src/lemon/lp_base.h
author ladanyi
Sun, 24 Apr 2005 22:26:37 +0000
changeset 1385 49d1ca28ebd8
parent 1379 96a34c0904dd
child 1397 30828157ae80
permissions -rw-r--r--
Don't set {GLPK,CPLEX}_{CFLAGS,LIBS} if the check fails.
     1 /* -*- C++ -*-
     2  * src/lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_LP_BASE_H
    18 #define LEMON_LP_BASE_H
    19 
    20 #include<vector>
    21 #include<map>
    22 #include<limits>
    23 #include<math.h>
    24 
    25 #include<lemon/utility.h>
    26 #include<lemon/error.h>
    27 #include<lemon/invalid.h>
    28 
    29 //#include"lin_expr.h"
    30 
    31 ///\file
    32 ///\brief The interface of the LP solver interface.
    33 ///\ingroup gen_opt_group
    34 namespace lemon {
    35   
    36   ///Internal data structure to convert floating id's to fix one's
    37     
    38   ///\todo This might be implemented to be also usable in other places.
    39   class _FixId 
    40   {
    41     std::vector<int> index;
    42     std::vector<int> cross;
    43     int first_free;
    44   public:
    45     _FixId() : first_free(-1) {};
    46     ///Convert a floating id to a fix one
    47 
    48     ///\param n is a floating id
    49     ///\return the corresponding fix id
    50     int fixId(int n) {return cross[n];}
    51     ///Convert a fix id to a floating one
    52 
    53     ///\param n is a fix id
    54     ///\return the corresponding floating id
    55     int floatingId(int n) { return index[n];}
    56     ///Add a new floating id.
    57 
    58     ///\param n is a floating id
    59     ///\return the fix id of the new value
    60     ///\todo Multiple additions should also be handled.
    61     int insert(int n)
    62     {
    63       if(n>=int(cross.size())) {
    64 	cross.resize(n+1);
    65 	if(first_free==-1) {
    66 	  cross[n]=index.size();
    67 	  index.push_back(n);
    68 	}
    69 	else {
    70 	  cross[n]=first_free;
    71 	  int next=index[first_free];
    72 	  index[first_free]=n;
    73 	  first_free=next;
    74 	}
    75 	return cross[n];
    76       }
    77       ///\todo Create an own exception type.
    78       else throw LogicError(); //floatingId-s must form a continuous range;
    79     }
    80     ///Remove a fix id.
    81 
    82     ///\param n is a fix id
    83     ///
    84     void erase(int n) 
    85     {
    86       int fl=index[n];
    87       index[n]=first_free;
    88       first_free=n;
    89       for(int i=fl+1;i<int(cross.size());++i) {
    90 	cross[i-1]=cross[i];
    91 	index[cross[i]]--;
    92       }
    93       cross.pop_back();
    94     }
    95     ///An upper bound on the largest fix id.
    96 
    97     ///\todo Do we need this?
    98     ///
    99     std::size_t maxFixId() { return cross.size()-1; }
   100   
   101   };
   102     
   103   ///Common base class for LP solvers
   104   
   105   ///\todo Much more docs
   106   ///\ingroup gen_opt_group
   107   class LpSolverBase {
   108 
   109   public:
   110 
   111     ///\e
   112     enum SolveExitStatus {
   113       ///\e
   114       SOLVED = 0,
   115       ///\e
   116       UNSOLVED = 1
   117     };
   118       
   119     ///\e
   120     enum SolutionStatus {
   121       ///Feasible solution has'n been found (but may exist).
   122 
   123       ///\todo NOTFOUND might be a better name.
   124       ///
   125       UNDEFINED = 0,
   126       ///The problem has no feasible solution
   127       INFEASIBLE = 1,
   128       ///Feasible solution found
   129       FEASIBLE = 2,
   130       ///Optimal solution exists and found
   131       OPTIMAL = 3,
   132       ///The cost function is unbounded
   133 
   134       ///\todo Give a feasible solution and an infinite ray (and the
   135       ///corresponding bases)
   136       INFINITE = 4
   137     };
   138       
   139     ///The floating point type used by the solver
   140     typedef double Value;
   141     ///The infinity constant
   142     static const Value INF;
   143     ///The not a number constant
   144     static const Value NaN;
   145     
   146     ///Refer to a column of the LP.
   147 
   148     ///This type is used to refer to a column of the LP.
   149     ///
   150     ///Its value remains valid and correct even after the addition or erase of
   151     ///other columns.
   152     ///
   153     ///\todo Document what can one do with a Col (INVALID, comparing,
   154     ///it is similar to Node/Edge)
   155     class Col {
   156     protected:
   157       int id;
   158       friend class LpSolverBase;
   159     public:
   160       typedef Value ExprValue;
   161       typedef True LpSolverCol;
   162       Col() {}
   163       Col(const Invalid&) : id(-1) {}
   164       bool operator<(Col c) const  {return id<c.id;}
   165       bool operator==(Col c) const  {return id==c.id;}
   166       bool operator!=(Col c) const  {return id==c.id;}
   167     };
   168 
   169     ///Refer to a row of the LP.
   170 
   171     ///This type is used to refer to a row of the LP.
   172     ///
   173     ///Its value remains valid and correct even after the addition or erase of
   174     ///other rows.
   175     ///
   176     ///\todo Document what can one do with a Row (INVALID, comparing,
   177     ///it is similar to Node/Edge)
   178     class Row {
   179     protected:
   180       int id;
   181       friend class LpSolverBase;
   182     public:
   183       typedef Value ExprValue;
   184       typedef True LpSolverRow;
   185       Row() {}
   186       Row(const Invalid&) : id(-1) {}
   187       typedef True LpSolverRow;
   188       bool operator<(Row c) const  {return id<c.id;}
   189       bool operator==(Row c) const  {return id==c.id;}
   190       bool operator!=(Row c) const  {return id==c.id;} 
   191    };
   192     
   193     ///Linear expression of variables and a constant component
   194     
   195     ///This data structure strores a linear expression of the variables
   196     ///(\ref Col "Col"s) and also has a constant component.
   197     ///
   198     ///There are several ways to access and modify the contents of this
   199     ///container.
   200     ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   201     ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
   202     ///read and modify the coefficients like
   203     ///these.
   204     ///\code
   205     ///e[v]=5;
   206     ///e[v]+=12;
   207     ///e.erase(v);
   208     ///\endcode
   209     ///or you can also iterate through its elements.
   210     ///\code
   211     ///double s=0;
   212     ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   213     ///  s+=i->second;
   214     ///\endcode
   215     ///(This code computes the sum of all coefficients).
   216     ///- Numbers (<tt>double</tt>'s)
   217     ///and variables (\ref Col "Col"s) directly convert to an
   218     ///\ref Expr and the usual linear operations are defined so  
   219     ///\code
   220     ///v+w
   221     ///2*v-3.12*(v-w/2)+2
   222     ///v*2.1+(3*v+(v*12+w+6)*3)/2
   223     ///\endcode
   224     ///are valid \ref Expr "Expr"essions.
   225     ///The usual assignment operations are also defined.
   226     ///\code
   227     ///e=v+w;
   228     ///e+=2*v-3.12*(v-w/2)+2;
   229     ///e*=3.4;
   230     ///e/=5;
   231     ///\endcode
   232     ///- The constant member can be set and read by \ref constComp()
   233     ///\code
   234     ///e.constComp()=12;
   235     ///double c=e.constComp();
   236     ///\endcode
   237     ///
   238     ///\note \ref clear() not only sets all coefficients to 0 but also
   239     ///clears the constant components.
   240     ///
   241     ///\sa Constr
   242     ///
   243     class Expr : public std::map<Col,Value>
   244     {
   245     public:
   246       typedef LpSolverBase::Col Key; 
   247       typedef LpSolverBase::Value Value;
   248       
   249     protected:
   250       typedef std::map<Col,Value> Base;
   251       
   252       Value const_comp;
   253   public:
   254       typedef True IsLinExpression;
   255       ///\e
   256       Expr() : Base(), const_comp(0) { }
   257       ///\e
   258       Expr(const Key &v) : const_comp(0) {
   259 	Base::insert(std::make_pair(v, 1));
   260       }
   261       ///\e
   262       Expr(const Value &v) : const_comp(v) {}
   263       ///\e
   264       void set(const Key &v,const Value &c) {
   265 	Base::insert(std::make_pair(v, c));
   266       }
   267       ///\e
   268       Value &constComp() { return const_comp; }
   269       ///\e
   270       const Value &constComp() const { return const_comp; }
   271       
   272       ///Removes the components with zero coefficient.
   273       void simplify() {
   274 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   275 	  Base::iterator j=i;
   276 	  ++j;
   277 	  if ((*i).second==0) Base::erase(i);
   278 	  j=i;
   279 	}
   280       }
   281 
   282       ///Sets all coefficients and the constant component to 0.
   283       void clear() {
   284 	Base::clear();
   285 	const_comp=0;
   286       }
   287 
   288       ///\e
   289       Expr &operator+=(const Expr &e) {
   290 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   291 	  (*this)[j->first]+=j->second;
   292 	///\todo it might be speeded up using "hints"
   293 	const_comp+=e.const_comp;
   294 	return *this;
   295       }
   296       ///\e
   297       Expr &operator-=(const Expr &e) {
   298 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   299 	  (*this)[j->first]-=j->second;
   300 	const_comp-=e.const_comp;
   301 	return *this;
   302       }
   303       ///\e
   304       Expr &operator*=(const Value &c) {
   305 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   306 	  j->second*=c;
   307 	const_comp*=c;
   308 	return *this;
   309       }
   310       ///\e
   311       Expr &operator/=(const Value &c) {
   312 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   313 	  j->second/=c;
   314 	const_comp/=c;
   315 	return *this;
   316       }
   317     };
   318     
   319     ///Linear constraint
   320 
   321     ///This data stucture represents a linear constraint in the LP.
   322     ///Basically it is a linear expression with a lower or an upper bound
   323     ///(or both). These parts of the constraint can be obtained by the member
   324     ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
   325     ///respectively.
   326     ///There are two ways to construct a constraint.
   327     ///- You can set the linear expression and the bounds directly
   328     ///  by the functions above.
   329     ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
   330     ///  are defined between expressions, or even between constraints whenever
   331     ///  it makes sense. Therefore if \c e and \c f are linear expressions and
   332     ///  \c s and \c t are numbers, then the followings are valid expressions
   333     ///  and thus they can be used directly e.g. in \ref addRow() whenever
   334     ///  it makes sense.
   335     ///  \code
   336     ///  e<=s
   337     ///  e<=f
   338     ///  s<=e<=t
   339     ///  e>=t
   340     ///  \endcode
   341     ///\warning The validity of a constraint is checked only at run time, so
   342     ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
   343     ///\ref LogicError exception.
   344     class Constr
   345     {
   346     public:
   347       typedef LpSolverBase::Expr Expr;
   348       typedef Expr::Key Key;
   349       typedef Expr::Value Value;
   350       
   351 //       static const Value INF;
   352 //       static const Value NaN;
   353 
   354     protected:
   355       Expr _expr;
   356       Value _lb,_ub;
   357     public:
   358       ///\e
   359       Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   360       ///\e
   361       Constr(Value lb,const Expr &e,Value ub) :
   362 	_expr(e), _lb(lb), _ub(ub) {}
   363       ///\e
   364       Constr(const Expr &e,Value ub) : 
   365 	_expr(e), _lb(NaN), _ub(ub) {}
   366       ///\e
   367       Constr(Value lb,const Expr &e) :
   368 	_expr(e), _lb(lb), _ub(NaN) {}
   369       ///\e
   370       Constr(const Expr &e) : 
   371 	_expr(e), _lb(NaN), _ub(NaN) {}
   372       ///\e
   373       void clear() 
   374       {
   375 	_expr.clear();
   376 	_lb=_ub=NaN;
   377       }
   378 
   379       ///Reference to the linear expression 
   380       Expr &expr() { return _expr; }
   381       ///Cont reference to the linear expression 
   382       const Expr &expr() const { return _expr; }
   383       ///Reference to the lower bound.
   384 
   385       ///\return
   386       ///- -\ref INF: the constraint is lower unbounded.
   387       ///- -\ref NaN: lower bound has not been set.
   388       ///- finite number: the lower bound
   389       Value &lowerBound() { return _lb; }
   390       ///The const version of \ref lowerBound()
   391       const Value &lowerBound() const { return _lb; }
   392       ///Reference to the upper bound.
   393 
   394       ///\return
   395       ///- -\ref INF: the constraint is upper unbounded.
   396       ///- -\ref NaN: upper bound has not been set.
   397       ///- finite number: the upper bound
   398       Value &upperBound() { return _ub; }
   399       ///The const version of \ref upperBound()
   400       const Value &upperBound() const { return _ub; }
   401       ///Is the constraint lower bounded?
   402       bool lowerBounded() const { 
   403 	using namespace std;
   404 	return isfinite(_lb);
   405       }
   406       ///Is the constraint upper bounded?
   407       bool upperBounded() const {
   408 	using namespace std;
   409 	return isfinite(_ub);
   410       }
   411     };
   412     
   413 
   414   protected:
   415     _FixId rows;
   416     _FixId cols;
   417 
   418     //Abstract virtual functions
   419     virtual LpSolverBase &_newLp() = 0;
   420     virtual LpSolverBase &_copyLp() = 0;
   421 
   422     virtual int _addCol() = 0;
   423     virtual int _addRow() = 0;
   424     virtual void _setRowCoeffs(int i, 
   425 			       int length,
   426                                int  const * indices, 
   427                                Value  const * values ) = 0;
   428     virtual void _setColCoeffs(int i, 
   429 			       int length,
   430                                int  const * indices, 
   431                                Value  const * values ) = 0;
   432     virtual void _setColLowerBound(int i, Value value) = 0;
   433     virtual void _setColUpperBound(int i, Value value) = 0;
   434     virtual void _setRowLowerBound(int i, Value value) = 0;
   435     virtual void _setRowUpperBound(int i, Value value) = 0;
   436     virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
   437     virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   438     virtual void _clearObj()=0;
   439 //     virtual void _setObj(int length,
   440 //                          int  const * indices, 
   441 //                          Value  const * values ) = 0;
   442     virtual SolveExitStatus _solve() = 0;
   443     virtual Value _getPrimal(int i) = 0;
   444     virtual Value _getPrimalValue() = 0;
   445     virtual SolutionStatus _getPrimalStatus() = 0;
   446     virtual void _setMax() = 0;
   447     virtual void _setMin() = 0;
   448     
   449     //Own protected stuff
   450     
   451     //Constant component of the objective function
   452     Value obj_const_comp;
   453     
   454 
   455 
   456     
   457   public:
   458 
   459     ///\e
   460     LpSolverBase() : obj_const_comp(0) {}
   461 
   462     ///\e
   463     virtual ~LpSolverBase() {}
   464 
   465     ///Creates a new LP problem
   466     LpSolverBase &newLp() {return _newLp();}
   467     ///Makes a copy of the LP problem
   468     LpSolverBase &copyLp() {return _copyLp();}
   469     
   470     ///\name Build up and modify of the LP
   471 
   472     ///@{
   473 
   474     ///Add a new empty column (i.e a new variable) to the LP
   475     Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
   476 
   477     ///\brief Adds several new columns
   478     ///(i.e a variables) at once
   479     ///
   480     ///This magic function takes a container as its argument
   481     ///and fills its elements
   482     ///with new columns (i.e. variables)
   483     ///\param t can be
   484     ///- a standard STL compatible iterable container with
   485     ///\ref Col as its \c values_type
   486     ///like
   487     ///\code
   488     ///std::vector<LpSolverBase::Col>
   489     ///std::list<LpSolverBase::Col>
   490     ///\endcode
   491     ///- a standard STL compatible iterable container with
   492     ///\ref Col as its \c mapped_type
   493     ///like
   494     ///\code
   495     ///std::map<AnyType,LpSolverBase::Col>
   496     ///\endcode
   497     ///- an iterable lemon \ref concept::WriteMap "write map" like 
   498     ///\code
   499     ///ListGraph::NodeMap<LpSolverBase::Col>
   500     ///ListGraph::EdgeMap<LpSolverBase::Col>
   501     ///\endcode
   502     ///\return The number of the created column.
   503 #ifdef DOXYGEN
   504     template<class T>
   505     int addColSet(T &t) { return 0;} 
   506 #else
   507     template<class T>
   508     typename enable_if<typename T::value_type::LpSolverCol,int>::type
   509     addColSet(T &t,dummy<0> = 0) {
   510       int s=0;
   511       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   512       return s;
   513     }
   514     template<class T>
   515     typename enable_if<typename T::value_type::second_type::LpSolverCol,
   516 		       int>::type
   517     addColSet(T &t,dummy<1> = 1) { 
   518       int s=0;
   519       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   520 	i->second=addCol();
   521 	s++;
   522       }
   523       return s;
   524     }
   525     template<class T>
   526     typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
   527 		       int>::type
   528     addColSet(T &t,dummy<2> = 2) { 
   529       ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
   530       int s=0;
   531       for(typename T::ValueSet::iterator i=t.valueSet().begin();
   532 	  i!=t.valueSet().end();
   533 	  ++i)
   534 	{
   535 	  *i=addCol();
   536 	  s++;
   537 	}
   538       return s;
   539     }
   540 #endif
   541 
   542     ///Add a new empty row (i.e a new constaint) to the LP
   543 
   544     ///This function adds a new empty row (i.e a new constaint) to the LP.
   545     ///\return The created row
   546     Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   547 
   548     ///Set a row (i.e a constaint) of the LP
   549 
   550     ///\param r is the row to be modified
   551     ///\param l is lower bound (-\ref INF means no bound)
   552     ///\param e is a linear expression (see \ref Expr)
   553     ///\param u is the upper bound (\ref INF means no bound)
   554     ///\bug This is a temportary function. The interface will change to
   555     ///a better one.
   556     ///\todo Option to control whether a constraint with a single variable is
   557     ///added or not.
   558     void setRow(Row r, Value l,const Expr &e, Value u) {
   559       std::vector<int> indices;
   560       std::vector<Value> values;
   561       indices.push_back(0);
   562       values.push_back(0);
   563       for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
   564 	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   565 	  indices.push_back(cols.floatingId((*i).first.id));
   566 	  values.push_back((*i).second);
   567 	}
   568       _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
   569 		    &indices[0],&values[0]);
   570       _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
   571       _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
   572     }
   573 
   574     ///Set a row (i.e a constaint) of the LP
   575 
   576     ///\param r is the row to be modified
   577     ///\param c is a linear expression (see \ref Constr)
   578     void setRow(Row r, const Constr &c) {
   579       setRow(r,
   580 	     c.lowerBounded()?c.lowerBound():-INF,
   581 	     c.expr(),
   582 	     c.upperBounded()?c.upperBound():INF);
   583     }
   584 
   585     ///Add a new row (i.e a new constaint) to the LP
   586 
   587     ///\param l is the lower bound (-\ref INF means no bound)
   588     ///\param e is a linear expression (see \ref Expr)
   589     ///\param u is the upper bound (\ref INF means no bound)
   590     ///\return The created row.
   591     ///\bug This is a temportary function. The interface will change to
   592     ///a better one.
   593     Row addRow(Value l,const Expr &e, Value u) {
   594       Row r=addRow();
   595       setRow(r,l,e,u);
   596       return r;
   597     }
   598 
   599     ///Add a new row (i.e a new constaint) to the LP
   600 
   601     ///\param c is a linear expression (see \ref Constr)
   602     ///\return The created row.
   603     Row addRow(const Constr &c) {
   604       Row r=addRow();
   605       setRow(r,c);
   606       return r;
   607     }
   608 
   609     /// Set the lower bound of a column (i.e a variable)
   610 
   611     /// The upper bound of a variable (column) has to be given by an 
   612     /// extended number of type Value, i.e. a finite number of type 
   613     /// Value or -\ref INF.
   614     void colLowerBound(Col c, Value value) {
   615       _setColLowerBound(cols.floatingId(c.id),value);
   616     }
   617     /// Set the upper bound of a column (i.e a variable)
   618 
   619     /// The upper bound of a variable (column) has to be given by an 
   620     /// extended number of type Value, i.e. a finite number of type 
   621     /// Value or \ref INF.
   622     void colUpperBound(Col c, Value value) {
   623       _setColUpperBound(cols.floatingId(c.id),value);
   624     };
   625     /// Set the lower and the upper bounds of a column (i.e a variable)
   626 
   627     /// The lower and the upper bounds of
   628     /// a variable (column) have to be given by an 
   629     /// extended number of type Value, i.e. a finite number of type 
   630     /// Value, -\ref INF or \ref INF.
   631     void colBounds(Col c, Value lower, Value upper) {
   632       _setColLowerBound(cols.floatingId(c.id),lower);
   633       _setColUpperBound(cols.floatingId(c.id),upper);
   634     }
   635     
   636     /// Set the lower bound of a row (i.e a constraint)
   637 
   638     /// The lower bound of a linear expression (row) has to be given by an 
   639     /// extended number of type Value, i.e. a finite number of type 
   640     /// Value or -\ref INF.
   641     void rowLowerBound(Row r, Value value) {
   642       _setRowLowerBound(rows.floatingId(r.id),value);
   643     };
   644     /// Set the upper bound of a row (i.e a constraint)
   645 
   646     /// The upper bound of a linear expression (row) has to be given by an 
   647     /// extended number of type Value, i.e. a finite number of type 
   648     /// Value or \ref INF.
   649     void rowUpperBound(Row r, Value value) {
   650       _setRowUpperBound(rows.floatingId(r.id),value);
   651     };
   652     /// Set the lower and the upper bounds of a row (i.e a variable)
   653 
   654     /// The lower and the upper bounds of
   655     /// a constraint (row) have to be given by an 
   656     /// extended number of type Value, i.e. a finite number of type 
   657     /// Value, -\ref INF or \ref INF.
   658     void rowBounds(Row c, Value lower, Value upper) {
   659       _setRowBounds(rows.floatingId(c.id),lower, upper);
   660       // _setRowUpperBound(rows.floatingId(c.id),upper);
   661     }
   662     
   663     ///Set an element of the objective function
   664     void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
   665     ///Set the objective function
   666     
   667     ///\param e is a linear expression of type \ref Expr.
   668     ///\bug The previous objective function is not cleared!
   669     void setObj(Expr e) {
   670       _clearObj();
   671       for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
   672 	objCoeff((*i).first,(*i).second);
   673       obj_const_comp=e.constComp();
   674     }
   675 
   676     ///Maximize
   677     void max() { _setMax(); }
   678     ///Minimize
   679     void min() { _setMin(); }
   680 
   681     
   682     ///@}
   683 
   684 
   685     ///\name Solve the LP
   686 
   687     ///@{
   688 
   689     ///\e
   690     SolveExitStatus solve() { return _solve(); }
   691     
   692     ///@}
   693     
   694     ///\name Obtain the solution
   695 
   696     ///@{
   697 
   698     ///\e
   699     SolutionStatus primalStatus() {
   700       return _getPrimalStatus();
   701     }
   702 
   703     ///\e
   704     Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
   705 
   706     ///\e
   707 
   708     ///\return
   709     ///- \ref INF or -\ref INF means either infeasibility or unboundedness
   710     /// of the primal problem, depending on whether we minimize or maximize.
   711     ///- \ref NaN if no primal solution is found.
   712     ///- The (finite) objective value if an optimal solution is found.
   713     Value primalValue() { return _getPrimalValue()+obj_const_comp;}
   714     ///@}
   715     
   716   };  
   717 
   718   ///\e
   719   
   720   ///\relates LpSolverBase::Expr
   721   ///
   722   inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
   723 				      const LpSolverBase::Expr &b) 
   724   {
   725     LpSolverBase::Expr tmp(a);
   726     tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   727     return tmp;
   728   }
   729   ///\e
   730   
   731   ///\relates LpSolverBase::Expr
   732   ///
   733   inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
   734 				      const LpSolverBase::Expr &b) 
   735   {
   736     LpSolverBase::Expr tmp(a);
   737     tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   738     return tmp;
   739   }
   740   ///\e
   741   
   742   ///\relates LpSolverBase::Expr
   743   ///
   744   inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
   745 				      const LpSolverBase::Value &b) 
   746   {
   747     LpSolverBase::Expr tmp(a);
   748     tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   749     return tmp;
   750   }
   751   
   752   ///\e
   753   
   754   ///\relates LpSolverBase::Expr
   755   ///
   756   inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
   757 				      const LpSolverBase::Expr &b) 
   758   {
   759     LpSolverBase::Expr tmp(b);
   760     tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
   761     return tmp;
   762   }
   763   ///\e
   764   
   765   ///\relates LpSolverBase::Expr
   766   ///
   767   inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
   768 				      const LpSolverBase::Value &b) 
   769   {
   770     LpSolverBase::Expr tmp(a);
   771     tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   772     return tmp;
   773   }
   774   
   775   ///\e
   776   
   777   ///\relates LpSolverBase::Constr
   778   ///
   779   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   780 					 const LpSolverBase::Expr &f) 
   781   {
   782     return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
   783   }
   784 
   785   ///\e
   786   
   787   ///\relates LpSolverBase::Constr
   788   ///
   789   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
   790 					 const LpSolverBase::Expr &f) 
   791   {
   792     return LpSolverBase::Constr(e,f);
   793   }
   794 
   795   ///\e
   796   
   797   ///\relates LpSolverBase::Constr
   798   ///
   799   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   800 					 const LpSolverBase::Value &f) 
   801   {
   802     return LpSolverBase::Constr(e,f);
   803   }
   804 
   805   ///\e
   806   
   807   ///\relates LpSolverBase::Constr
   808   ///
   809   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   810 					 const LpSolverBase::Expr &f) 
   811   {
   812     return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
   813   }
   814 
   815 
   816   ///\e
   817   
   818   ///\relates LpSolverBase::Constr
   819   ///
   820   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
   821 					 const LpSolverBase::Expr &f) 
   822   {
   823     return LpSolverBase::Constr(f,e);
   824   }
   825 
   826 
   827   ///\e
   828   
   829   ///\relates LpSolverBase::Constr
   830   ///
   831   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   832 					 const LpSolverBase::Value &f) 
   833   {
   834     return LpSolverBase::Constr(f,e);
   835   }
   836 
   837   ///\e
   838   
   839   ///\relates LpSolverBase::Constr
   840   ///
   841   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
   842 					 const LpSolverBase::Expr &f) 
   843   {
   844     return LpSolverBase::Constr(0,e-f,0);
   845   }
   846 
   847   ///\e
   848   
   849   ///\relates LpSolverBase::Constr
   850   ///
   851   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
   852 					 const LpSolverBase::Constr&c) 
   853   {
   854     LpSolverBase::Constr tmp(c);
   855     ///\todo Create an own exception type.
   856     if(!isnan(tmp.lowerBound())) throw LogicError();
   857     else tmp.lowerBound()=n;
   858     return tmp;
   859   }
   860   ///\e
   861   
   862   ///\relates LpSolverBase::Constr
   863   ///
   864   inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
   865 					 const LpSolverBase::Value &n)
   866   {
   867     LpSolverBase::Constr tmp(c);
   868     ///\todo Create an own exception type.
   869     if(!isnan(tmp.upperBound())) throw LogicError();
   870     else tmp.upperBound()=n;
   871     return tmp;
   872   }
   873 
   874   ///\e
   875   
   876   ///\relates LpSolverBase::Constr
   877   ///
   878   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
   879 					 const LpSolverBase::Constr&c) 
   880   {
   881     LpSolverBase::Constr tmp(c);
   882     ///\todo Create an own exception type.
   883     if(!isnan(tmp.upperBound())) throw LogicError();
   884     else tmp.upperBound()=n;
   885     return tmp;
   886   }
   887   ///\e
   888   
   889   ///\relates LpSolverBase::Constr
   890   ///
   891   inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
   892 					 const LpSolverBase::Value &n)
   893   {
   894     LpSolverBase::Constr tmp(c);
   895     ///\todo Create an own exception type.
   896     if(!isnan(tmp.lowerBound())) throw LogicError();
   897     else tmp.lowerBound()=n;
   898     return tmp;
   899   }
   900 
   901 
   902 } //namespace lemon
   903 
   904 #endif //LEMON_LP_BASE_H