src/hugo/kruskal.h
author marci
Mon, 20 Sep 2004 16:20:11 +0000
changeset 889 47bb9b8f5705
parent 881 a9f19f38970b
child 906 17f31d280385
permissions -rw-r--r--
EXAMPLE_PATH is set to the demo dir.
     1 // -*- c++ -*- //
     2 #ifndef HUGO_KRUSKAL_H
     3 #define HUGO_KRUSKAL_H
     4 
     5 #include <algorithm>
     6 #include <hugo/unionfind.h>
     7 
     8 /**
     9 @defgroup spantree Minimum Cost Spanning Tree Algorithms
    10 @ingroup galgs
    11 \brief This group containes the algorithms for finding a minimum cost spanning
    12 tree in a graph
    13 
    14 This group containes the algorithms for finding a minimum cost spanning
    15 tree in a graph
    16 */
    17 
    18 ///\ingroup spantree
    19 ///\file
    20 ///\brief Kruskal's algorithm to compute a minimum cost tree
    21 ///
    22 ///Kruskal's algorithm to compute a minimum cost tree.
    23 
    24 namespace hugo {
    25 
    26   /// \addtogroup spantree
    27   /// @{
    28 
    29   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    30 
    31   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    32   /// \param G The graph the algorithm runs on. The algorithm considers the
    33   /// graph to be undirected, the direction of the edges are not used.
    34   ///
    35   /// \param in This object is used to describe the edge costs. It must
    36   /// be an STL compatible 'Forward Container'
    37   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    38   /// where X is the type of the costs. It must contain every edge in
    39   /// cost-ascending order.
    40   ///\par
    41   /// For the sake of simplicity, there is a helper class KruskalMapInput,
    42   /// which converts a
    43   /// simple edge map to an input of this form. Alternatively, you can use
    44   /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
    45   /// the edge costs are given by an edge map.
    46   ///
    47   /// \retval out This must be a writable \c bool edge map.
    48   /// After running the algorithm
    49   /// this will contain the found minimum cost spanning tree: the value of an
    50   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    51   /// be set to \c false. The value of each edge will be set exactly once.
    52   ///
    53   /// \return The cost of the found tree.
    54 
    55   template <class GR, class IN, class OUT>
    56   typename IN::value_type::second_type
    57   kruskal(GR const& G, IN const& in, 
    58 		 OUT& out)
    59   {
    60     typedef typename IN::value_type::second_type EdgeCost;
    61     typedef typename GR::template NodeMap<int> NodeIntMap;
    62     typedef typename GR::Node Node;
    63 
    64     NodeIntMap comp(G, -1);
    65     UnionFind<Node,NodeIntMap> uf(comp); 
    66       
    67     EdgeCost tot_cost = 0;
    68     for (typename IN::const_iterator p = in.begin(); 
    69 	 p!=in.end(); ++p ) {
    70       if ( uf.join(G.head((*p).first),
    71 		   G.tail((*p).first)) ) {
    72 	out.set((*p).first, true);
    73 	tot_cost += (*p).second;
    74       }
    75       else {
    76 	out.set((*p).first, false);
    77       }
    78     }
    79     return tot_cost;
    80   }
    81 
    82   /* A work-around for running Kruskal with const-reference bool maps... */
    83 
    84   /// Helper class for calling kruskal with "constant" output map.
    85 
    86   /// Helper class for calling kruskal with output maps constructed
    87   /// on-the-fly.
    88   ///
    89   /// A typical examle is the following call:
    90   /// <tt>kruskal(G, some_input, makeSequenceOutput(iterator))</tt>.
    91   /// Here, the third argument is a temporary object (which wraps around an
    92   /// iterator with a writable bool map interface), and thus by rules of C++
    93   /// is a \c const object. To enable call like this exist this class and
    94   /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
    95   /// third argument.
    96   template<class Map>
    97   class NonConstMapWr {
    98     const Map &m;
    99   public:
   100     typedef typename Map::ValueType ValueType;
   101 
   102     NonConstMapWr(const Map &_m) : m(_m) {}
   103 
   104     template<class KeyType>
   105     void set(KeyType const& k, ValueType const &v) const { m.set(k,v); }
   106   };
   107 
   108   template <class GR, class IN, class OUT>
   109   inline
   110   typename IN::value_type::second_type
   111   kruskal(GR const& G, IN const& edges, OUT const& out_map)
   112   {
   113     NonConstMapWr<OUT> map_wr(out_map);
   114     return kruskal(G, edges, map_wr);
   115   }  
   116 
   117   /* ** ** Input-objects ** ** */
   118 
   119   /// Kruskal input source.
   120 
   121   /// Kruskal input source.
   122   ///
   123   /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
   124   ///
   125   /// \sa makeKruskalMapInput()
   126   ///
   127   ///\param GR The type of the graph the algorithm runs on.
   128   ///\param Map An edge map containing the cost of the edges.
   129   ///\par
   130   ///The cost type can be any type satisfying
   131   ///the STL 'LessThan comparable'
   132   ///concept if it also has an operator+() implemented. (It is necessary for
   133   ///computing the total cost of the tree).
   134   ///
   135   template<class GR, class Map>
   136   class KruskalMapInput
   137     : public std::vector< std::pair<typename GR::Edge,
   138 				    typename Map::ValueType> > {
   139     
   140   public:
   141     typedef std::vector< std::pair<typename GR::Edge,
   142 				   typename Map::ValueType> > Parent;
   143     typedef typename Parent::value_type value_type;
   144 
   145   private:
   146     class comparePair {
   147     public:
   148       bool operator()(const value_type& a,
   149 		      const value_type& b) {
   150 	return a.second < b.second;
   151       }
   152     };
   153 
   154   public:
   155 
   156     void sort() {
   157       std::sort(this->begin(), this->end(), comparePair());
   158     }
   159 
   160     KruskalMapInput(GR const& G, Map const& m) {
   161       typedef typename GR::EdgeIt EdgeIt;
   162       
   163       for(EdgeIt e(G);e!=INVALID;++e) push_back(value_type(e, m[e]));
   164       sort();
   165     }
   166   };
   167 
   168   /// Creates a KruskalMapInput object for \ref kruskal()
   169 
   170   /// It makes is easier to use 
   171   /// \ref KruskalMapInput by making it unnecessary 
   172   /// to explicitly give the type of the parameters.
   173   ///
   174   /// In most cases you possibly
   175   /// want to use the function kruskalEdgeMap() instead.
   176   ///
   177   ///\param G The type of the graph the algorithm runs on.
   178   ///\param m An edge map containing the cost of the edges.
   179   ///\par
   180   ///The cost type can be any type satisfying the
   181   ///STL 'LessThan Comparable'
   182   ///concept if it also has an operator+() implemented. (It is necessary for
   183   ///computing the total cost of the tree).
   184   ///
   185   ///\return An appropriate input source for \ref kruskal().
   186   ///
   187   template<class GR, class Map>
   188   inline
   189   KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &G,const Map &m)
   190   {
   191     return KruskalMapInput<GR,Map>(G,m);
   192   }
   193   
   194   
   195 
   196   /* ** ** Output-objects: simple writable bool maps ** ** */
   197   
   198 
   199 
   200   /// A writable bool-map that makes a sequence of "true" keys
   201 
   202   /// A writable bool-map that creates a sequence out of keys that receives
   203   /// the value "true".
   204   ///
   205   /// \sa makeKruskalSequenceOutput()
   206   ///
   207   /// Very often, when looking for a min cost spanning tree, we want as
   208   /// output a container containing the edges of the found tree. For this
   209   /// purpose exist this class that wraps around an STL iterator with a
   210   /// writable bool map interface. When a key gets value "true" this key
   211   /// is added to sequence pointed by the iterator.
   212   ///
   213   /// A typical usage:
   214   /// \code
   215   /// std::vector<Graph::Edge> v;
   216   /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
   217   /// \endcode
   218   /// 
   219   /// For the most common case, when the input is given by a simple edge
   220   /// map and the output is a sequence of the tree edges, a special
   221   /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
   222   ///
   223   /// \warning Not a regular property map, as it doesn't know its KeyType
   224 
   225   template<class Iterator>
   226   class KruskalSequenceOutput {
   227     mutable Iterator it;
   228 
   229   public:
   230     typedef bool ValueType;
   231 
   232     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   233 
   234     template<typename KeyType>
   235     void set(KeyType const& k, bool v) const { if(v) {*it=k; ++it;} }
   236   };
   237 
   238   template<class Iterator>
   239   inline
   240   KruskalSequenceOutput<Iterator>
   241   makeKruskalSequenceOutput(Iterator it) {
   242     return KruskalSequenceOutput<Iterator>(it);
   243   }
   244 
   245 
   246 
   247   /* ** ** Wrapper funtions ** ** */
   248 
   249 
   250 
   251   /// \brief Wrapper function to kruskal().
   252   /// Input is from an edge map, output is a plain bool map.
   253   ///
   254   /// Wrapper function to kruskal().
   255   /// Input is from an edge map, output is a plain bool map.
   256   ///
   257   ///\param G The type of the graph the algorithm runs on.
   258   ///\param in An edge map containing the cost of the edges.
   259   ///\par
   260   ///The cost type can be any type satisfying the
   261   ///STL 'LessThan Comparable'
   262   ///concept if it also has an operator+() implemented. (It is necessary for
   263   ///computing the total cost of the tree).
   264   ///
   265   /// \retval out This must be a writable \c bool edge map.
   266   /// After running the algorithm
   267   /// this will contain the found minimum cost spanning tree: the value of an
   268   /// edge will be set to \c true if it belongs to the tree, otherwise it will
   269   /// be set to \c false. The value of each edge will be set exactly once.
   270   ///
   271   /// \return The cost of the found tree.
   272 
   273   template <class GR, class IN, class RET>
   274   inline
   275   typename IN::ValueType
   276   kruskalEdgeMap(GR const& G,
   277 		 IN const& in,
   278 		 RET &out) {
   279     return kruskal(G,
   280 		   KruskalMapInput<GR,IN>(G,in),
   281 		   out);
   282   }
   283 
   284   /// \brief Wrapper function to kruskal().
   285   /// Input is from an edge map, output is an STL Sequence.
   286   ///
   287   /// Wrapper function to kruskal().
   288   /// Input is from an edge map, output is an STL Sequence.
   289   ///
   290   ///\param G The type of the graph the algorithm runs on.
   291   ///\param in An edge map containing the cost of the edges.
   292   ///\par
   293   ///The cost type can be any type satisfying the
   294   ///STL 'LessThan Comparable'
   295   ///concept if it also has an operator+() implemented. (It is necessary for
   296   ///computing the total cost of the tree).
   297   ///
   298   /// \retval out This must be an iteraror of an STL Container with
   299   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   300   /// The algorithm copies the elements of the found tree into this sequence.
   301   /// For example, if we know that the spanning tree of the graph \c G has
   302   /// say 53 edges then
   303   /// we can put its edges into a STL vector \c tree with a code like this.
   304   /// \code
   305   /// std::vector<Edge> tree(53);
   306   /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin());
   307   /// \endcode
   308   /// Or if we don't know in advance the size of the tree, we can write this.
   309   /// \code
   310   /// std::vector<Edge> tree;
   311   /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree));
   312   /// \endcode
   313   ///
   314   /// \return The cost of the found tree.
   315   ///
   316   /// \bug its name does not follow the coding style.
   317 
   318   template <class GR, class IN, class RET>
   319   inline
   320   typename IN::ValueType
   321   kruskalEdgeMap_IteratorOut(const GR& G,
   322 			     const IN& in,
   323 			     RET out)
   324   {
   325     KruskalSequenceOutput<RET> _out(out);
   326     return kruskal(G, KruskalMapInput<GR,IN>(G, in), _out);
   327   }
   328 
   329   /// @}
   330 
   331 } //namespace hugo
   332 
   333 #endif //HUGO_KRUSKAL_H