Some modification in the documentation.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_JOHNSON_H
20 #define LEMON_JOHNSON_H
24 /// \brief Johnson algorithm.
27 #include <lemon/list_graph.h>
28 #include <lemon/graph_utils.h>
29 #include <lemon/dijkstra.h>
30 #include <lemon/bellman_ford.h>
31 #include <lemon/bits/invalid.h>
32 #include <lemon/error.h>
33 #include <lemon/maps.h>
34 #include <lemon/matrix_maps.h>
40 /// \brief Default OperationTraits for the Johnson algorithm class.
42 /// It defines all computational operations and constants which are
43 /// used in the Floyd-Warshall algorithm. The default implementation
44 /// is based on the numeric_limits class. If the numeric type does not
45 /// have infinity value then the maximum value is used as extremal
49 bool has_infinity = std::numeric_limits<Value>::has_infinity>
50 struct JohnsonDefaultOperationTraits {
51 /// \brief Gives back the zero value of the type.
53 return static_cast<Value>(0);
55 /// \brief Gives back the positive infinity value of the type.
56 static Value infinity() {
57 return std::numeric_limits<Value>::infinity();
59 /// \brief Gives back the sum of the given two elements.
60 static Value plus(const Value& left, const Value& right) {
63 /// \brief Gives back true only if the first value less than the second.
64 static bool less(const Value& left, const Value& right) {
69 template <typename Value>
70 struct JohnsonDefaultOperationTraits<Value, false> {
72 return static_cast<Value>(0);
74 static Value infinity() {
75 return std::numeric_limits<Value>::max();
77 static Value plus(const Value& left, const Value& right) {
78 if (left == infinity() || right == infinity()) return infinity();
81 static bool less(const Value& left, const Value& right) {
86 /// \brief Default traits class of Johnson class.
88 /// Default traits class of Johnson class.
89 /// \param _Graph Graph type.
90 /// \param _LegthMap Type of length map.
91 template<class _Graph, class _LengthMap>
92 struct JohnsonDefaultTraits {
93 /// The graph type the algorithm runs on.
96 /// \brief The type of the map that stores the edge lengths.
98 /// The type of the map that stores the edge lengths.
99 /// It must meet the \ref concept::ReadMap "ReadMap" concept.
100 typedef _LengthMap LengthMap;
102 // The type of the length of the edges.
103 typedef typename _LengthMap::Value Value;
105 /// \brief Operation traits for bellman-ford algorithm.
107 /// It defines the infinity type on the given Value type
108 /// and the used operation.
109 /// \see JohnsonDefaultOperationTraits
110 typedef JohnsonDefaultOperationTraits<Value> OperationTraits;
112 /// The cross reference type used by heap.
114 /// The cross reference type used by heap.
115 /// Usually it is \c Graph::NodeMap<int>.
116 typedef typename Graph::template NodeMap<int> HeapCrossRef;
118 ///Instantiates a HeapCrossRef.
120 ///This function instantiates a \ref HeapCrossRef.
121 /// \param graph is the graph, to which we would like to define the
123 static HeapCrossRef *createHeapCrossRef(const Graph& graph) {
124 return new HeapCrossRef(graph);
127 ///The heap type used by Dijkstra algorithm.
129 ///The heap type used by Dijkstra algorithm.
133 typedef BinHeap<typename Graph::Node, typename LengthMap::Value,
134 HeapCrossRef, std::less<Value> > Heap;
136 ///Instantiates a Heap.
138 ///This function instantiates a \ref Heap.
139 /// \param crossRef The cross reference for the heap.
140 static Heap *createHeap(HeapCrossRef& crossRef) {
141 return new Heap(crossRef);
144 /// \brief The type of the matrix map that stores the last edges of the
147 /// The type of the map that stores the last edges of the shortest paths.
148 /// It must be a matrix map with \c Graph::Edge value type.
150 typedef DynamicMatrixMap<Graph, typename Graph::Node,
151 typename Graph::Edge> PredMap;
153 /// \brief Instantiates a PredMap.
155 /// This function instantiates a \ref PredMap.
156 /// \param graph is the graph, to which we would like to define the PredMap.
157 /// \todo The graph alone may be insufficient for the initialization
158 static PredMap *createPredMap(const Graph& graph) {
159 return new PredMap(graph);
162 /// \brief The type of the matrix map that stores the dists of the nodes.
164 /// The type of the matrix map that stores the dists of the nodes.
165 /// It must meet the \ref concept::WriteMatrixMap "WriteMatrixMap" concept.
167 typedef DynamicMatrixMap<Graph, typename Graph::Node, Value> DistMap;
169 /// \brief Instantiates a DistMap.
171 /// This function instantiates a \ref DistMap.
172 /// \param graph is the graph, to which we would like to define the
174 static DistMap *createDistMap(const _Graph& graph) {
175 return new DistMap(graph);
180 /// \brief %Johnson algorithm class.
182 /// \ingroup flowalgs
183 /// This class provides an efficient implementation of \c %Johnson
184 /// algorithm. The edge lengths are passed to the algorithm using a
185 /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any
188 /// The algorithm solves the shortest path problem for each pair
189 /// of node when the edges can have negative length but the graph should
190 /// not contain cycles with negative sum of length. If we can assume
191 /// that all edge is non-negative in the graph then the dijkstra algorithm
192 /// should be used from each node.
194 /// The complexity of this algorithm is \f$ O(n^2\log(n)+n\log(n)e) \f$ or
195 /// with fibonacci heap \f$ O(n^2\log(n)+ne) \f$. Usually the fibonacci heap
196 /// implementation is slower than either binary heap implementation or the
197 /// Floyd-Warshall algorithm.
199 /// The type of the length is determined by the
200 /// \ref concept::ReadMap::Value "Value" of the length map.
202 /// \param _Graph The graph type the algorithm runs on. The default value
203 /// is \ref ListGraph. The value of _Graph is not used directly by
204 /// Johnson, it is only passed to \ref JohnsonDefaultTraits.
205 /// \param _LengthMap This read-only EdgeMap determines the lengths of the
206 /// edges. It is read once for each edge, so the map may involve in
207 /// relatively time consuming process to compute the edge length if
208 /// it is necessary. The default map type is \ref
209 /// concept::Graph::EdgeMap "Graph::EdgeMap<int>". The value
210 /// of _LengthMap is not used directly by Johnson, it is only passed
211 /// to \ref JohnsonDefaultTraits. \param _Traits Traits class to set
212 /// various data types used by the algorithm. The default traits
213 /// class is \ref JohnsonDefaultTraits
214 /// "JohnsonDefaultTraits<_Graph,_LengthMap>". See \ref
215 /// JohnsonDefaultTraits for the documentation of a Johnson traits
218 /// \author Balazs Dezso
221 template <typename _Graph, typename _LengthMap, typename _Traits>
223 template <typename _Graph=ListGraph,
224 typename _LengthMap=typename _Graph::template EdgeMap<int>,
225 typename _Traits=JohnsonDefaultTraits<_Graph,_LengthMap> >
230 /// \brief \ref Exception for uninitialized parameters.
232 /// This error represents problems in the initialization
233 /// of the parameters of the algorithms.
235 class UninitializedParameter : public lemon::UninitializedParameter {
237 virtual const char* exceptionName() const {
238 return "lemon::Johnson::UninitializedParameter";
242 typedef _Traits Traits;
243 ///The type of the underlying graph.
244 typedef typename _Traits::Graph Graph;
246 typedef typename Graph::Node Node;
247 typedef typename Graph::NodeIt NodeIt;
248 typedef typename Graph::Edge Edge;
249 typedef typename Graph::EdgeIt EdgeIt;
251 /// \brief The type of the length of the edges.
252 typedef typename _Traits::LengthMap::Value Value;
253 /// \brief The type of the map that stores the edge lengths.
254 typedef typename _Traits::LengthMap LengthMap;
255 /// \brief The type of the map that stores the last
256 /// edges of the shortest paths. The type of the PredMap
257 /// is a matrix map for Edges
258 typedef typename _Traits::PredMap PredMap;
259 /// \brief The type of the map that stores the dists of the nodes.
260 /// The type of the DistMap is a matrix map for Values
261 typedef typename _Traits::DistMap DistMap;
262 /// \brief The operation traits.
263 typedef typename _Traits::OperationTraits OperationTraits;
264 ///The cross reference type used for the current heap.
265 typedef typename _Traits::HeapCrossRef HeapCrossRef;
266 ///The heap type used by the dijkstra algorithm.
267 typedef typename _Traits::Heap Heap;
269 /// Pointer to the underlying graph.
271 /// Pointer to the length map
272 const LengthMap *length;
273 ///Pointer to the map of predecessors edges.
275 ///Indicates if \ref _pred is locally allocated (\c true) or not.
277 ///Pointer to the map of distances.
279 ///Indicates if \ref _dist is locally allocated (\c true) or not.
281 ///Pointer to the heap cross references.
282 HeapCrossRef *_heap_cross_ref;
283 ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
284 bool local_heap_cross_ref;
285 ///Pointer to the heap.
287 ///Indicates if \ref _heap is locally allocated (\c true) or not.
290 /// Creates the maps if necessary.
294 _pred = Traits::createPredMap(*graph);
298 _dist = Traits::createDistMap(*graph);
300 if (!_heap_cross_ref) {
301 local_heap_cross_ref = true;
302 _heap_cross_ref = Traits::createHeapCrossRef(*graph);
306 _heap = Traits::createHeap(*_heap_cross_ref);
312 /// \name Named template parameters
317 struct DefPredMapTraits : public Traits {
319 static PredMap *createPredMap(const Graph& graph) {
320 throw UninitializedParameter();
324 /// \brief \ref named-templ-param "Named parameter" for setting PredMap
326 /// \ref named-templ-param "Named parameter" for setting PredMap type
330 : public Johnson< Graph, LengthMap, DefPredMapTraits<T> > {
331 typedef Johnson< Graph, LengthMap, DefPredMapTraits<T> > Create;
335 struct DefDistMapTraits : public Traits {
337 static DistMap *createDistMap(const Graph& graph) {
338 throw UninitializedParameter();
341 /// \brief \ref named-templ-param "Named parameter" for setting DistMap
344 /// \ref named-templ-param "Named parameter" for setting DistMap type
348 : public Johnson< Graph, LengthMap, DefDistMapTraits<T> > {
349 typedef Johnson< Graph, LengthMap, DefDistMapTraits<T> > Create;
353 struct DefOperationTraitsTraits : public Traits {
354 typedef T OperationTraits;
357 /// \brief \ref named-templ-param "Named parameter" for setting
358 /// OperationTraits type
360 /// \ref named-templ-param "Named parameter" for setting
361 /// OperationTraits type
363 struct DefOperationTraits
364 : public Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > {
365 typedef Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > Create;
368 template <class H, class CR>
369 struct DefHeapTraits : public Traits {
370 typedef CR HeapCrossRef;
372 static HeapCrossRef *createHeapCrossRef(const Graph &) {
373 throw UninitializedParameter();
375 static Heap *createHeap(HeapCrossRef &)
377 throw UninitializedParameter();
380 ///\brief \ref named-templ-param "Named parameter" for setting heap and
381 ///cross reference type
383 ///\ref named-templ-param "Named parameter" for setting heap and cross
386 template <class H, class CR = typename Graph::template NodeMap<int> >
388 : public Johnson< Graph, LengthMap, DefHeapTraits<H, CR> > {
389 typedef Johnson< Graph, LengthMap, DefHeapTraits<H, CR> > Create;
392 template <class H, class CR>
393 struct DefStandardHeapTraits : public Traits {
394 typedef CR HeapCrossRef;
396 static HeapCrossRef *createHeapCrossRef(const Graph &G) {
397 return new HeapCrossRef(G);
399 static Heap *createHeap(HeapCrossRef &R)
404 ///\ref named-templ-param "Named parameter" for setting heap and cross
405 ///reference type with automatic allocation
407 ///\ref named-templ-param "Named parameter" for setting heap and cross
408 ///reference type. It can allocate the heap and the cross reference
409 ///object if the cross reference's constructor waits for the graph as
410 ///parameter and the heap's constructor waits for the cross reference.
411 template <class H, class CR = typename Graph::template NodeMap<int> >
412 struct DefStandardHeap
413 : public Johnson< Graph, LengthMap, DefStandardHeapTraits<H, CR> > {
414 typedef Johnson< Graph, LengthMap, DefStandardHeapTraits<H, CR> >
426 typedef Johnson Create;
428 /// \brief Constructor.
430 /// \param _graph the graph the algorithm will run on.
431 /// \param _length the length map used by the algorithm.
432 Johnson(const Graph& _graph, const LengthMap& _length) :
433 graph(&_graph), length(&_length),
434 _pred(0), local_pred(false),
435 _dist(0), local_dist(false),
436 _heap_cross_ref(0), local_heap_cross_ref(false),
437 _heap(0), local_heap(false) {}
441 if (local_pred) delete _pred;
442 if (local_dist) delete _dist;
443 if (local_heap_cross_ref) delete _heap_cross_ref;
444 if (local_heap) delete _heap;
447 /// \brief Sets the length map.
449 /// Sets the length map.
450 /// \return \c (*this)
451 Johnson &lengthMap(const LengthMap &m) {
456 /// \brief Sets the map storing the predecessor edges.
458 /// Sets the map storing the predecessor edges.
459 /// If you don't use this function before calling \ref run(),
460 /// it will allocate one. The destuctor deallocates this
461 /// automatically allocated map, of course.
462 /// \return \c (*this)
463 Johnson &predMap(PredMap &m) {
472 /// \brief Sets the map storing the distances calculated by the algorithm.
474 /// Sets the map storing the distances calculated by the algorithm.
475 /// If you don't use this function before calling \ref run(),
476 /// it will allocate one. The destuctor deallocates this
477 /// automatically allocated map, of course.
478 /// \return \c (*this)
479 Johnson &distMap(DistMap &m) {
490 ///\name Execution control
491 /// The simplest way to execute the algorithm is to use
492 /// one of the member functions called \c run(...).
494 /// If you need more control on the execution,
495 /// Finally \ref start() will perform the actual path
500 /// \brief Initializes the internal data structures.
502 /// Initializes the internal data structures.
507 /// \brief Executes the algorithm with own potential map.
509 /// This method runs the %Johnson algorithm in order to compute
510 /// the shortest path to each node pairs. The potential map
511 /// can be given for this algorithm which usually calculated
512 /// by the Bellman-Ford algorithm. If the graph does not have
513 /// negative length edge then this start function can be used
514 /// with constMap<Node, int>(0) parameter to omit the running time of
515 /// the Bellman-Ford.
516 /// The algorithm computes
517 /// - The shortest path tree for each node.
518 /// - The distance between each node pairs.
519 template <typename PotentialMap>
520 void shiftedStart(const PotentialMap& potential) {
521 typename Graph::template EdgeMap<Value> shiftlen(*graph);
522 for (EdgeIt it(*graph); it != INVALID; ++it) {
523 shiftlen[it] = (*length)[it]
524 + potential[graph->source(it)]
525 - potential[graph->target(it)];
528 typename Dijkstra<Graph, typename Graph::template EdgeMap<Value> >::
529 template DefHeap<Heap, HeapCrossRef>::
530 Create dijkstra(*graph, shiftlen);
532 dijkstra.heap(*_heap, *_heap_cross_ref);
534 for (NodeIt it(*graph); it != INVALID; ++it) {
536 for (NodeIt jt(*graph); jt != INVALID; ++jt) {
537 if (dijkstra.reached(jt)) {
538 _dist->set(it, jt, dijkstra.dist(jt) +
539 potential[jt] - potential[it]);
540 _pred->set(it, jt, dijkstra.predEdge(jt));
542 _dist->set(it, jt, OperationTraits::infinity());
543 _pred->set(it, jt, INVALID);
549 /// \brief Executes the algorithm.
551 /// This method runs the %Johnson algorithm in order to compute
552 /// the shortest path to each node pairs. The algorithm
554 /// - The shortest path tree for each node.
555 /// - The distance between each node pairs.
558 typedef typename BellmanFord<Graph, LengthMap>::
559 template DefOperationTraits<OperationTraits>::
560 template DefPredMap<NullMap<Node, Edge> >::
561 Create BellmanFordType;
563 BellmanFordType bellmanford(*graph, *length);
565 NullMap<Node, Edge> predMap;
567 bellmanford.predMap(predMap);
569 bellmanford.init(OperationTraits::zero());
572 shiftedStart(bellmanford.distMap());
575 /// \brief Executes the algorithm and checks the negatvie cycles.
577 /// This method runs the %Johnson algorithm in order to compute
578 /// the shortest path to each node pairs. If the graph contains
579 /// negative cycle it gives back false. The algorithm
581 /// - The shortest path tree for each node.
582 /// - The distance between each node pairs.
583 bool checkedStart() {
585 typedef typename BellmanFord<Graph, LengthMap>::
586 template DefOperationTraits<OperationTraits>::
587 template DefPredMap<NullMap<Node, Edge> >::
588 Create BellmanFordType;
590 BellmanFordType bellmanford(*graph, *length);
592 NullMap<Node, Edge> predMap;
594 bellmanford.predMap(predMap);
596 bellmanford.init(OperationTraits::zero());
597 if (!bellmanford.checkedStart()) return false;
599 shiftedStart(bellmanford.distMap());
604 /// \brief Runs %Johnson algorithm.
606 /// This method runs the %Johnson algorithm from a each node
607 /// in order to compute the shortest path to each node pairs.
608 /// The algorithm computes
609 /// - The shortest path tree for each node.
610 /// - The distance between each node pairs.
612 /// \note d.run(s) is just a shortcut of the following code.
624 /// \name Query Functions
625 /// The result of the %Johnson algorithm can be obtained using these
627 /// Before the use of these functions,
628 /// either run() or start() must be called.
632 /// \brief Copies the shortest path to \c t into \c p
634 /// This function copies the shortest path to \c t into \c p.
635 /// If it \c t is a source itself or unreachable, then it does not
637 /// \return Returns \c true if a path to \c t was actually copied to \c p,
638 /// \c false otherwise.
640 template <typename Path>
641 bool getPath(Path &p, Node source, Node target) {
642 if (connected(source, target)) {
644 typename Path::Builder b(target);
645 for(b.setStartNode(target); predEdge(source, target) != INVALID;
646 target = predNode(target)) {
647 b.pushFront(predEdge(source, target));
655 /// \brief The distance between two nodes.
657 /// Returns the distance between two nodes.
658 /// \pre \ref run() must be called before using this function.
659 /// \warning If node \c v in unreachable from the root the return value
660 /// of this funcion is undefined.
661 Value dist(Node source, Node target) const {
662 return (*_dist)(source, target);
665 /// \brief Returns the 'previous edge' of the shortest path tree.
667 /// For the node \c node it returns the 'previous edge' of the shortest
668 /// path tree to direction of the node \c root
669 /// i.e. it returns the last edge of a shortest path from the node \c root
670 /// to \c node. It is \ref INVALID if \c node is unreachable from the root
671 /// or if \c node=root. The shortest path tree used here is equal to the
672 /// shortest path tree used in \ref predNode().
673 /// \pre \ref run() must be called before using this function.
674 Edge predEdge(Node root, Node node) const {
675 return (*_pred)(root, node);
678 /// \brief Returns the 'previous node' of the shortest path tree.
680 /// For a node \c node it returns the 'previous node' of the shortest path
681 /// tree to direction of the node \c root, i.e. it returns the last but
682 /// one node from a shortest path from the \c root to \c node. It is
683 /// INVALID if \c node is unreachable from the root or if \c node=root.
684 /// The shortest path tree used here is equal to the
685 /// shortest path tree used in \ref predEdge().
686 /// \pre \ref run() must be called before using this function.
687 Node predNode(Node root, Node node) const {
688 return (*_pred)(root, node) == INVALID ?
689 INVALID : graph->source((*_pred)(root, node));
692 /// \brief Returns a reference to the matrix node map of distances.
694 /// Returns a reference to the matrix node map of distances.
696 /// \pre \ref run() must be called before using this function.
697 const DistMap &distMap() const { return *_dist;}
699 /// \brief Returns a reference to the shortest path tree map.
701 /// Returns a reference to the matrix node map of the edges of the
702 /// shortest path tree.
703 /// \pre \ref run() must be called before using this function.
704 const PredMap &predMap() const { return *_pred;}
706 /// \brief Checks if a node is reachable from the root.
708 /// Returns \c true if \c v is reachable from the root.
709 /// \pre \ref run() must be called before using this function.
711 bool connected(Node source, Node target) {
712 return (*_dist)(source, target) != OperationTraits::infinity();
718 } //END OF NAMESPACE LEMON