concepts::Graph.
316 class ListGraph : public ExtendedListGraphBase {
318 ///ListGraph is \e not copy constructible. Use GraphCopy() instead.
320 ///ListGraph is \e not copy constructible. Use GraphCopy() instead.
322 ListGraph(const ListGraph &) :ExtendedListGraphBase() {};
323 ///\brief Assignment of ListGraph to another one is \e not allowed.
324 ///Use GraphCopy() instead.
326 ///Assignment of ListGraph to another one is \e not allowed.
327 ///Use GraphCopy() instead.
328 void operator=(const ListGraph &) {}
331 typedef ExtendedListGraphBase Parent;
339 ///Add a new node to the graph.
341 /// \return the new node.
343 Node addNode() { return Parent::addNode(); }
345 ///Add a new edge to the graph.
347 ///Add a new edge to the graph with source node \c s
348 ///and target node \c t.
349 ///\return the new edge.
350 Edge addEdge(const Node& s, const Node& t) {
351 return Parent::addEdge(s, t);
354 /// Changes the target of \c e to \c n
356 /// Changes the target of \c e to \c n
358 ///\note The <tt>EdgeIt</tt>s and <tt>OutEdgeIt</tt>s referencing
359 ///the changed edge remain valid. However <tt>InEdgeIt</tt>s are
361 ///\warning This functionality cannot be used together with the Snapshot
363 void changeTarget(Edge e, Node n) {
364 Parent::changeTarget(e,n);
366 /// Changes the source of \c e to \c n
368 /// Changes the source of \c e to \c n
370 ///\note The <tt>EdgeIt</tt>s and <tt>InEdgeIt</tt>s referencing
371 ///the changed edge remain valid. However <tt>OutEdgeIt</tt>s are
373 ///\warning This functionality cannot be used together with the Snapshot
375 void changeSource(Edge e, Node n) {
376 Parent::changeSource(e,n);
379 /// Invert the direction of an edge.
381 ///\note The <tt>EdgeIt</tt>s referencing the changed edge remain
382 ///valid. However <tt>OutEdgeIt</tt>s and <tt>InEdgeIt</tt>s are
384 ///\warning This functionality cannot be used together with the Snapshot
386 void reverseEdge(Edge e) {
388 changeTarget(e,source(e));
392 /// \brief Using this it is possible to avoid the superfluous memory
395 ///Using this it is possible to avoid the superfluous memory
396 ///allocation: if you know that the graph you want to build will
397 ///contain at least 10 million nodes then it is worth reserving
398 ///space for this amount before starting to build the graph.
399 void reserveNode(int n) { nodes.reserve(n); };
401 /// \brief Using this it is possible to avoid the superfluous memory
404 ///Using this it is possible to avoid the superfluous memory
405 ///allocation: see the \ref reserveNode function.
406 void reserveEdge(int n) { edges.reserve(n); };
409 ///Contract two nodes.
411 ///This function contracts two nodes.
413 ///Node \p b will be removed but instead of deleting
414 ///incident edges, they will be joined to \p a.
415 ///The last parameter \p r controls whether to remove loops. \c true
416 ///means that loops will be removed.
418 ///\note The <tt>EdgeIt</tt>s
419 ///referencing a moved edge remain
420 ///valid. However <tt>InEdgeIt</tt>s and <tt>OutEdgeIt</tt>s
421 ///may be invalidated.
422 ///\warning This functionality cannot be used together with the Snapshot
424 void contract(Node a, Node b, bool r = true)
426 for(OutEdgeIt e(*this,b);e!=INVALID;) {
429 if(r && target(e)==a) erase(e);
430 else changeSource(e,a);
433 for(InEdgeIt e(*this,b);e!=INVALID;) {
436 if(r && source(e)==a) erase(e);
437 else changeTarget(e,a);
445 ///This function splits a node. First a new node is added to the graph,
446 ///then the source of each outgoing edge of \c n is moved to this new node.
447 ///If \c connect is \c true (this is the default value), then a new edge
448 ///from \c n to the newly created node is also added.
449 ///\return The newly created node.
451 ///\note The <tt>EdgeIt</tt>s referencing a moved edge remain
452 ///valid. However <tt>InEdgeIt</tt>s and <tt>OutEdgeIt</tt>s may
455 ///\warning This functionality cannot be used together with the
456 ///Snapshot feature. \todo It could be implemented in a bit
458 Node split(Node n, bool connect = true) {
460 for(OutEdgeIt e(*this,n);e!=INVALID;) {
466 if (connect) addEdge(n,b);
472 ///This function splits an edge. First a new node \c b is added to
473 ///the graph, then the original edge is re-targeted to \c
474 ///b. Finally an edge from \c b to the original target is added.
475 ///\return The newly created node.
476 ///\warning This functionality
477 ///cannot be used together with the Snapshot feature.
480 addEdge(b,target(e));
485 /// \brief Class to make a snapshot of the graph and restore
488 /// Class to make a snapshot of the graph and to restore it
491 /// The newly added nodes and edges can be removed using the
492 /// restore() function.
494 /// \warning Edge and node deletions cannot be restored. This
495 /// events invalidate the snapshot.
499 typedef Parent::NodeNotifier NodeNotifier;
501 class NodeObserverProxy : public NodeNotifier::ObserverBase {
504 NodeObserverProxy(Snapshot& _snapshot)
505 : snapshot(_snapshot) {}
507 using NodeNotifier::ObserverBase::attach;
508 using NodeNotifier::ObserverBase::detach;
509 using NodeNotifier::ObserverBase::attached;
513 virtual void add(const Node& node) {
514 snapshot.addNode(node);
516 virtual void add(const std::vector<Node>& nodes) {
517 for (int i = nodes.size() - 1; i >= 0; ++i) {
518 snapshot.addNode(nodes[i]);
521 virtual void erase(const Node& node) {
522 snapshot.eraseNode(node);
524 virtual void erase(const std::vector<Node>& nodes) {
525 for (int i = 0; i < (int)nodes.size(); ++i) {
526 snapshot.eraseNode(nodes[i]);
529 virtual void build() {
530 NodeNotifier* notifier = getNotifier();
532 std::vector<Node> nodes;
533 for (notifier->first(node); node != INVALID; notifier->next(node)) {
534 nodes.push_back(node);
536 for (int i = nodes.size() - 1; i >= 0; --i) {
537 snapshot.addNode(nodes[i]);
540 virtual void clear() {
541 NodeNotifier* notifier = getNotifier();
543 for (notifier->first(node); node != INVALID; notifier->next(node)) {
544 snapshot.eraseNode(node);
551 class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
554 EdgeObserverProxy(Snapshot& _snapshot)
555 : snapshot(_snapshot) {}
557 using EdgeNotifier::ObserverBase::attach;
558 using EdgeNotifier::ObserverBase::detach;
559 using EdgeNotifier::ObserverBase::attached;
563 virtual void add(const Edge& edge) {
564 snapshot.addEdge(edge);
566 virtual void add(const std::vector<Edge>& edges) {
567 for (int i = edges.size() - 1; i >= 0; ++i) {
568 snapshot.addEdge(edges[i]);
571 virtual void erase(const Edge& edge) {
572 snapshot.eraseEdge(edge);
574 virtual void erase(const std::vector<Edge>& edges) {
575 for (int i = 0; i < (int)edges.size(); ++i) {
576 snapshot.eraseEdge(edges[i]);
579 virtual void build() {
580 EdgeNotifier* notifier = getNotifier();
582 std::vector<Edge> edges;
583 for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
584 edges.push_back(edge);
586 for (int i = edges.size() - 1; i >= 0; --i) {
587 snapshot.addEdge(edges[i]);
590 virtual void clear() {
591 EdgeNotifier* notifier = getNotifier();
593 for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
594 snapshot.eraseEdge(edge);
603 NodeObserverProxy node_observer_proxy;
604 EdgeObserverProxy edge_observer_proxy;
606 std::list<Node> added_nodes;
607 std::list<Edge> added_edges;
610 void addNode(const Node& node) {
611 added_nodes.push_front(node);
613 void eraseNode(const Node& node) {
614 std::list<Node>::iterator it =
615 std::find(added_nodes.begin(), added_nodes.end(), node);
616 if (it == added_nodes.end()) {
618 edge_observer_proxy.detach();
619 throw NodeNotifier::ImmediateDetach();
621 added_nodes.erase(it);
625 void addEdge(const Edge& edge) {
626 added_edges.push_front(edge);
628 void eraseEdge(const Edge& edge) {
629 std::list<Edge>::iterator it =
630 std::find(added_edges.begin(), added_edges.end(), edge);
631 if (it == added_edges.end()) {
633 node_observer_proxy.detach();
634 throw EdgeNotifier::ImmediateDetach();
636 added_edges.erase(it);
640 void attach(ListGraph &_graph) {
642 node_observer_proxy.attach(graph->getNotifier(Node()));
643 edge_observer_proxy.attach(graph->getNotifier(Edge()));
647 node_observer_proxy.detach();
648 edge_observer_proxy.detach();
651 bool attached() const {
652 return node_observer_proxy.attached();
662 /// \brief Default constructor.
664 /// Default constructor.
665 /// To actually make a snapshot you must call save().
667 : graph(0), node_observer_proxy(*this),
668 edge_observer_proxy(*this) {}
670 /// \brief Constructor that immediately makes a snapshot.
672 /// This constructor immediately makes a snapshot of the graph.
673 /// \param _graph The graph we make a snapshot of.
674 Snapshot(ListGraph &_graph)
675 : node_observer_proxy(*this),
676 edge_observer_proxy(*this) {
680 /// \brief Make a snapshot.
682 /// Make a snapshot of the graph.
684 /// This function can be called more than once. In case of a repeated
685 /// call, the previous snapshot gets lost.
686 /// \param _graph The graph we make the snapshot of.
687 void save(ListGraph &_graph) {
695 /// \brief Undo the changes until the last snapshot.
697 /// Undo the changes until the last snapshot created by save().
700 for(std::list<Edge>::iterator it = added_edges.begin();
701 it != added_edges.end(); ++it) {
704 for(std::list<Node>::iterator it = added_nodes.begin();
705 it != added_nodes.end(); ++it) {
711 /// \brief Gives back true when the snapshot is valid.
713 /// Gives back true when the snapshot is valid.
723 class ListUGraphBase {
734 int prev_out, next_out;
737 std::vector<NodeT> nodes;
743 std::vector<EdgeT> edges;
749 typedef ListUGraphBase Graph;
752 friend class ListUGraphBase;
756 explicit Node(int pid) { id = pid;}
760 Node (Invalid) { id = -1; }
761 bool operator==(const Node& node) const {return id == node.id;}
762 bool operator!=(const Node& node) const {return id != node.id;}
763 bool operator<(const Node& node) const {return id < node.id;}
767 friend class ListUGraphBase;
771 explicit UEdge(int pid) { id = pid;}
775 UEdge (Invalid) { id = -1; }
776 bool operator==(const UEdge& edge) const {return id == edge.id;}
777 bool operator!=(const UEdge& edge) const {return id != edge.id;}
778 bool operator<(const UEdge& edge) const {return id < edge.id;}
782 friend class ListUGraphBase;
786 explicit Edge(int pid) { id = pid;}
789 operator UEdge() const { return UEdge(id / 2); }
792 Edge (Invalid) { id = -1; }
793 bool operator==(const Edge& edge) const {return id == edge.id;}
794 bool operator!=(const Edge& edge) const {return id != edge.id;}
795 bool operator<(const Edge& edge) const {return id < edge.id;}
801 : nodes(), first_node(-1),
802 first_free_node(-1), edges(), first_free_edge(-1) {}
805 int maxNodeId() const { return nodes.size()-1; }
806 int maxUEdgeId() const { return edges.size() / 2 - 1; }
807 int maxEdgeId() const { return edges.size()-1; }
809 Node source(Edge e) const { return Node(edges[e.id ^ 1].target); }
810 Node target(Edge e) const { return Node(edges[e.id].target); }
812 Node source(UEdge e) const { return Node(edges[2 * e.id].target); }
813 Node target(UEdge e) const { return Node(edges[2 * e.id + 1].target); }
815 static bool direction(Edge e) {
816 return (e.id & 1) == 1;
819 static Edge direct(UEdge e, bool d) {
820 return Edge(e.id * 2 + (d ? 1 : 0));
823 void first(Node& node) const {
824 node.id = first_node;
827 void next(Node& node) const {
828 node.id = nodes[node.id].next;
831 void first(Edge& e) const {
833 while (n != -1 && nodes[n].first_out == -1) {
836 e.id = (n == -1) ? -1 : nodes[n].first_out;
839 void next(Edge& e) const {
840 if (edges[e.id].next_out != -1) {
841 e.id = edges[e.id].next_out;
843 int n = nodes[edges[e.id ^ 1].target].next;
844 while(n != -1 && nodes[n].first_out == -1) {
847 e.id = (n == -1) ? -1 : nodes[n].first_out;
851 void first(UEdge& e) const {
854 e.id = nodes[n].first_out;
855 while ((e.id & 1) != 1) {
856 e.id = edges[e.id].next_out;
867 void next(UEdge& e) const {
868 int n = edges[e.id * 2].target;
869 e.id = edges[(e.id * 2) | 1].next_out;
870 while ((e.id & 1) != 1) {
871 e.id = edges[e.id].next_out;
879 e.id = nodes[n].first_out;
880 while ((e.id & 1) != 1) {
881 e.id = edges[e.id].next_out;
892 void firstOut(Edge &e, const Node& v) const {
893 e.id = nodes[v.id].first_out;
895 void nextOut(Edge &e) const {
896 e.id = edges[e.id].next_out;
899 void firstIn(Edge &e, const Node& v) const {
900 e.id = ((nodes[v.id].first_out) ^ 1);
901 if (e.id == -2) e.id = -1;
903 void nextIn(Edge &e) const {
904 e.id = ((edges[e.id ^ 1].next_out) ^ 1);
905 if (e.id == -2) e.id = -1;
908 void firstInc(UEdge &e, bool& d, const Node& v) const {
909 int de = nodes[v.id].first_out;
913 void nextInc(UEdge &e, bool& d) const {
914 int de = (edges[(e.id * 2) | (d ? 1 : 0)].next_out);
919 static int id(Node v) { return v.id; }
920 static int id(Edge e) { return e.id; }
921 static int id(UEdge e) { return e.id; }
923 static Node nodeFromId(int id) { return Node(id);}
924 static Edge edgeFromId(int id) { return Edge(id);}
925 static UEdge uEdgeFromId(int id) { return UEdge(id);}
930 if(first_free_node==-1) {
932 nodes.push_back(NodeT());
935 first_free_node = nodes[n].next;
938 nodes[n].next = first_node;
939 if (first_node != -1) nodes[first_node].prev = n;
943 nodes[n].first_out = -1;
948 UEdge addEdge(Node u, Node v) {
951 if (first_free_edge == -1) {
953 edges.push_back(EdgeT());
954 edges.push_back(EdgeT());
957 first_free_edge = edges[n].next_out;
960 edges[n].target = u.id;
961 edges[n | 1].target = v.id;
963 edges[n].next_out = nodes[v.id].first_out;
964 edges[n | 1].next_out = nodes[u.id].first_out;
965 if (nodes[v.id].first_out != -1) {
966 edges[nodes[v.id].first_out].prev_out = n;
968 if (nodes[u.id].first_out != -1) {
969 edges[nodes[u.id].first_out].prev_out = (n | 1);
972 edges[n].prev_out = edges[n | 1].prev_out = -1;
974 nodes[v.id].first_out = n;
975 nodes[u.id].first_out = (n | 1);
980 void erase(const Node& node) {
983 if(nodes[n].next != -1) {
984 nodes[nodes[n].next].prev = nodes[n].prev;
987 if(nodes[n].prev != -1) {
988 nodes[nodes[n].prev].next = nodes[n].next;
990 first_node = nodes[n].next;
993 nodes[n].next = first_free_node;
998 void erase(const UEdge& edge) {
1001 if (edges[n].next_out != -1) {
1002 edges[edges[n].next_out].prev_out = edges[n].prev_out;
1005 if (edges[n].prev_out != -1) {
1006 edges[edges[n].prev_out].next_out = edges[n].next_out;
1008 nodes[edges[n | 1].target].first_out = edges[n].next_out;
1011 if (edges[n | 1].next_out != -1) {
1012 edges[edges[n | 1].next_out].prev_out = edges[n | 1].prev_out;
1015 if (edges[n | 1].prev_out != -1) {
1016 edges[edges[n | 1].prev_out].next_out = edges[n | 1].next_out;
1018 nodes[edges[n].target].first_out = edges[n | 1].next_out;
1021 edges[n].next_out = first_free_edge;
1022 first_free_edge = n;
1029 first_node = first_free_node = first_free_edge = -1;
1034 void changeTarget(UEdge e, Node n) {
1035 if(edges[2 * e.id].next_out != -1) {
1036 edges[edges[2 * e.id].next_out].prev_out = edges[2 * e.id].prev_out;
1038 if(edges[2 * e.id].prev_out != -1) {
1039 edges[edges[2 * e.id].prev_out].next_out =
1040 edges[2 * e.id].next_out;
1042 nodes[edges[(2 * e.id) | 1].target].first_out =
1043 edges[2 * e.id].next_out;
1046 if (nodes[n.id].first_out != -1) {
1047 edges[nodes[n.id].first_out].prev_out = 2 * e.id;
1049 edges[(2 * e.id) | 1].target = n.id;
1050 edges[2 * e.id].prev_out = -1;
1051 edges[2 * e.id].next_out = nodes[n.id].first_out;
1052 nodes[n.id].first_out = 2 * e.id;
1055 void changeSource(UEdge e, Node n) {
1056 if(edges[(2 * e.id) | 1].next_out != -1) {
1057 edges[edges[(2 * e.id) | 1].next_out].prev_out =
1058 edges[(2 * e.id) | 1].prev_out;
1060 if(edges[(2 * e.id) | 1].prev_out != -1) {
1061 edges[edges[(2 * e.id) | 1].prev_out].next_out =
1062 edges[(2 * e.id) | 1].next_out;
1064 nodes[edges[2 * e.id].target].first_out =
1065 edges[(2 * e.id) | 1].next_out;
1068 if (nodes[n.id].first_out != -1) {
1069 edges[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
1071 edges[2 * e.id].target = n.id;
1072 edges[(2 * e.id) | 1].prev_out = -1;
1073 edges[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
1074 nodes[n.id].first_out = ((2 * e.id) | 1);
1079 // typedef UGraphExtender<UndirGraphExtender<ListGraphBase> >
1080 // ExtendedListUGraphBase;
1082 typedef UGraphExtender<ListUGraphBase> ExtendedListUGraphBase;
1086 /// \addtogroup graphs
1089 ///An undirected list graph class.
1091 ///This is a simple and fast undirected graph implementation.
1093 ///An important extra feature of this graph implementation is that
1094 ///its maps are real \ref concepts::ReferenceMap "reference map"s.
1096 ///It conforms to the
1097 ///\ref concepts::UGraph "UGraph concept".
1099 ///\sa concepts::UGraph.
1101 class ListUGraph : public ExtendedListUGraphBase {
1103 ///ListUGraph is \e not copy constructible. Use UGraphCopy() instead.
1105 ///ListUGraph is \e not copy constructible. Use UGraphCopy() instead.
1107 ListUGraph(const ListUGraph &) :ExtendedListUGraphBase() {};
1108 ///\brief Assignment of ListUGraph to another one is \e not allowed.
1109 ///Use UGraphCopy() instead.
1111 ///Assignment of ListUGraph to another one is \e not allowed.
1112 ///Use UGraphCopy() instead.
1113 void operator=(const ListUGraph &) {}
1121 typedef ExtendedListUGraphBase Parent;
1123 typedef Parent::OutEdgeIt IncEdgeIt;
1125 /// \brief Add a new node to the graph.
1127 /// \return the new node.
1129 Node addNode() { return Parent::addNode(); }
1131 /// \brief Add a new edge to the graph.
1133 /// Add a new edge to the graph with source node \c s
1134 /// and target node \c t.
1135 /// \return the new undirected edge.
1136 UEdge addEdge(const Node& s, const Node& t) {
1137 return Parent::addEdge(s, t);
1139 /// \brief Changes the source of \c e to \c n
1141 /// Changes the source of \c e to \c n
1143 ///\note The <tt>EdgeIt</tt>s and <tt>InEdgeIt</tt>s
1144 ///referencing the changed edge remain
1145 ///valid. However <tt>OutEdgeIt</tt>s are invalidated.
1146 void changeSource(UEdge e, Node n) {
1147 Parent::changeSource(e,n);
1149 /// \brief Changes the target of \c e to \c n
1151 /// Changes the target of \c e to \c n
1153 /// \note The <tt>EdgeIt</tt>s referencing the changed edge remain
1154 /// valid. However the other iterators may be invalidated.
1155 void changeTarget(UEdge e, Node n) {
1156 Parent::changeTarget(e,n);
1158 /// \brief Changes the source of \c e to \c n
1160 /// Changes the source of \c e to \c n. It changes the proper
1161 /// node of the represented undirected edge.
1163 ///\note The <tt>EdgeIt</tt>s and <tt>InEdgeIt</tt>s
1164 ///referencing the changed edge remain
1165 ///valid. However <tt>OutEdgeIt</tt>s are invalidated.
1166 void changeSource(Edge e, Node n) {
1167 if (Parent::direction(e)) {
1168 Parent::changeSource(e,n);
1170 Parent::changeTarget(e,n);
1173 /// \brief Changes the target of \c e to \c n
1175 /// Changes the target of \c e to \c n. It changes the proper
1176 /// node of the represented undirected edge.
1178 ///\note The <tt>EdgeIt</tt>s and <tt>OutEdgeIt</tt>s
1179 ///referencing the changed edge remain
1180 ///valid. However <tt>InEdgeIt</tt>s are invalidated.
1181 void changeTarget(Edge e, Node n) {
1182 if (Parent::direction(e)) {
1183 Parent::changeTarget(e,n);
1185 Parent::changeSource(e,n);
1188 /// \brief Contract two nodes.
1190 /// This function contracts two nodes.
1192 /// Node \p b will be removed but instead of deleting
1193 /// its neighboring edges, they will be joined to \p a.
1194 /// The last parameter \p r controls whether to remove loops. \c true
1195 /// means that loops will be removed.
1197 /// \note The <tt>EdgeIt</tt>s referencing a moved edge remain
1199 void contract(Node a, Node b, bool r = true) {
1200 for(IncEdgeIt e(*this, b); e!=INVALID;) {
1201 IncEdgeIt f = e; ++f;
1202 if (r && runningNode(e) == a) {
1204 } else if (source(e) == b) {
1215 /// \brief Class to make a snapshot of the graph and restore
1218 /// Class to make a snapshot of the graph and to restore it
1221 /// The newly added nodes and undirected edges can be removed
1222 /// using the restore() function.
1224 /// \warning Edge and node deletions cannot be restored. This
1225 /// events invalidate the snapshot.
1229 typedef Parent::NodeNotifier NodeNotifier;
1231 class NodeObserverProxy : public NodeNotifier::ObserverBase {
1234 NodeObserverProxy(Snapshot& _snapshot)
1235 : snapshot(_snapshot) {}
1237 using NodeNotifier::ObserverBase::attach;
1238 using NodeNotifier::ObserverBase::detach;
1239 using NodeNotifier::ObserverBase::attached;
1243 virtual void add(const Node& node) {
1244 snapshot.addNode(node);
1246 virtual void add(const std::vector<Node>& nodes) {
1247 for (int i = nodes.size() - 1; i >= 0; ++i) {
1248 snapshot.addNode(nodes[i]);
1251 virtual void erase(const Node& node) {
1252 snapshot.eraseNode(node);
1254 virtual void erase(const std::vector<Node>& nodes) {
1255 for (int i = 0; i < (int)nodes.size(); ++i) {
1256 snapshot.eraseNode(nodes[i]);
1259 virtual void build() {
1260 NodeNotifier* notifier = getNotifier();
1262 std::vector<Node> nodes;
1263 for (notifier->first(node); node != INVALID; notifier->next(node)) {
1264 nodes.push_back(node);
1266 for (int i = nodes.size() - 1; i >= 0; --i) {
1267 snapshot.addNode(nodes[i]);
1270 virtual void clear() {
1271 NodeNotifier* notifier = getNotifier();
1273 for (notifier->first(node); node != INVALID; notifier->next(node)) {
1274 snapshot.eraseNode(node);
1281 class UEdgeObserverProxy : public UEdgeNotifier::ObserverBase {
1284 UEdgeObserverProxy(Snapshot& _snapshot)
1285 : snapshot(_snapshot) {}
1287 using UEdgeNotifier::ObserverBase::attach;
1288 using UEdgeNotifier::ObserverBase::detach;
1289 using UEdgeNotifier::ObserverBase::attached;
1293 virtual void add(const UEdge& edge) {
1294 snapshot.addUEdge(edge);
1296 virtual void add(const std::vector<UEdge>& edges) {
1297 for (int i = edges.size() - 1; i >= 0; ++i) {
1298 snapshot.addUEdge(edges[i]);
1301 virtual void erase(const UEdge& edge) {
1302 snapshot.eraseUEdge(edge);
1304 virtual void erase(const std::vector<UEdge>& edges) {
1305 for (int i = 0; i < (int)edges.size(); ++i) {
1306 snapshot.eraseUEdge(edges[i]);
1309 virtual void build() {
1310 UEdgeNotifier* notifier = getNotifier();
1312 std::vector<UEdge> edges;
1313 for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
1314 edges.push_back(edge);
1316 for (int i = edges.size() - 1; i >= 0; --i) {
1317 snapshot.addUEdge(edges[i]);
1320 virtual void clear() {
1321 UEdgeNotifier* notifier = getNotifier();
1323 for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
1324 snapshot.eraseUEdge(edge);
1333 NodeObserverProxy node_observer_proxy;
1334 UEdgeObserverProxy edge_observer_proxy;
1336 std::list<Node> added_nodes;
1337 std::list<UEdge> added_edges;
1340 void addNode(const Node& node) {
1341 added_nodes.push_front(node);
1343 void eraseNode(const Node& node) {
1344 std::list<Node>::iterator it =
1345 std::find(added_nodes.begin(), added_nodes.end(), node);
1346 if (it == added_nodes.end()) {
1348 edge_observer_proxy.detach();
1349 throw NodeNotifier::ImmediateDetach();
1351 added_nodes.erase(it);
1355 void addUEdge(const UEdge& edge) {
1356 added_edges.push_front(edge);
1358 void eraseUEdge(const UEdge& edge) {
1359 std::list<UEdge>::iterator it =
1360 std::find(added_edges.begin(), added_edges.end(), edge);
1361 if (it == added_edges.end()) {
1363 node_observer_proxy.detach();
1364 throw UEdgeNotifier::ImmediateDetach();
1366 added_edges.erase(it);
1370 void attach(ListUGraph &_graph) {
1372 node_observer_proxy.attach(graph->getNotifier(Node()));
1373 edge_observer_proxy.attach(graph->getNotifier(UEdge()));
1377 node_observer_proxy.detach();
1378 edge_observer_proxy.detach();
1381 bool attached() const {
1382 return node_observer_proxy.attached();
1386 added_nodes.clear();
1387 added_edges.clear();
1392 /// \brief Default constructor.
1394 /// Default constructor.
1395 /// To actually make a snapshot you must call save().
1397 : graph(0), node_observer_proxy(*this),
1398 edge_observer_proxy(*this) {}
1400 /// \brief Constructor that immediately makes a snapshot.
1402 /// This constructor immediately makes a snapshot of the graph.
1403 /// \param _graph The graph we make a snapshot of.
1404 Snapshot(ListUGraph &_graph)
1405 : node_observer_proxy(*this),
1406 edge_observer_proxy(*this) {
1410 /// \brief Make a snapshot.
1412 /// Make a snapshot of the graph.
1414 /// This function can be called more than once. In case of a repeated
1415 /// call, the previous snapshot gets lost.
1416 /// \param _graph The graph we make the snapshot of.
1417 void save(ListUGraph &_graph) {
1425 /// \brief Undo the changes until the last snapshot.
1427 /// Undo the changes until the last snapshot created by save().
1430 for(std::list<UEdge>::iterator it = added_edges.begin();
1431 it != added_edges.end(); ++it) {
1434 for(std::list<Node>::iterator it = added_nodes.begin();
1435 it != added_nodes.end(); ++it) {
1441 /// \brief Gives back true when the snapshot is valid.
1443 /// Gives back true when the snapshot is valid.
1444 bool valid() const {
1451 class ListBpUGraphBase {
1454 class NodeSetError : public LogicError {
1456 virtual const char* what() const throw() {
1457 return "lemon::ListBpUGraph::NodeSetError";
1464 int first_edge, prev, next;
1468 int aNode, prev_out, next_out;
1469 int bNode, prev_in, next_in;
1472 std::vector<NodeT> aNodes;
1473 std::vector<NodeT> bNodes;
1475 std::vector<UEdgeT> edges;
1478 int first_free_anode;
1481 int first_free_bnode;
1483 int first_free_edge;
1488 friend class ListBpUGraphBase;
1492 explicit Node(int _id) : id(_id) {}
1495 Node(Invalid) { id = -1; }
1496 bool operator==(const Node i) const {return id==i.id;}
1497 bool operator!=(const Node i) const {return id!=i.id;}
1498 bool operator<(const Node i) const {return id<i.id;}
1502 friend class ListBpUGraphBase;
1506 explicit UEdge(int _id) { id = _id;}
1509 UEdge (Invalid) { id = -1; }
1510 bool operator==(const UEdge i) const {return id==i.id;}
1511 bool operator!=(const UEdge i) const {return id!=i.id;}
1512 bool operator<(const UEdge i) const {return id<i.id;}
1516 : first_anode(-1), first_free_anode(-1),
1517 first_bnode(-1), first_free_bnode(-1),
1518 first_free_edge(-1) {}
1520 void firstANode(Node& node) const {
1521 node.id = first_anode != -1 ? (first_anode << 1) : -1;
1523 void nextANode(Node& node) const {
1524 node.id = aNodes[node.id >> 1].next;
1527 void firstBNode(Node& node) const {
1528 node.id = first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
1530 void nextBNode(Node& node) const {
1531 node.id = bNodes[node.id >> 1].next;
1534 void first(Node& node) const {
1535 if (first_anode != -1) {
1536 node.id = (first_anode << 1);
1537 } else if (first_bnode != -1) {
1538 node.id = (first_bnode << 1) + 1;
1543 void next(Node& node) const {
1545 node.id = aNodes[node.id >> 1].next;
1546 if (node.id == -1) {
1547 if (first_bnode != -1) {
1548 node.id = (first_bnode << 1) + 1;
1552 node.id = bNodes[node.id >> 1].next;
1556 void first(UEdge& edge) const {
1557 int aNodeId = first_anode;
1558 while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
1559 aNodeId = aNodes[aNodeId].next != -1 ?
1560 aNodes[aNodeId].next >> 1 : -1;
1562 if (aNodeId != -1) {
1563 edge.id = aNodes[aNodeId].first_edge;
1568 void next(UEdge& edge) const {
1569 int aNodeId = edges[edge.id].aNode >> 1;
1570 edge.id = edges[edge.id].next_out;
1571 if (edge.id == -1) {
1572 aNodeId = aNodes[aNodeId].next != -1 ?
1573 aNodes[aNodeId].next >> 1 : -1;
1574 while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
1575 aNodeId = aNodes[aNodeId].next != -1 ?
1576 aNodes[aNodeId].next >> 1 : -1;
1578 if (aNodeId != -1) {
1579 edge.id = aNodes[aNodeId].first_edge;
1586 void firstFromANode(UEdge& edge, const Node& node) const {
1587 LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
1588 edge.id = aNodes[node.id >> 1].first_edge;
1590 void nextFromANode(UEdge& edge) const {
1591 edge.id = edges[edge.id].next_out;
1594 void firstFromBNode(UEdge& edge, const Node& node) const {
1595 LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
1596 edge.id = bNodes[node.id >> 1].first_edge;
1598 void nextFromBNode(UEdge& edge) const {
1599 edge.id = edges[edge.id].next_in;
1602 static int id(const Node& node) {
1605 static Node nodeFromId(int id) {
1608 int maxNodeId() const {
1609 return aNodes.size() > bNodes.size() ?
1610 aNodes.size() * 2 - 2 : bNodes.size() * 2 - 1;
1613 static int id(const UEdge& edge) {
1616 static UEdge uEdgeFromId(int id) {
1619 int maxUEdgeId() const {
1620 return edges.size();
1623 static int aNodeId(const Node& node) {
1624 return node.id >> 1;
1626 static Node nodeFromANodeId(int id) {
1627 return Node(id << 1);
1629 int maxANodeId() const {
1630 return aNodes.size();
1633 static int bNodeId(const Node& node) {
1634 return node.id >> 1;
1636 static Node nodeFromBNodeId(int id) {
1637 return Node((id << 1) + 1);
1639 int maxBNodeId() const {
1640 return bNodes.size();
1643 Node aNode(const UEdge& edge) const {
1644 return Node(edges[edge.id].aNode);
1646 Node bNode(const UEdge& edge) const {
1647 return Node(edges[edge.id].bNode);
1650 static bool aNode(const Node& node) {
1651 return (node.id & 1) == 0;
1654 static bool bNode(const Node& node) {
1655 return (node.id & 1) == 1;
1660 if (first_free_anode == -1) {
1661 aNodeId = aNodes.size();
1662 aNodes.push_back(NodeT());
1664 aNodeId = first_free_anode;
1665 first_free_anode = aNodes[first_free_anode].next;
1667 if (first_anode != -1) {
1668 aNodes[aNodeId].next = first_anode << 1;
1669 aNodes[first_anode].prev = aNodeId << 1;
1671 aNodes[aNodeId].next = -1;
1673 aNodes[aNodeId].prev = -1;
1674 first_anode = aNodeId;
1675 aNodes[aNodeId].first_edge = -1;
1676 return Node(aNodeId << 1);
1681 if (first_free_bnode == -1) {
1682 bNodeId = bNodes.size();
1683 bNodes.push_back(NodeT());
1685 bNodeId = first_free_bnode;
1686 first_free_bnode = bNodes[first_free_bnode].next;
1688 if (first_bnode != -1) {
1689 bNodes[bNodeId].next = (first_bnode << 1) + 1;
1690 bNodes[first_bnode].prev = (bNodeId << 1) + 1;
1692 bNodes[bNodeId].next = -1;
1694 bNodes[bNodeId].prev = -1;
1695 first_bnode = bNodeId;
1696 bNodes[bNodeId].first_edge = -1;
1697 return Node((bNodeId << 1) + 1);
1700 UEdge addEdge(const Node& source, const Node& target) {
1701 LEMON_ASSERT(((source.id ^ target.id) & 1) == 1, NodeSetError());
1703 if (first_free_edge != -1) {
1704 edgeId = first_free_edge;
1705 first_free_edge = edges[edgeId].next_out;
1707 edgeId = edges.size();
1708 edges.push_back(UEdgeT());
1710 if ((source.id & 1) == 0) {
1711 edges[edgeId].aNode = source.id;
1712 edges[edgeId].bNode = target.id;
1714 edges[edgeId].aNode = target.id;
1715 edges[edgeId].bNode = source.id;
1717 edges[edgeId].next_out = aNodes[edges[edgeId].aNode >> 1].first_edge;
1718 edges[edgeId].prev_out = -1;
1719 if (aNodes[edges[edgeId].aNode >> 1].first_edge != -1) {
1720 edges[aNodes[edges[edgeId].aNode >> 1].first_edge].prev_out = edgeId;
1722 aNodes[edges[edgeId].aNode >> 1].first_edge = edgeId;
1723 edges[edgeId].next_in = bNodes[edges[edgeId].bNode >> 1].first_edge;
1724 edges[edgeId].prev_in = -1;
1725 if (bNodes[edges[edgeId].bNode >> 1].first_edge != -1) {
1726 edges[bNodes[edges[edgeId].bNode >> 1].first_edge].prev_in = edgeId;
1728 bNodes[edges[edgeId].bNode >> 1].first_edge = edgeId;
1729 return UEdge(edgeId);
1732 void erase(const Node& node) {
1734 int aNodeId = node.id >> 1;
1735 if (aNodes[aNodeId].prev != -1) {
1736 aNodes[aNodes[aNodeId].prev >> 1].next = aNodes[aNodeId].next;
1739 aNodes[aNodeId].next != -1 ? aNodes[aNodeId].next >> 1 : -1;
1741 if (aNodes[aNodeId].next != -1) {
1742 aNodes[aNodes[aNodeId].next >> 1].prev = aNodes[aNodeId].prev;
1744 aNodes[aNodeId].next = first_free_anode;
1745 first_free_anode = aNodeId;
1747 int bNodeId = node.id >> 1;
1748 if (bNodes[bNodeId].prev != -1) {
1749 bNodes[bNodes[bNodeId].prev >> 1].next = bNodes[bNodeId].next;
1752 bNodes[bNodeId].next != -1 ? bNodes[bNodeId].next >> 1 : -1;
1754 if (bNodes[bNodeId].next != -1) {
1755 bNodes[bNodes[bNodeId].next >> 1].prev = bNodes[bNodeId].prev;
1757 bNodes[bNodeId].next = first_free_bnode;
1758 first_free_bnode = bNodeId;
1762 void erase(const UEdge& edge) {
1764 if (edges[edge.id].prev_out != -1) {
1765 edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out;
1767 aNodes[edges[edge.id].aNode >> 1].first_edge = edges[edge.id].next_out;
1769 if (edges[edge.id].next_out != -1) {
1770 edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out;
1773 if (edges[edge.id].prev_in != -1) {
1774 edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in;
1776 bNodes[edges[edge.id].bNode >> 1].first_edge = edges[edge.id].next_in;
1778 if (edges[edge.id].next_in != -1) {
1779 edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in;
1782 edges[edge.id].next_out = first_free_edge;
1783 first_free_edge = edge.id;
1791 first_free_anode = -1;
1793 first_free_bnode = -1;
1794 first_free_edge = -1;
1797 void changeANode(const UEdge& edge, const Node& node) {
1798 LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
1799 if (edges[edge.id].prev_out != -1) {
1800 edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out;
1802 aNodes[edges[edge.id].aNode >> 1].first_edge = edges[edge.id].next_out;
1804 if (edges[edge.id].next_out != -1) {
1805 edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out;
1807 if (aNodes[node.id >> 1].first_edge != -1) {
1808 edges[aNodes[node.id >> 1].first_edge].prev_out = edge.id;
1810 edges[edge.id].prev_out = -1;
1811 edges[edge.id].next_out = aNodes[node.id >> 1].first_edge;
1812 aNodes[node.id >> 1].first_edge = edge.id;
1813 edges[edge.id].aNode = node.id;
1816 void changeBNode(const UEdge& edge, const Node& node) {
1817 LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
1818 if (edges[edge.id].prev_in != -1) {
1819 edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in;
1821 bNodes[edges[edge.id].bNode >> 1].first_edge = edges[edge.id].next_in;
1823 if (edges[edge.id].next_in != -1) {
1824 edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in;
1826 if (bNodes[node.id >> 1].first_edge != -1) {
1827 edges[bNodes[node.id >> 1].first_edge].prev_in = edge.id;
1829 edges[edge.id].prev_in = -1;
1830 edges[edge.id].next_in = bNodes[node.id >> 1].first_edge;
1831 bNodes[node.id >> 1].first_edge = edge.id;
1832 edges[edge.id].bNode = node.id;
1838 typedef BpUGraphExtender<BidirBpUGraphExtender<ListBpUGraphBase> >
1839 ExtendedListBpUGraphBase;
1843 /// \brief A smart bipartite undirected graph class.
1845 /// This is a bipartite undirected graph implementation.
1846 /// It is conforms to the \ref concepts::BpUGraph "BpUGraph concept".
1848 ///An important extra feature of this graph implementation is that
1849 ///its maps are real \ref concepts::ReferenceMap "reference map"s.
1851 /// \sa concepts::BpUGraph.
1853 class ListBpUGraph : public ExtendedListBpUGraphBase {
1854 /// \brief ListBpUGraph is \e not copy constructible.
1856 ///ListBpUGraph is \e not copy constructible.
1857 ListBpUGraph(const ListBpUGraph &) :ExtendedListBpUGraphBase() {};
1858 /// \brief Assignment of ListBpUGraph to another one is \e not
1861 /// Assignment of ListBpUGraph to another one is \e not allowed.
1862 void operator=(const ListBpUGraph &) {}
1864 /// \brief Constructor
1870 typedef ExtendedListBpUGraphBase Parent;
1871 /// \brief Add a new ANode to the graph.
1873 /// \return the new node.
1875 Node addANode() { return Parent::addANode(); }
1877 /// \brief Add a new BNode to the graph.
1879 /// \return the new node.
1881 Node addBNode() { return Parent::addBNode(); }
1883 /// \brief Add a new edge to the graph.
1885 /// Add a new edge to the graph with an ANode and a BNode.
1886 /// \return the new undirected edge.
1887 UEdge addEdge(const Node& s, const Node& t) {
1888 return Parent::addEdge(s, t);
1891 /// \brief Changes the ANode of \c e to \c n
1893 /// Changes the ANode of \c e to \c n
1895 ///\note The <tt>EdgeIt</tt>s and <tt>InEdgeIt</tt>s referencing
1896 ///the changed edge remain valid. However <tt>OutEdgeIt</tt>s are
1898 void changeANode(UEdge e, Node n) {
1899 Parent::changeANode(e,n);
1902 /// \brief Changes the BNode of \c e to \c n
1904 /// Changes the BNode of \c e to \c n
1906 /// \note The <tt>EdgeIt</tt>s and <tt>OutEdgeIt</tt>s
1907 /// referencing the changed edge remain
1908 /// valid. However <tt>InEdgeIt</tt>s are invalidated.
1909 void changeBNode(UEdge e, Node n) {
1910 Parent::changeBNode(e,n);
1913 /// \brief Changes the source(ANode) of \c e to \c n
1915 /// Changes the source(ANode) of \c e to \c n
1917 ///\note The <tt>EdgeIt</tt>s and <tt>InEdgeIt</tt>s referencing
1918 ///the changed edge remain valid. However <tt>OutEdgeIt</tt>s are
1920 void changeSource(UEdge e, Node n) {
1921 Parent::changeANode(e,n);
1924 /// \brief Changes the target(BNode) of \c e to \c n
1926 /// Changes the target(BNode) of \c e to \c n
1928 /// \note The <tt>EdgeIt</tt>s and <tt>OutEdgeIt</tt>s
1929 /// referencing the changed edge remain
1930 /// valid. However <tt>InEdgeIt</tt>s are invalidated.
1931 void changeTarget(UEdge e, Node n) {
1932 Parent::changeBNode(e,n);
1935 /// \brief Changes the source of \c e to \c n
1937 /// Changes the source of \c e to \c n. It changes the proper
1938 /// node of the represented undirected edge.
1940 ///\note The <tt>EdgeIt</tt>s and <tt>InEdgeIt</tt>s
1941 ///referencing the changed edge remain
1942 ///valid. However <tt>OutEdgeIt</tt>s are invalidated.
1943 void changeSource(Edge e, Node n) {
1944 if (Parent::direction(e)) {
1945 Parent::changeANode(e,n);
1947 Parent::changeBNode(e,n);
1950 /// \brief Changes the target of \c e to \c n
1952 /// Changes the target of \c e to \c n. It changes the proper
1953 /// node of the represented undirected edge.
1955 ///\note The <tt>EdgeIt</tt>s and <tt>OutEdgeIt</tt>s
1956 ///referencing the changed edge remain
1957 ///valid. However <tt>InEdgeIt</tt>s are invalidated.
1958 void changeTarget(Edge e, Node n) {
1959 if (Parent::direction(e)) {
1960 Parent::changeBNode(e,n);
1962 Parent::changeANode(e,n);
1965 /// \brief Contract two nodes.
1967 /// This function contracts two nodes.
1969 /// Node \p b will be removed but instead of deleting its
1970 /// neighboring edges, they will be joined to \p a. The two nodes
1971 /// should be from the same nodeset, of course.
1973 /// \note The <tt>EdgeIt</tt>s referencing a moved edge remain
1975 void contract(const Node& a, const Node& b) {
1976 LEMON_ASSERT(Parent::aNode(a) == Parent::aNode(b), NodeSetError());
1977 if (Parent::aNode(a)) {
1978 for (IncEdgeIt e(*this, b); e!=INVALID;) {
1979 IncEdgeIt f = e; ++f;
1984 for (IncEdgeIt e(*this, b); e!=INVALID;) {
1985 IncEdgeIt f = e; ++f;
1993 /// \brief Class to make a snapshot of the graph and restore
1996 /// Class to make a snapshot of the graph and to restore it
1999 /// The newly added nodes and undirected edges can be removed
2000 /// using the restore() function.
2002 /// \warning Edge and node deletions cannot be restored. This
2003 /// events invalidate the snapshot.
2007 typedef Parent::NodeNotifier NodeNotifier;
2009 class NodeObserverProxy : public NodeNotifier::ObserverBase {
2012 NodeObserverProxy(Snapshot& _snapshot)
2013 : snapshot(_snapshot) {}
2015 using NodeNotifier::ObserverBase::attach;
2016 using NodeNotifier::ObserverBase::detach;
2017 using NodeNotifier::ObserverBase::attached;
2021 virtual void add(const Node& node) {
2022 snapshot.addNode(node);
2024 virtual void add(const std::vector<Node>& nodes) {
2025 for (int i = nodes.size() - 1; i >= 0; ++i) {
2026 snapshot.addNode(nodes[i]);
2029 virtual void erase(const Node& node) {
2030 snapshot.eraseNode(node);
2032 virtual void erase(const std::vector<Node>& nodes) {
2033 for (int i = 0; i < (int)nodes.size(); ++i) {
2034 snapshot.eraseNode(nodes[i]);
2037 virtual void build() {
2038 NodeNotifier* notifier = getNotifier();
2040 std::vector<Node> nodes;
2041 for (notifier->first(node); node != INVALID; notifier->next(node)) {
2042 nodes.push_back(node);
2044 for (int i = nodes.size() - 1; i >= 0; --i) {
2045 snapshot.addNode(nodes[i]);
2048 virtual void clear() {
2049 NodeNotifier* notifier = getNotifier();
2051 for (notifier->first(node); node != INVALID; notifier->next(node)) {
2052 snapshot.eraseNode(node);
2059 class UEdgeObserverProxy : public UEdgeNotifier::ObserverBase {
2062 UEdgeObserverProxy(Snapshot& _snapshot)
2063 : snapshot(_snapshot) {}
2065 using UEdgeNotifier::ObserverBase::attach;
2066 using UEdgeNotifier::ObserverBase::detach;
2067 using UEdgeNotifier::ObserverBase::attached;
2071 virtual void add(const UEdge& edge) {
2072 snapshot.addUEdge(edge);
2074 virtual void add(const std::vector<UEdge>& edges) {
2075 for (int i = edges.size() - 1; i >= 0; ++i) {
2076 snapshot.addUEdge(edges[i]);
2079 virtual void erase(const UEdge& edge) {
2080 snapshot.eraseUEdge(edge);
2082 virtual void erase(const std::vector<UEdge>& edges) {
2083 for (int i = 0; i < (int)edges.size(); ++i) {
2084 snapshot.eraseUEdge(edges[i]);
2087 virtual void build() {
2088 UEdgeNotifier* notifier = getNotifier();
2090 std::vector<UEdge> edges;
2091 for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
2092 edges.push_back(edge);
2094 for (int i = edges.size() - 1; i >= 0; --i) {
2095 snapshot.addUEdge(edges[i]);
2098 virtual void clear() {
2099 UEdgeNotifier* notifier = getNotifier();
2101 for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
2102 snapshot.eraseUEdge(edge);
2109 ListBpUGraph *graph;
2111 NodeObserverProxy node_observer_proxy;
2112 UEdgeObserverProxy edge_observer_proxy;
2114 std::list<Node> added_nodes;
2115 std::list<UEdge> added_edges;
2118 void addNode(const Node& node) {
2119 added_nodes.push_front(node);
2121 void eraseNode(const Node& node) {
2122 std::list<Node>::iterator it =
2123 std::find(added_nodes.begin(), added_nodes.end(), node);
2124 if (it == added_nodes.end()) {
2126 edge_observer_proxy.detach();
2127 throw NodeNotifier::ImmediateDetach();
2129 added_nodes.erase(it);
2133 void addUEdge(const UEdge& edge) {
2134 added_edges.push_front(edge);
2136 void eraseUEdge(const UEdge& edge) {
2137 std::list<UEdge>::iterator it =
2138 std::find(added_edges.begin(), added_edges.end(), edge);
2139 if (it == added_edges.end()) {
2141 node_observer_proxy.detach();
2142 throw UEdgeNotifier::ImmediateDetach();
2144 added_edges.erase(it);
2148 void attach(ListBpUGraph &_graph) {
2150 node_observer_proxy.attach(graph->getNotifier(Node()));
2151 edge_observer_proxy.attach(graph->getNotifier(UEdge()));
2155 node_observer_proxy.detach();
2156 edge_observer_proxy.detach();
2159 bool attached() const {
2160 return node_observer_proxy.attached();
2164 added_nodes.clear();
2165 added_edges.clear();
2170 /// \brief Default constructor.
2172 /// Default constructor.
2173 /// To actually make a snapshot you must call save().
2175 : graph(0), node_observer_proxy(*this),
2176 edge_observer_proxy(*this) {}
2178 /// \brief Constructor that immediately makes a snapshot.
2180 /// This constructor immediately makes a snapshot of the graph.
2181 /// \param _graph The graph we make a snapshot of.
2182 Snapshot(ListBpUGraph &_graph)
2183 : node_observer_proxy(*this),
2184 edge_observer_proxy(*this) {
2188 /// \brief Make a snapshot.
2190 /// Make a snapshot of the graph.
2192 /// This function can be called more than once. In case of a repeated
2193 /// call, the previous snapshot gets lost.
2194 /// \param _graph The graph we make the snapshot of.
2195 void save(ListBpUGraph &_graph) {
2203 /// \brief Undo the changes until the last snapshot.
2205 /// Undo the changes until the last snapshot created by save().
2208 for(std::list<UEdge>::iterator it = added_edges.begin();
2209 it != added_edges.end(); ++it) {
2212 for(std::list<Node>::iterator it = added_nodes.begin();
2213 it != added_nodes.end(); ++it) {
2219 /// \brief Gives back true when the snapshot is valid.
2221 /// Gives back true when the snapshot is valid.
2222 bool valid() const {