lemon/polynomial.h
author alpar
Thu, 09 Nov 2006 00:19:53 +0000
changeset 2297 49c8d69c0640
parent 2199 1229af45cc69
child 2386 81b47fc5c444
permissions -rw-r--r--
Test the automatic compilation checker 2/3: wrong commit
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_BEZIER_H
    20 #define LEMON_BEZIER_H
    21 
    22 ///\ingroup misc
    23 ///\file
    24 ///\brief A simple class implementing polynomials.
    25 ///
    26 ///\author Alpar Juttner
    27 
    28 #include<vector>
    29 
    30 namespace lemon {
    31 
    32   /// \addtogroup misc
    33   /// @{
    34 
    35   ///Simple polinomial class
    36 
    37   ///This class implements a polynomial where the coefficients are of
    38   ///type \c T.
    39   ///
    40   ///The coefficients are stored in an std::vector.
    41   template<class T>
    42   class Polynomial
    43   {
    44     std::vector<T> _coeff;
    45   public:
    46     ///Construct a polynomial of degree \c d.
    47     explicit Polynomial(int d=0) : _coeff(d+1) {}
    48     ///\e
    49     template<class U> Polynomial(const U &u) : _coeff(1,u) {}
    50     ///\e
    51     template<class U> Polynomial(const Polynomial<U> &u) : _coeff(u.deg()+1)
    52     {
    53       for(int i=0;i<(int)_coeff.size();i++) _coeff[i]=u[i];
    54     }
    55     ///Query the degree of the polynomial.
    56     
    57     ///Query the degree of the polynomial.
    58     ///\warning This number differs from real degree of the polinomial if
    59     ///the coefficient of highest degree is 0.
    60     int deg() const { return _coeff.size()-1; }
    61     ///Set the degree of the polynomial.
    62 
    63     ///Set the degree of the polynomial. In fact it resizes the
    64     ///coefficient vector.
    65     void deg(int d) { _coeff.resize(d+1);}
    66 
    67     ///Returns (as a reference) the coefficient of degree \c d.
    68     typename std::vector<T>::reference operator[](int d) { return _coeff[d]; }
    69     ///Returns (as a const reference) the coefficient of degree \c d.
    70     typename std::vector<T>::const_reference
    71     operator[](int d) const {return _coeff[d];}
    72     
    73     ///Substitute the value u into the polinomial.
    74 
    75     ///Substitute the value u into the polinomial.
    76     ///The calculation will be done using type \c R.
    77     ///The following examples shows the usage of the template parameter \c R.
    78     ///\code
    79     ///  Polynomial<dim2::Point<double> > line(1);
    80     ///  line[0]=dim2::Point<double>(12,25);
    81     ///  line[1]=dim2::Point<double>(2,7);
    82     ///  ...
    83     ///  dim2::Point<double> d = line.subst<dim2::Point<double> >(23.2);
    84     ///\endcode
    85     ///
    86     ///\code
    87     ///  Polynomial<double> p;
    88     ///  Polynomial<double> q;
    89     ///  ...
    90     ///  Polynomial<double> s = p.subst<Polynomial<double> >(q);
    91     ///\endcode
    92     template<class R,class U>
    93     R subst(const U &u) const
    94     {
    95       typename std::vector<T>::const_reverse_iterator i=_coeff.rbegin();
    96       R v=*i;
    97       for(++i;i!=_coeff.rend();++i) v=v*u+*i;
    98       return v;
    99     }
   100     ///Substitute the value u into the polinomial.
   101 
   102     ///Substitute the value u into the polinomial.
   103     ///The calculation will be done using type \c T
   104     ///(i.e. using the type of the coefficients.)
   105     template<class U>
   106     T operator()(const U &u) const 
   107     {
   108       return subst<T>(u);
   109     }
   110     
   111     ///Derivate the polynomial (in place)
   112     Polynomial &derivateMyself()
   113     {
   114       for(int i=1;i<(int)_coeff.size();i++) _coeff[i-1]=i*_coeff[i];
   115       _coeff.pop_back();
   116       return *this;
   117     }
   118     
   119     ///Return the derivate of the polynomial
   120     Polynomial derivate() const
   121     {
   122       Polynomial tmp(deg()-1);
   123       for(int i=1;i<(int)_coeff.size();i++) tmp[i-1]=i*_coeff[i];
   124       return tmp;
   125     }
   126 
   127     ///Integrate the polynomial (in place)
   128     Polynomial &integrateMyself()
   129     {
   130       _coeff.push_back(T());
   131       for(int i=_coeff.size()-1;i>0;i--) _coeff[i]=_coeff[i-1]/i;
   132       _coeff[0]=0;
   133       return *this;
   134     }
   135     
   136     ///Return the integrate of the polynomial
   137     Polynomial integrate() const
   138     {
   139       Polynomial tmp(deg()+1);
   140       tmp[0]=0;
   141       for(int i=0;i<(int)_coeff.size();i++) tmp[i+1]=_coeff[i]/(i+1);
   142       return tmp;
   143     }
   144 
   145     ///\e
   146     template<class U>
   147     Polynomial &operator+=(const Polynomial<U> &p)
   148     {
   149       if(p.deg()>deg()) _coeff.resize(p.deg()+1);
   150       for(int i=0;i<=(int)std::min(deg(),p.deg());i++)
   151 	_coeff[i]+=p[i];
   152       return *this;
   153     }
   154     ///\e
   155     template<class U>
   156     Polynomial &operator-=(const Polynomial<U> &p)
   157     {
   158       if(p.deg()>deg()) _coeff.resize(p.deg()+1);
   159       for(int i=0;i<=std::min(deg(),p.deg());i++) _coeff[i]-=p[i];
   160       return *this;
   161     }
   162     ///\e
   163     template<class U>
   164     Polynomial &operator+=(const U &u)
   165     {
   166       _coeff[0]+=u;
   167       return *this;
   168     }
   169     ///\e
   170     template<class U>
   171     Polynomial &operator-=(const U &u)
   172     {
   173       _coeff[0]+=u;
   174       return *this;
   175     }
   176     ///\e
   177     template<class U>
   178     Polynomial &operator*=(const U &u)
   179     {
   180       for(typename std::vector<T>::iterator i=_coeff.begin();i!=_coeff.end();++i)
   181 	*i*=u;
   182       return *this;
   183     }
   184     ///\e
   185     template<class U>
   186     Polynomial &operator/=(const U &u)
   187     {
   188       for(typename std::vector<T>::iterator i=_coeff.begin();i!=_coeff.end();++i)
   189 	*i/=u;
   190       return *this;
   191     }
   192 
   193   };
   194   
   195   ///Equality comparison
   196 
   197   ///\relates Polynomial
   198   ///\warning Two polynomials are defined to be unequal if their degrees differ,
   199   ///even if the non-zero coefficients are the same.
   200   template<class U,class V>
   201   bool operator==(const Polynomial<U> &u,const Polynomial<V> &v)
   202   {
   203     if(u.deg()!=v.deg()) return false;
   204     for(int i=0;i<=u.deg();i++) if(u[i]!=v[i]) return false;
   205     return true;
   206   }
   207 
   208   ///Non-equality comparison
   209 
   210   ///\relates Polynomial
   211   ///\warning Two polynomials are defined to be unequal if their degrees differ,
   212   ///even if the non-zero coefficients are the same.
   213   template<class U,class V>
   214   bool operator!=(const Polynomial<U> &u,const Polynomial<V> &v)
   215   {
   216     return !(u==v);
   217   }
   218 
   219   ///\e
   220 
   221   ///\relates Polynomial
   222   ///
   223   template<class U,class V>
   224   Polynomial<U> operator+(const Polynomial<U> &u,const Polynomial<V> &v)
   225   {
   226     Polynomial<U> tmp=u;
   227     tmp+=v;
   228     return tmp;
   229   }
   230 
   231   ///\e
   232 
   233   ///\relates Polynomial
   234   ///
   235   template<class U,class V>
   236   Polynomial<U> operator-(const Polynomial<U> &u,const Polynomial<V> &v)
   237   {
   238     Polynomial<U> tmp=u;
   239     tmp-=v;
   240     return tmp;
   241   }
   242 
   243   ///\e
   244 
   245   ///\relates Polynomial
   246   ///
   247   template<class U,class V>
   248   Polynomial<U> operator*(const Polynomial<U> &u,const Polynomial<V> &v)
   249   {
   250     Polynomial<U> tmp(u.deg()+v.deg());
   251     for(int i=0;i<=v.deg();i++)
   252       for(int j=0;j<=u.deg();j++)
   253 	tmp[i+j]+=v[i]*u[j];
   254     return tmp;
   255   }
   256   ///\e
   257 
   258   ///\relates Polynomial
   259   ///
   260   template<class U,class V>
   261   Polynomial<U> operator+(const Polynomial<U> &u,const V &v)
   262   {
   263     Polynomial<U> tmp=u;
   264     tmp+=v;
   265     return tmp;
   266   }
   267   ///\e
   268 
   269   ///\relates Polynomial
   270   ///
   271   template<class U,class V>
   272   Polynomial<U> operator+(const V &v,const Polynomial<U> &u)
   273   {
   274     Polynomial<U> tmp=u;
   275     tmp+=v;
   276     return tmp;
   277   }
   278   ///\e
   279 
   280   ///\relates Polynomial
   281   ///
   282   template<class U,class V>
   283   Polynomial<U> operator-(const Polynomial<U> &u,const V &v)
   284   {
   285     Polynomial<U> tmp=u;
   286     tmp-=v;
   287     return tmp;
   288   }
   289   ///\e
   290 
   291   ///\relates Polynomial
   292   ///
   293   template<class U>
   294   Polynomial<U> operator-(const Polynomial<U> &u)
   295   {
   296     Polynomial<U> tmp(u.deg());
   297     for(int i=0;i<=u.deg();i++) tmp[i]=-u[i];
   298     return tmp;
   299   }
   300   ///\e
   301 
   302   ///\relates Polynomial
   303   ///
   304   template<class U,class V>
   305   Polynomial<U> operator-(const V &v,const Polynomial<U> &u)
   306   {
   307     Polynomial<U> tmp=-u;
   308     tmp+=v;
   309     return tmp;
   310   }
   311   ///\e
   312 
   313   ///\relates Polynomial
   314   ///
   315   template<class U,class V>
   316   Polynomial<U> operator*(const Polynomial<U> &u,const V &v)
   317   {
   318     Polynomial<U> tmp=u;
   319     tmp*=v;
   320     return tmp;
   321   }
   322   ///\e
   323 
   324   ///\relates Polynomial
   325   ///
   326   template<class U,class V>
   327   Polynomial<U> operator*(const V &v,const Polynomial<U> &u)
   328   {
   329     Polynomial<U> tmp=u;
   330     tmp*=v;
   331     return tmp;
   332   }
   333   ///\e
   334 
   335   ///\relates Polynomial
   336   ///
   337   template<class U,class V>
   338   Polynomial<U> operator/(const Polynomial<U> &u,const V &v)
   339   {
   340     Polynomial<U> tmp=u;
   341     tmp/=v;
   342     return tmp;
   343   }
   344     
   345   /// @}
   346 
   347 } //END OF NAMESPACE LEMON
   348 
   349 #endif // LEMON_POLYNOMIAL_H