lemon/johnson.h
author alpar
Thu, 06 Oct 2005 10:28:45 +0000
changeset 1713 49d22d34d95f
parent 1699 29428f7b8b66
child 1723 fb4f801dd692
permissions -rw-r--r--
Doc improvments
     1 /* -*- C++ -*-
     2  * lemon/johnson.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_JOHNSON_H
    18 #define LEMON_JOHNSON_H
    19 
    20 ///\ingroup flowalgs
    21 /// \file
    22 /// \brief Johnson algorithm.
    23 ///
    24 
    25 #include <lemon/list_graph.h>
    26 #include <lemon/graph_utils.h>
    27 #include <lemon/dijkstra.h>
    28 #include <lemon/belmann_ford.h>
    29 #include <lemon/invalid.h>
    30 #include <lemon/error.h>
    31 #include <lemon/maps.h>
    32 
    33 #include <limits>
    34 
    35 namespace lemon {
    36 
    37   /// \brief Default OperationTraits for the Johnson algorithm class.
    38   ///  
    39   /// It defines all computational operations and constants which are
    40   /// used in the Floyd-Warshall algorithm. The default implementation
    41   /// is based on the numeric_limits class. If the numeric type does not
    42   /// have infinity value then the maximum value is used as extremal
    43   /// infinity value.
    44   template <
    45     typename Value, 
    46     bool has_infinity = std::numeric_limits<Value>::has_infinity>
    47   struct JohnsonDefaultOperationTraits {
    48     /// \brief Gives back the zero value of the type.
    49     static Value zero() {
    50       return static_cast<Value>(0);
    51     }
    52     /// \brief Gives back the positive infinity value of the type.
    53     static Value infinity() {
    54       return std::numeric_limits<Value>::infinity();
    55     }
    56     /// \brief Gives back the sum of the given two elements.
    57     static Value plus(const Value& left, const Value& right) {
    58       return left + right;
    59     }
    60     /// \brief Gives back true only if the first value less than the second.
    61     static bool less(const Value& left, const Value& right) {
    62       return left < right;
    63     }
    64   };
    65 
    66   template <typename Value>
    67   struct JohnsonDefaultOperationTraits<Value, false> {
    68     static Value zero() {
    69       return static_cast<Value>(0);
    70     }
    71     static Value infinity() {
    72       return std::numeric_limits<Value>::max();
    73     }
    74     static Value plus(const Value& left, const Value& right) {
    75       if (left == infinity() || right == infinity()) return infinity();
    76       return left + right;
    77     }
    78     static bool less(const Value& left, const Value& right) {
    79       return left < right;
    80     }
    81   };
    82   
    83   /// \brief Default traits class of Johnson class.
    84   ///
    85   /// Default traits class of Johnson class.
    86   /// \param _Graph Graph type.
    87   /// \param _LegthMap Type of length map.
    88   template<class _Graph, class _LengthMap>
    89   struct JohnsonDefaultTraits {
    90     /// The graph type the algorithm runs on. 
    91     typedef _Graph Graph;
    92 
    93     /// \brief The type of the map that stores the edge lengths.
    94     ///
    95     /// The type of the map that stores the edge lengths.
    96     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    97     typedef _LengthMap LengthMap;
    98 
    99     // The type of the length of the edges.
   100     typedef typename _LengthMap::Value Value;
   101 
   102     /// \brief Operation traits for belmann-ford algorithm.
   103     ///
   104     /// It defines the infinity type on the given Value type
   105     /// and the used operation.
   106     /// \see JohnsonDefaultOperationTraits
   107     typedef JohnsonDefaultOperationTraits<Value> OperationTraits;
   108  
   109     /// \brief The type of the map that stores the last edges of the 
   110     /// shortest paths.
   111     /// 
   112     /// The type of the map that stores the last
   113     /// edges of the shortest paths.
   114     /// It must be a matrix map with \c Graph::Edge value type.
   115     ///
   116     typedef NodeMatrixMap<Graph, typename Graph::Edge> PredMap;
   117 
   118     /// \brief Instantiates a PredMap.
   119     /// 
   120     /// This function instantiates a \ref PredMap. 
   121     /// \param G is the graph, to which we would like to define the PredMap.
   122     /// \todo The graph alone may be insufficient for the initialization
   123     static PredMap *createPredMap(const _Graph& graph) {
   124       return new PredMap(graph);
   125     }
   126 
   127     /// \brief The type of the map that stores the dists of the nodes.
   128     ///
   129     /// The type of the map that stores the dists of the nodes.
   130     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   131     ///
   132     typedef NodeMatrixMap<Graph, Value> DistMap;
   133 
   134     /// \brief Instantiates a DistMap.
   135     ///
   136     /// This function instantiates a \ref DistMap. 
   137     /// \param G is the graph, to which we would like to define the 
   138     /// \ref DistMap
   139     static DistMap *createDistMap(const _Graph& graph) {
   140       return new DistMap(graph);
   141     }
   142 
   143   };
   144 
   145   /// \brief Johnson algorithm class.
   146   ///
   147   /// \ingroup flowalgs
   148   /// This class provides an efficient implementation of \c Johnson 
   149   /// algorithm. The edge lengths are passed to the algorithm using a
   150   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   151   /// kind of length.
   152   ///
   153   /// The type of the length is determined by the
   154   /// \ref concept::ReadMap::Value "Value" of the length map.
   155   ///
   156   /// \param _Graph The graph type the algorithm runs on. The default value
   157   /// is \ref ListGraph. The value of _Graph is not used directly by
   158   /// Johnson, it is only passed to \ref JohnsonDefaultTraits.
   159   /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   160   /// edges. It is read once for each edge, so the map may involve in
   161   /// relatively time consuming process to compute the edge length if
   162   /// it is necessary. The default map type is \ref
   163   /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   164   /// of _LengthMap is not used directly by Johnson, it is only passed 
   165   /// to \ref JohnsonDefaultTraits.  \param _Traits Traits class to set
   166   /// various data types used by the algorithm.  The default traits
   167   /// class is \ref JohnsonDefaultTraits
   168   /// "JohnsonDefaultTraits<_Graph,_LengthMap>".  See \ref
   169   /// JohnsonDefaultTraits for the documentation of a Johnson traits
   170   /// class.
   171   ///
   172   /// \author Balazs Dezso
   173 
   174 #ifdef DOXYGEN
   175   template <typename _Graph, typename _LengthMap, typename _Traits>
   176 #else
   177   template <typename _Graph=ListGraph,
   178 	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   179 	    typename _Traits=JohnsonDefaultTraits<_Graph,_LengthMap> >
   180 #endif
   181   class Johnson {
   182   public:
   183     
   184     /// \brief \ref Exception for uninitialized parameters.
   185     ///
   186     /// This error represents problems in the initialization
   187     /// of the parameters of the algorithms.
   188 
   189     class UninitializedParameter : public lemon::UninitializedParameter {
   190     public:
   191       virtual const char* exceptionName() const {
   192 	return "lemon::Johnson::UninitializedParameter";
   193       }
   194     };
   195 
   196     typedef _Traits Traits;
   197     ///The type of the underlying graph.
   198     typedef typename _Traits::Graph Graph;
   199 
   200     typedef typename Graph::Node Node;
   201     typedef typename Graph::NodeIt NodeIt;
   202     typedef typename Graph::Edge Edge;
   203     typedef typename Graph::EdgeIt EdgeIt;
   204     
   205     /// \brief The type of the length of the edges.
   206     typedef typename _Traits::LengthMap::Value Value;
   207     /// \brief The type of the map that stores the edge lengths.
   208     typedef typename _Traits::LengthMap LengthMap;
   209     /// \brief The type of the map that stores the last
   210     /// edges of the shortest paths. The type of the PredMap
   211     /// is a matrix map for Edges
   212     typedef typename _Traits::PredMap PredMap;
   213     /// \brief The type of the map that stores the dists of the nodes.
   214     /// The type of the DistMap is a matrix map for Values
   215     typedef typename _Traits::DistMap DistMap;
   216     /// \brief The operation traits.
   217     typedef typename _Traits::OperationTraits OperationTraits;
   218   private:
   219     /// Pointer to the underlying graph.
   220     const Graph *graph;
   221     /// Pointer to the length map
   222     const LengthMap *length;
   223     ///Pointer to the map of predecessors edges.
   224     PredMap *_pred;
   225     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   226     bool local_pred;
   227     ///Pointer to the map of distances.
   228     DistMap *_dist;
   229     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   230     bool local_dist;
   231 
   232     /// Creates the maps if necessary.
   233     void create_maps() {
   234       if(!_pred) {
   235 	local_pred = true;
   236 	_pred = Traits::createPredMap(*graph);
   237       }
   238       if(!_dist) {
   239 	local_dist = true;
   240 	_dist = Traits::createDistMap(*graph);
   241       }
   242     }
   243     
   244   public :
   245  
   246     /// \name Named template parameters
   247 
   248     ///@{
   249 
   250     template <class T>
   251     struct DefPredMapTraits : public Traits {
   252       typedef T PredMap;
   253       static PredMap *createPredMap(const Graph& graph) {
   254 	throw UninitializedParameter();
   255       }
   256     };
   257 
   258     /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   259     /// type
   260     /// \ref named-templ-param "Named parameter" for setting PredMap type
   261     ///
   262     template <class T>
   263     struct DefPredMap 
   264       : public Johnson< Graph, LengthMap, DefPredMapTraits<T> > {
   265       typedef Johnson< Graph, LengthMap, DefPredMapTraits<T> > Create;
   266     };
   267     
   268     template <class T>
   269     struct DefDistMapTraits : public Traits {
   270       typedef T DistMap;
   271       static DistMap *createDistMap(const Graph& graph) {
   272 	throw UninitializedParameter();
   273       }
   274     };
   275     /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   276     /// type
   277     ///
   278     /// \ref named-templ-param "Named parameter" for setting DistMap type
   279     ///
   280     template <class T>
   281     struct DefDistMap 
   282       : public Johnson< Graph, LengthMap, DefDistMapTraits<T> > {
   283       typedef Johnson< Graph, LengthMap, DefDistMapTraits<T> > Create;
   284     };
   285     
   286     template <class T>
   287     struct DefOperationTraitsTraits : public Traits {
   288       typedef T OperationTraits;
   289     };
   290     
   291     /// \brief \ref named-templ-param "Named parameter" for setting 
   292     /// OperationTraits type
   293     ///
   294     /// \ref named-templ-param "Named parameter" for setting 
   295     /// OperationTraits type
   296     template <class T>
   297     struct DefOperationTraits
   298       : public Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   299       typedef Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > Create;
   300     };
   301     
   302     ///@}
   303 
   304   protected:
   305 
   306     Johnson() {}
   307 
   308   public:      
   309     
   310     /// \brief Constructor.
   311     ///
   312     /// \param _graph the graph the algorithm will run on.
   313     /// \param _length the length map used by the algorithm.
   314     Johnson(const Graph& _graph, const LengthMap& _length) :
   315       graph(&_graph), length(&_length),
   316       _pred(0), local_pred(false),
   317       _dist(0), local_dist(false) {}
   318     
   319     ///Destructor.
   320     ~Johnson() {
   321       if(local_pred) delete _pred;
   322       if(local_dist) delete _dist;
   323     }
   324 
   325     /// \brief Sets the length map.
   326     ///
   327     /// Sets the length map.
   328     /// \return \c (*this)
   329     Johnson &lengthMap(const LengthMap &m) {
   330       length = &m;
   331       return *this;
   332     }
   333 
   334     /// \brief Sets the map storing the predecessor edges.
   335     ///
   336     /// Sets the map storing the predecessor edges.
   337     /// If you don't use this function before calling \ref run(),
   338     /// it will allocate one. The destuctor deallocates this
   339     /// automatically allocated map, of course.
   340     /// \return \c (*this)
   341     Johnson &predMap(PredMap &m) {
   342       if(local_pred) {
   343 	delete _pred;
   344 	local_pred=false;
   345       }
   346       _pred = &m;
   347       return *this;
   348     }
   349 
   350     /// \brief Sets the map storing the distances calculated by the algorithm.
   351     ///
   352     /// Sets the map storing the distances calculated by the algorithm.
   353     /// If you don't use this function before calling \ref run(),
   354     /// it will allocate one. The destuctor deallocates this
   355     /// automatically allocated map, of course.
   356     /// \return \c (*this)
   357     Johnson &distMap(DistMap &m) {
   358       if(local_dist) {
   359 	delete _dist;
   360 	local_dist=false;
   361       }
   362       _dist = &m;
   363       return *this;
   364     }
   365 
   366     ///\name Execution control
   367     /// The simplest way to execute the algorithm is to use
   368     /// one of the member functions called \c run(...).
   369     /// \n
   370     /// If you need more control on the execution,
   371     /// Finally \ref start() will perform the actual path
   372     /// computation.
   373 
   374     ///@{
   375 
   376     /// \brief Initializes the internal data structures.
   377     /// 
   378     /// Initializes the internal data structures.
   379     void init() {
   380       create_maps();
   381     }
   382     
   383     /// \brief Executes the algorithm.
   384     ///
   385     /// This method runs the %Johnson algorithm in order to compute 
   386     /// the shortest path to each node pairs. The algorithm 
   387     /// computes 
   388     /// - The shortest path tree for each node.
   389     /// - The distance between each node pairs.
   390     void start() {
   391       typedef typename BelmannFord<Graph, LengthMap>::
   392       template DefOperationTraits<OperationTraits>::
   393       template DefPredMap<NullMap<Node, Edge> >::
   394       Create BelmannFordType;
   395 
   396       BelmannFordType belmannford(*graph, *length);
   397 
   398       NullMap<Node, Edge> predMap;
   399 
   400       belmannford.predMap(predMap);
   401       
   402       belmannford.init(OperationTraits::zero());
   403       belmannford.start();
   404 
   405       for (NodeIt it(*graph); it != INVALID; ++it) {
   406 	typedef PotentialDifferenceMap<Graph, 
   407 	  typename BelmannFordType::DistMap> PotDiffMap;
   408 	PotDiffMap potdiff(*graph, belmannford.distMap());
   409 	typedef SubMap<LengthMap, PotDiffMap> ShiftLengthMap;
   410 	ShiftLengthMap shiftlen(*length, potdiff);
   411 	Dijkstra<Graph, ShiftLengthMap> dijkstra(*graph, shiftlen); 
   412 	dijkstra.run(it);
   413 	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   414 	  if (dijkstra.reached(jt)) {
   415 	    _dist->set(it, jt, dijkstra.dist(jt) + 
   416 		       belmannford.dist(jt) - belmannford.dist(it));
   417 	    _pred->set(it, jt, dijkstra.pred(jt));
   418 	  } else {
   419 	    _dist->set(it, jt, OperationTraits::infinity());
   420 	    _pred->set(it, jt, INVALID);
   421 	  }
   422 	}
   423       }
   424     }
   425     
   426     /// \brief Runs %Johnson algorithm.
   427     ///    
   428     /// This method runs the %Johnson algorithm from a each node
   429     /// in order to compute the shortest path to each node pairs. 
   430     /// The algorithm computes
   431     /// - The shortest path tree for each node.
   432     /// - The distance between each node pairs.
   433     ///
   434     /// \note d.run(s) is just a shortcut of the following code.
   435     /// \code
   436     ///  d.init();
   437     ///  d.start();
   438     /// \endcode
   439     void run() {
   440       init();
   441       start();
   442     }
   443     
   444     ///@}
   445 
   446     /// \name Query Functions
   447     /// The result of the %Johnson algorithm can be obtained using these
   448     /// functions.\n
   449     /// Before the use of these functions,
   450     /// either run() or start() must be called.
   451     
   452     ///@{
   453 
   454     /// \brief Copies the shortest path to \c t into \c p
   455     ///    
   456     /// This function copies the shortest path to \c t into \c p.
   457     /// If it \c t is a source itself or unreachable, then it does not
   458     /// alter \c p.
   459     /// \todo Is it the right way to handle unreachable nodes?
   460     /// \return Returns \c true if a path to \c t was actually copied to \c p,
   461     /// \c false otherwise.
   462     /// \sa DirPath
   463     template <typename Path>
   464     bool getPath(Path &p, Node source, Node target) {
   465       if (connected(source, target)) {
   466 	p.clear();
   467 	typename Path::Builder b(target);
   468 	for(b.setStartNode(target); pred(source, target) != INVALID;
   469 	    target = predNode(target)) {
   470 	  b.pushFront(pred(source, target));
   471 	}
   472 	b.commit();
   473 	return true;
   474       }
   475       return false;
   476     }
   477 	  
   478     /// \brief The distance between two nodes.
   479     ///
   480     /// Returns the distance between two nodes.
   481     /// \pre \ref run() must be called before using this function.
   482     /// \warning If node \c v in unreachable from the root the return value
   483     /// of this funcion is undefined.
   484     Value dist(Node source, Node target) const { 
   485       return (*_dist)(source, target); 
   486     }
   487 
   488     /// \brief Returns the 'previous edge' of the shortest path tree.
   489     ///
   490     /// For the node \c node it returns the 'previous edge' of the shortest 
   491     /// path tree to direction of the node \c root 
   492     /// i.e. it returns the last edge of a shortest path from the node \c root 
   493     /// to \c node. It is \ref INVALID if \c node is unreachable from the root
   494     /// or if \c node=root. The shortest path tree used here is equal to the 
   495     /// shortest path tree used in \ref predNode(). 
   496     /// \pre \ref run() must be called before using this function.
   497     /// \todo predEdge could be a better name.
   498     Edge pred(Node root, Node node) const { 
   499       return (*_pred)(root, node); 
   500     }
   501 
   502     /// \brief Returns the 'previous node' of the shortest path tree.
   503     ///
   504     /// For a node \c node it returns the 'previous node' of the shortest path 
   505     /// tree to direction of the node \c root, i.e. it returns the last but 
   506     /// one node from a shortest path from the \c root to \c node. It is 
   507     /// INVALID if \c node is unreachable from the root or if \c node=root. 
   508     /// The shortest path tree used here is equal to the 
   509     /// shortest path tree used in \ref pred().  
   510     /// \pre \ref run() must be called before using this function.
   511     Node predNode(Node root, Node node) const { 
   512       return (*_pred)(root, node) == INVALID ? 
   513       INVALID : graph->source((*_pred)(root, node)); 
   514     }
   515     
   516     /// \brief Returns a reference to the matrix node map of distances.
   517     ///
   518     /// Returns a reference to the matrix node map of distances. 
   519     ///
   520     /// \pre \ref run() must be called before using this function.
   521     const DistMap &distMap() const { return *_dist;}
   522  
   523     /// \brief Returns a reference to the shortest path tree map.
   524     ///
   525     /// Returns a reference to the matrix node map of the edges of the
   526     /// shortest path tree.
   527     /// \pre \ref run() must be called before using this function.
   528     const PredMap &predMap() const { return *_pred;}
   529  
   530     /// \brief Checks if a node is reachable from the root.
   531     ///
   532     /// Returns \c true if \c v is reachable from the root.
   533     /// \pre \ref run() must be called before using this function.
   534     ///
   535     bool connected(Node source, Node target) { 
   536       return (*_dist)(source, target) != OperationTraits::infinity(); 
   537     }
   538     
   539     ///@}
   540   };
   541  
   542 } //END OF NAMESPACE LEMON
   543 
   544 #endif