2 * src/lemon/maps.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Combinatorial Optimization Research Group, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
24 ///\brief Miscellaneous property maps
26 ///\todo This file has the same name as the concept file in concept/,
27 /// and this is not easily detectable in docs...
36 /// Base class of maps.
38 /// Base class of maps.
39 /// It provides the necessary <tt>typedef</tt>s required by the map concept.
40 template<typename K, typename T>
50 /// Null map. (a.k.a. DoNothingMap)
52 /// If you have to provide a map only for its type definitions,
53 /// or if you have to provide a writable map, but
54 /// data written to it will sent to <tt>/dev/null</tt>...
55 template<typename K, typename T>
56 class NullMap : public MapBase<K,T>
60 /// Gives back a default constructed element.
61 T operator[](const K&) const { return T(); }
62 /// Absorbs the value.
63 void set(const K&, const T&) {}
69 /// This is a readable map which assigns a specified value to each key.
70 /// In other aspects it is equivalent to the \ref NullMap.
71 /// \todo set could be used to set the value.
72 template<typename K, typename T>
73 class ConstMap : public MapBase<K,T>
78 /// Default constructor
80 /// The value of the map will be uninitialized.
81 /// (More exactly it will be default constructed.)
85 /// \param _v The initial value of the map.
87 ConstMap(const T &_v) : v(_v) {}
89 T operator[](const K&) const { return v; }
90 void set(const K&, const T&) {}
94 typedef ConstMap<K,T1> other;
98 ConstMap(const ConstMap<K,T1> &, const T &_v) : v(_v) {}
102 template<typename T, T v>
105 template<typename K, typename V, V v>
106 class ConstMap<K, Const<V, v> > : public MapBase<K, V>
110 V operator[](const K&) const { return v; }
111 void set(const K&, const V&) { }
114 /// \c std::map wrapper
116 /// This is essentially a wrapper for \c std::map. With addition that
117 /// you can specify a default value different from \c Value() .
119 /// \todo Provide allocator parameter...
120 template <typename K, typename T, typename Compare = std::less<K> >
121 class StdMap : public std::map<K,T,Compare> {
122 typedef std::map<K,T,Compare> parent;
124 typedef typename parent::value_type PairType;
129 typedef T& Reference;
130 typedef const T& ConstReference;
134 /// Constructor with specified default value
135 StdMap(const T& _v) : v(_v) {}
137 /// \brief Constructs the map from an appropriate std::map.
139 /// \warning Inefficient: copies the content of \c m !
140 StdMap(const parent &m) : parent(m) {}
141 /// \brief Constructs the map from an appropriate std::map, and explicitly
142 /// specifies a default value.
144 /// \warning Inefficient: copies the content of \c m !
145 StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
147 template<typename T1, typename Comp1>
148 StdMap(const StdMap<Key,T1,Comp1> &m, const T &_v) {
152 Reference operator[](const Key &k) {
153 return insert(PairType(k,v)).first -> second;
155 ConstReference operator[](const Key &k) const {
156 typename parent::iterator i = lower_bound(k);
157 if (i == parent::end() || parent::key_comp()(k, (*i).first))
161 void set(const Key &k, const T &t) {
162 parent::operator[](k) = t;
165 /// Changes the default value of the map.
166 /// \return Returns the previous default value.
168 /// \warning The value of some keys (which has already been queried, but
169 /// the value has been unchanged from the default) may change!
170 T setDefault(const T &_v) { T old=v; v=_v; return old; }
172 template<typename T1>
174 typedef StdMap<Key,T1,Compare> other;
181 ///This \ref concept::ReadMap "read only map" returns the sum of the two
182 ///given maps. Its \c Key and \c Value will be inherited from \c M1.
183 ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
185 template<class M1,class M2>
191 typedef typename M1::Key Key;
192 typedef typename M1::Value Value;
198 AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
199 Value operator[](Key k) const {return m1[k]+m2[k];}
202 ///Returns an \ref AddMap class
204 ///This function just returns an \ref AddMap class.
205 ///\todo How to call these type of functions?
208 ///\todo Wrong scope in Doxygen when \c \\relates is used
209 template<class M1,class M2>
210 inline AddMap<M1,M2> addMap(const M1 &m1,const M2 &m2)
212 return AddMap<M1,M2>(m1,m2);
215 ///Shift a maps with a constant.
217 ///This \ref concept::ReadMap "read only map" returns the sum of the
218 ///given map and a constant value.
219 ///Its \c Key and \c Value is inherited from \c M.
223 /// ShiftMap<X> sh(x,v);
225 ///it is equivalent with
227 /// ConstMap<X::Key, X::Value> c_tmp(v);
228 /// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
236 typedef typename M::Key Key;
237 typedef typename M::Value Value;
242 ///\param _m is the undelying map
243 ///\param _v is the shift value
244 ShiftMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
245 Value operator[](Key k) const {return m[k]+v;}
248 ///Returns an \ref ShiftMap class
250 ///This function just returns an \ref ShiftMap class.
252 ///\todo A better name is required.
254 inline ShiftMap<M> shiftMap(const M &m,const typename M::Value &v)
256 return ShiftMap<M>(m,v);
259 ///Difference of two maps
261 ///This \ref concept::ReadMap "read only map" returns the difference
262 ///of the values returned by the two
263 ///given maps. Its \c Key and \c Value will be inherited from \c M1.
264 ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
266 template<class M1,class M2>
272 typedef typename M1::Key Key;
273 typedef typename M1::Value Value;
279 SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
280 Value operator[](Key k) const {return m1[k]-m2[k];}
283 ///Returns a \ref SubMap class
285 ///This function just returns a \ref SubMap class.
288 template<class M1,class M2>
289 inline SubMap<M1,M2> subMap(const M1 &m1,const M2 &m2)
291 return SubMap<M1,M2>(m1,m2);
294 ///Product of two maps
296 ///This \ref concept::ReadMap "read only map" returns the product of the
297 ///values returned by the two
299 ///maps. Its \c Key and \c Value will be inherited from \c M1.
300 ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
302 template<class M1,class M2>
308 typedef typename M1::Key Key;
309 typedef typename M1::Value Value;
315 MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
316 Value operator[](Key k) const {return m1[k]*m2[k];}
319 ///Returns a \ref MulMap class
321 ///This function just returns a \ref MulMap class.
323 template<class M1,class M2>
324 inline MulMap<M1,M2> mulMap(const M1 &m1,const M2 &m2)
326 return MulMap<M1,M2>(m1,m2);
329 ///Scale a maps with a constant.
331 ///This \ref concept::ReadMap "read only map" returns the value of the
332 ///given map multipied with a constant value.
333 ///Its \c Key and \c Value is inherited from \c M.
337 /// ScaleMap<X> sc(x,v);
339 ///it is equivalent with
341 /// ConstMap<X::Key, X::Value> c_tmp(v);
342 /// MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
350 typedef typename M::Key Key;
351 typedef typename M::Value Value;
356 ///\param _m is the undelying map
357 ///\param _v is the scaling value
358 ScaleMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
359 Value operator[](Key k) const {return m[k]*v;}
362 ///Returns an \ref ScaleMap class
364 ///This function just returns an \ref ScaleMap class.
366 ///\todo A better name is required.
368 inline ScaleMap<M> scaleMap(const M &m,const typename M::Value &v)
370 return ScaleMap<M>(m,v);
373 ///Quotient of two maps
375 ///This \ref concept::ReadMap "read only map" returns the quotient of the
376 ///values returned by the two
377 ///given maps. Its \c Key and \c Value will be inherited from \c M1.
378 ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
380 template<class M1,class M2>
386 typedef typename M1::Key Key;
387 typedef typename M1::Value Value;
393 DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
394 Value operator[](Key k) const {return m1[k]/m2[k];}
397 ///Returns a \ref DivMap class
399 ///This function just returns a \ref DivMap class.
401 template<class M1,class M2>
402 inline DivMap<M1,M2> divMap(const M1 &m1,const M2 &m2)
404 return DivMap<M1,M2>(m1,m2);
407 ///Composition of two maps
409 ///This \ref concept::ReadMap "read only map" returns the composition of
411 ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
415 /// ComposeMap<M1,M2> cm(m1,m2);
417 /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
419 ///Its \c Key is inherited from \c M2 and its \c Value is from
421 ///The \c M2::Value must be convertible to \c M1::Key.
422 ///\todo Check the requirements.
424 template<class M1,class M2>
430 typedef typename M2::Key Key;
431 typedef typename M1::Value Value;
437 ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
438 Value operator[](Key k) const {return m1[m2[k]];}
441 ///Returns a \ref ComposeMap class
443 ///This function just returns a \ref ComposeMap class.
444 ///\relates ComposeMap
445 template<class M1,class M2>
446 inline ComposeMap<M1,M2> composeMap(const M1 &m1,const M2 &m2)
448 return ComposeMap<M1,M2>(m1,m2);
451 ///Negative value of a map
453 ///This \ref concept::ReadMap "read only map" returns the negative
455 ///value returned by the
456 ///given map. Its \c Key and \c Value will be inherited from \c M.
457 ///The unary \c - operator must be defined for \c Value, of course.
464 typedef typename M::Key Key;
465 typedef typename M::Value Value;
471 NegMap(const M &_m) : m(_m) {};
472 Value operator[](Key k) const {return -m[k];}
475 ///Returns a \ref NegMap class
477 ///This function just returns a \ref NegMap class.
480 inline NegMap<M> negMap(const M &m)
486 ///Absolute value of a map
488 ///This \ref concept::ReadMap "read only map" returns the absolute value
490 ///value returned by the
491 ///given map. Its \c Key and \c Value will be inherited
492 ///from <tt>M</tt>. <tt>Value</tt>
493 ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
494 ///operator must be defined for it, of course.
496 ///\bug We need a unified way to handle the situation below:
498 /// struct _UnConvertible {};
499 /// template<class A> inline A t_abs(A a) {return _UnConvertible();}
500 /// template<> inline int t_abs<>(int n) {return abs(n);}
501 /// template<> inline long int t_abs<>(long int n) {return labs(n);}
502 /// template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
503 /// template<> inline float t_abs<>(float n) {return fabsf(n);}
504 /// template<> inline double t_abs<>(double n) {return fabs(n);}
505 /// template<> inline long double t_abs<>(long double n) {return fabsl(n);}
514 typedef typename M::Key Key;
515 typedef typename M::Value Value;
521 AbsMap(const M &_m) : m(_m) {};
522 Value operator[](Key k) const {Value tmp=m[k]; return tmp>=0?tmp:-tmp;}
525 ///Returns a \ref AbsMap class
527 ///This function just returns a \ref AbsMap class.
530 inline AbsMap<M> absMap(const M &m)
540 #endif // LEMON_MAPS_H