src/lemon/graph_wrapper.h
author marci
Thu, 17 Feb 2005 15:14:13 +0000
changeset 1153 4b0468de3a31
parent 1019 ee01de62188d
child 1160 d9c32f713cad
permissions -rw-r--r--
if you have a nuclear power plant and wanna compute small magic squares, then let's do it
     1 /* -*- C++ -*-
     2  * src/lemon/graph_wrapper.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_GRAPH_WRAPPER_H
    18 #define LEMON_GRAPH_WRAPPER_H
    19 
    20 ///\ingroup gwrappers
    21 ///\file
    22 ///\brief Several graph wrappers.
    23 ///
    24 ///This file contains several useful graph wrapper functions.
    25 ///
    26 ///\author Marton Makai
    27 
    28 #include <lemon/invalid.h>
    29 #include <lemon/maps.h>
    30 #include <lemon/iterable_graph_extender.h>
    31 #include <iostream>
    32 
    33 namespace lemon {
    34 
    35   // Graph wrappers
    36 
    37   /*! \addtogroup gwrappers
    38     The main parts of LEMON are the different graph structures, 
    39     generic graph algorithms, graph concepts which couple these, and 
    40     graph wrappers. While the previous ones are more or less clear, the 
    41     latter notion needs further explanation.
    42     Graph wrappers are graph classes which serve for considering graph 
    43     structures in different ways. A short example makes the notion much 
    44     clearer. 
    45     Suppose that we have an instance \c g of a directed graph
    46     type say \c ListGraph and an algorithm 
    47     \code template<typename Graph> int algorithm(const Graph&); \endcode 
    48     is needed to run on the reversely oriented graph. 
    49     It may be expensive (in time or in memory usage) to copy 
    50     \c g with the reverse orientation. 
    51     Thus, a wrapper class
    52     \code template<typename Graph> class RevGraphWrapper; \endcode is used. 
    53     The code looks as follows
    54     \code
    55     ListGraph g;
    56     RevGraphWrapper<ListGraph> rgw(g);
    57     int result=algorithm(rgw);
    58     \endcode
    59     After running the algorithm, the original graph \c g 
    60     remains untouched. Thus the graph wrapper used above is to consider the 
    61     original graph with reverse orientation. 
    62     This techniques gives rise to an elegant code, and 
    63     based on stable graph wrappers, complex algorithms can be 
    64     implemented easily. 
    65     In flow, circulation and bipartite matching problems, the residual 
    66     graph is of particular importance. Combining a wrapper implementing 
    67     this, shortest path algorithms and minimum mean cycle algorithms, 
    68     a range of weighted and cardinality optimization algorithms can be 
    69     obtained. For lack of space, for other examples, 
    70     the interested user is referred to the detailed documentation of graph 
    71     wrappers. 
    72     The behavior of graph wrappers can be very different. Some of them keep 
    73     capabilities of the original graph while in other cases this would be 
    74     meaningless. This means that the concepts that they are a model of depend 
    75     on the graph wrapper, and the wrapped graph(s). 
    76     If an edge of \c rgw is deleted, this is carried out by 
    77     deleting the corresponding edge of \c g. But for a residual 
    78     graph, this operation has no sense. 
    79     Let we stand one more example here to simplify your work. 
    80     wrapper class
    81     \code template<typename Graph> class RevGraphWrapper; \endcode 
    82     has constructor 
    83     <tt> RevGraphWrapper(Graph& _g)</tt>. 
    84     This means that in a situation, 
    85     when a <tt> const ListGraph& </tt> reference to a graph is given, 
    86     then it have to be instantiated with <tt>Graph=const ListGraph</tt>.
    87     \code
    88     int algorithm1(const ListGraph& g) {
    89     RevGraphWrapper<const ListGraph> rgw(g);
    90     return algorithm2(rgw);
    91     }
    92     \endcode
    93 
    94     \addtogroup gwrappers
    95     @{
    96 
    97     Base type for the Graph Wrappers
    98 
    99     \warning Graph wrappers are in even more experimental state than the other
   100     parts of the lib. Use them at you own risk.
   101   
   102     This is the base type for most of LEMON graph wrappers. 
   103     This class implements a trivial graph wrapper i.e. it only wraps the 
   104     functions and types of the graph. The purpose of this class is to 
   105     make easier implementing graph wrappers. E.g. if a wrapper is 
   106     considered which differs from the wrapped graph only in some of its 
   107     functions or types, then it can be derived from GraphWrapper, and only the 
   108     differences should be implemented.
   109   
   110     \author Marton Makai 
   111   */
   112   template<typename _Graph>
   113   class GraphWrapperBase {
   114   public:
   115     typedef _Graph Graph;
   116     /// \todo Is it needed?
   117     typedef Graph BaseGraph;
   118     typedef Graph ParentGraph;
   119 
   120   protected:
   121     Graph* graph;
   122     GraphWrapperBase() : graph(0) { }
   123     void setGraph(Graph& _graph) { graph=&_graph; }
   124 
   125   public:
   126     GraphWrapperBase(Graph& _graph) : graph(&_graph) { }
   127  
   128     typedef typename Graph::Node Node;
   129     typedef typename Graph::Edge Edge;
   130    
   131     void first(Node& i) const { graph->first(i); }
   132     void first(Edge& i) const { graph->first(i); }
   133     void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
   134     void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
   135 
   136     void next(Node& i) const { graph->next(i); }
   137     void next(Edge& i) const { graph->next(i); }
   138     void nextIn(Edge& i) const { graph->nextIn(i); }
   139     void nextOut(Edge& i) const { graph->nextOut(i); }
   140 
   141     Node source(const Edge& e) const { return graph->source(e); }
   142     Node target(const Edge& e) const { return graph->target(e); }
   143 
   144     int nodeNum() const { return graph->nodeNum(); }
   145     int edgeNum() const { return graph->edgeNum(); }
   146   
   147     Node addNode() const { return Node(graph->addNode()); }
   148     Edge addEdge(const Node& source, const Node& target) const { 
   149       return Edge(graph->addEdge(source, target)); }
   150 
   151     void erase(const Node& i) const { graph->erase(i); }
   152     void erase(const Edge& i) const { graph->erase(i); }
   153   
   154     void clear() const { graph->clear(); }
   155     
   156     bool forward(const Edge& e) const { return graph->forward(e); }
   157     bool backward(const Edge& e) const { return graph->backward(e); }
   158 
   159     int id(const Node& v) const { return graph->id(v); }
   160     int id(const Edge& e) const { return graph->id(e); }
   161     
   162     Edge opposite(const Edge& e) const { return Edge(graph->opposite(e)); }
   163 
   164     template <typename _Value>
   165     class NodeMap : public _Graph::template NodeMap<_Value> {
   166     public:
   167       typedef typename _Graph::template NodeMap<_Value> Parent;
   168       NodeMap(const GraphWrapperBase<_Graph>& gw) : Parent(*gw.graph) { }
   169       NodeMap(const GraphWrapperBase<_Graph>& gw, const _Value& value)
   170       : Parent(*gw.graph, value) { }
   171     };
   172 
   173     template <typename _Value>
   174     class EdgeMap : public _Graph::template EdgeMap<_Value> {
   175     public:
   176       typedef typename _Graph::template EdgeMap<_Value> Parent;
   177       EdgeMap(const GraphWrapperBase<_Graph>& gw) : Parent(*gw.graph) { }
   178       EdgeMap(const GraphWrapperBase<_Graph>& gw, const _Value& value)
   179       : Parent(*gw.graph, value) { }
   180     };
   181 
   182   };
   183 
   184   template <typename _Graph>
   185   class GraphWrapper :
   186     public IterableGraphExtender<GraphWrapperBase<_Graph> > { 
   187   public:
   188     typedef _Graph Graph;
   189     typedef IterableGraphExtender<GraphWrapperBase<_Graph> > Parent;
   190   protected:
   191     GraphWrapper() : Parent() { }
   192 
   193   public:
   194     GraphWrapper(Graph& _graph) { setGraph(_graph); }
   195   };
   196 
   197   template <typename _Graph>
   198   class RevGraphWrapperBase : public GraphWrapperBase<_Graph> {
   199   public:
   200     typedef _Graph Graph;
   201     typedef GraphWrapperBase<_Graph> Parent;
   202   protected:
   203     RevGraphWrapperBase() : Parent() { }
   204   public:
   205     typedef typename Parent::Node Node;
   206     typedef typename Parent::Edge Edge;
   207 
   208     using Parent::first;
   209     void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
   210     void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
   211 
   212     using Parent::next;
   213     void nextIn(Edge& i) const { Parent::nextOut(i); }
   214     void nextOut(Edge& i) const { Parent::nextIn(i); }
   215 
   216     Node source(const Edge& e) const { return Parent::target(e); }
   217     Node target(const Edge& e) const { return Parent::source(e); }
   218   };
   219     
   220 
   221   /// A graph wrapper which reverses the orientation of the edges.
   222 
   223   ///\warning Graph wrappers are in even more experimental state than the other
   224   ///parts of the lib. Use them at you own risk.
   225   ///
   226   /// Let \f$G=(V, A)\f$ be a directed graph and 
   227   /// suppose that a graph instange \c g of type 
   228   /// \c ListGraph implements \f$G\f$.
   229   /// \code
   230   /// ListGraph g;
   231   /// \endcode
   232   /// For each directed edge 
   233   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by 
   234   /// reversing its orientation. 
   235   /// Then RevGraphWrapper implements the graph structure with node-set 
   236   /// \f$V\f$ and edge-set 
   237   /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be 
   238   /// reversing the orientation of its edges. The following code shows how 
   239   /// such an instance can be constructed.
   240   /// \code
   241   /// RevGraphWrapper<ListGraph> gw(g);
   242   /// \endcode
   243   ///\author Marton Makai
   244   template<typename _Graph>
   245   class RevGraphWrapper : 
   246     public IterableGraphExtender<RevGraphWrapperBase<_Graph> > {
   247   public:
   248     typedef _Graph Graph;
   249     typedef IterableGraphExtender<
   250       RevGraphWrapperBase<_Graph> > Parent;
   251   protected:
   252     RevGraphWrapper() { }
   253   public:
   254     RevGraphWrapper(_Graph& _graph) { setGraph(_graph); }
   255   };
   256 
   257   
   258   template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
   259   class SubGraphWrapperBase : public GraphWrapperBase<_Graph> {
   260   public:
   261     typedef _Graph Graph;
   262     typedef GraphWrapperBase<_Graph> Parent;
   263   protected:
   264     NodeFilterMap* node_filter_map;
   265     EdgeFilterMap* edge_filter_map;
   266     SubGraphWrapperBase() : Parent(), 
   267 			    node_filter_map(0), edge_filter_map(0) { }
   268 
   269     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   270       node_filter_map=&_node_filter_map;
   271     }
   272     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   273       edge_filter_map=&_edge_filter_map;
   274     }
   275 
   276   public:
   277 //     SubGraphWrapperBase(Graph& _graph, 
   278 // 			NodeFilterMap& _node_filter_map, 
   279 // 			EdgeFilterMap& _edge_filter_map) : 
   280 //       Parent(&_graph), 
   281 //       node_filter_map(&node_filter_map), 
   282 //       edge_filter_map(&edge_filter_map) { }
   283 
   284     typedef typename Parent::Node Node;
   285     typedef typename Parent::Edge Edge;
   286 
   287     void first(Node& i) const { 
   288       Parent::first(i); 
   289       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   290     }
   291     void first(Edge& i) const { 
   292       Parent::first(i); 
   293       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   294     }
   295     void firstIn(Edge& i, const Node& n) const { 
   296       Parent::firstIn(i, n); 
   297       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   298     }
   299     void firstOut(Edge& i, const Node& n) const { 
   300       Parent::firstOut(i, n); 
   301       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   302     }
   303 
   304     void next(Node& i) const { 
   305       Parent::next(i); 
   306       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   307     }
   308     void next(Edge& i) const { 
   309       Parent::next(i); 
   310       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   311     }
   312     void nextIn(Edge& i) const { 
   313       Parent::nextIn(i); 
   314       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   315     }
   316     void nextOut(Edge& i) const { 
   317       Parent::nextOut(i); 
   318       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   319     }
   320 
   321     /// This function hides \c n in the graph, i.e. the iteration 
   322     /// jumps over it. This is done by simply setting the value of \c n  
   323     /// to be false in the corresponding node-map.
   324     void hide(const Node& n) const { node_filter_map->set(n, false); }
   325 
   326     /// This function hides \c e in the graph, i.e. the iteration 
   327     /// jumps over it. This is done by simply setting the value of \c e  
   328     /// to be false in the corresponding edge-map.
   329     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   330 
   331     /// The value of \c n is set to be true in the node-map which stores 
   332     /// hide information. If \c n was hidden previuosly, then it is shown 
   333     /// again
   334      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   335 
   336     /// The value of \c e is set to be true in the edge-map which stores 
   337     /// hide information. If \c e was hidden previuosly, then it is shown 
   338     /// again
   339     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   340 
   341     /// Returns true if \c n is hidden.
   342     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   343 
   344     /// Returns true if \c n is hidden.
   345     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   346 
   347     /// \warning This is a linear time operation and works only if s
   348     /// \c Graph::NodeIt is defined.
   349     /// \todo assign tags.
   350     int nodeNum() const { 
   351       int i=0;
   352       Node n;
   353       for (first(n); n!=INVALID; next(n)) ++i;
   354       return i; 
   355     }
   356 
   357     /// \warning This is a linear time operation and works only if 
   358     /// \c Graph::EdgeIt is defined.
   359     /// \todo assign tags.
   360     int edgeNum() const { 
   361       int i=0;
   362       Edge e;
   363       for (first(e); e!=INVALID; next(e)) ++i;
   364       return i; 
   365     }
   366 
   367 
   368   };
   369 
   370   /*! \brief A graph wrapper for hiding nodes and edges from a graph.
   371   
   372   \warning Graph wrappers are in even more experimental state than the other
   373   parts of the lib. Use them at you own risk.
   374   
   375   This wrapper shows a graph with filtered node-set and 
   376   edge-set. 
   377   Given a bool-valued map on the node-set and one on 
   378   the edge-set of the graph, the iterators show only the objects 
   379   having true value. We have to note that this does not mean that an 
   380   induced subgraph is obtained, the node-iterator cares only the filter 
   381   on the node-set, and the edge-iterators care only the filter on the 
   382   edge-set.
   383   \code
   384   typedef SmartGraph Graph;
   385   Graph g;
   386   typedef Graph::Node Node;
   387   typedef Graph::Edge Edge;
   388   Node u=g.addNode(); //node of id 0
   389   Node v=g.addNode(); //node of id 1
   390   Node e=g.addEdge(u, v); //edge of id 0
   391   Node f=g.addEdge(v, u); //edge of id 1
   392   Graph::NodeMap<bool> nm(g, true);
   393   nm.set(u, false);
   394   Graph::EdgeMap<bool> em(g, true);
   395   em.set(e, false);
   396   typedef SubGraphWrapper<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
   397   SubGW gw(g, nm, em);
   398   for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
   399   std::cout << ":-)" << std::endl;
   400   for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
   401   \endcode
   402   The output of the above code is the following.
   403   \code
   404   1
   405   :-)
   406   1
   407   \endcode
   408   Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
   409   \c Graph::Node that is why \c g.id(n) can be applied.
   410 
   411   For other examples see also the documentation of NodeSubGraphWrapper and 
   412   EdgeSubGraphWrapper.
   413 
   414   \author Marton Makai
   415   */
   416   template<typename _Graph, typename NodeFilterMap, 
   417 	   typename EdgeFilterMap>
   418   class SubGraphWrapper : 
   419     public IterableGraphExtender<
   420     SubGraphWrapperBase<_Graph, NodeFilterMap, EdgeFilterMap> > {
   421   public:
   422     typedef _Graph Graph;
   423     typedef IterableGraphExtender<
   424       SubGraphWrapperBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
   425   protected:
   426     SubGraphWrapper() { }
   427   public:
   428     SubGraphWrapper(_Graph& _graph, NodeFilterMap& _node_filter_map, 
   429 		    EdgeFilterMap& _edge_filter_map) { 
   430       setGraph(_graph);
   431       setNodeFilterMap(_node_filter_map);
   432       setEdgeFilterMap(_edge_filter_map);
   433     }
   434   };
   435 
   436 
   437 
   438   /*! \brief A wrapper for hiding nodes from a graph.
   439 
   440   \warning Graph wrappers are in even more experimental state than the other
   441   parts of the lib. Use them at you own risk.
   442   
   443   A wrapper for hiding nodes from a graph.
   444   This wrapper specializes SubGraphWrapper in the way that only the node-set 
   445   can be filtered. Note that this does not mean of considering induced 
   446   subgraph, the edge-iterators consider the original edge-set.
   447   \author Marton Makai
   448   */
   449   template<typename Graph, typename NodeFilterMap>
   450   class NodeSubGraphWrapper : 
   451     public SubGraphWrapper<Graph, NodeFilterMap, 
   452 			   ConstMap<typename Graph::Edge,bool> > {
   453   public:
   454     typedef SubGraphWrapper<Graph, NodeFilterMap, 
   455 			    ConstMap<typename Graph::Edge,bool> > Parent;
   456   protected:
   457     ConstMap<typename Graph::Edge, bool> const_true_map;
   458   public:
   459     NodeSubGraphWrapper(Graph& _graph, NodeFilterMap& _node_filter_map) : 
   460       Parent(), const_true_map(true) { 
   461       Parent::setGraph(_graph);
   462       Parent::setNodeFilterMap(_node_filter_map);
   463       Parent::setEdgeFilterMap(const_true_map);
   464     }
   465   };
   466 
   467 
   468   /*! \brief A wrapper for hiding edges from a graph.
   469 
   470   \warning Graph wrappers are in even more experimental state than the other
   471   parts of the lib. Use them at you own risk.
   472   
   473   A wrapper for hiding edges from a graph.
   474   This wrapper specializes SubGraphWrapper in the way that only the edge-set 
   475   can be filtered. The usefulness of this wrapper is demonstrated in the 
   476   problem of searching a maximum number of edge-disjoint shortest paths 
   477   between 
   478   two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
   479   non-negative edge-lengths. Note that 
   480   the comprehension of the presented solution 
   481   need's some knowledge from elementary combinatorial optimization. 
   482 
   483   If a single shortest path is to be 
   484   searched between two nodes \c s and \c t, then this can be done easily by 
   485   applying the Dijkstra algorithm class. What happens, if a maximum number of 
   486   edge-disjoint shortest paths is to be computed. It can be proved that an 
   487   edge can be in a shortest path if and only if it is tight with respect to 
   488   the potential function computed by Dijkstra. Moreover, any path containing 
   489   only such edges is a shortest one. Thus we have to compute a maximum number 
   490   of edge-disjoint paths between \c s and \c t in the graph which has edge-set 
   491   all the tight edges. The computation will be demonstrated on the following 
   492   graph, which is read from a dimacs file.
   493   
   494   \dot
   495   digraph lemon_dot_example {
   496   node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   497   n0 [ label="0 (s)" ];
   498   n1 [ label="1" ];
   499   n2 [ label="2" ];
   500   n3 [ label="3" ];
   501   n4 [ label="4" ];
   502   n5 [ label="5" ];
   503   n6 [ label="6 (t)" ];
   504   edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   505   n5 ->  n6 [ label="9, length:4" ];
   506   n4 ->  n6 [ label="8, length:2" ];
   507   n3 ->  n5 [ label="7, length:1" ];
   508   n2 ->  n5 [ label="6, length:3" ];
   509   n2 ->  n6 [ label="5, length:5" ];
   510   n2 ->  n4 [ label="4, length:2" ];
   511   n1 ->  n4 [ label="3, length:3" ];
   512   n0 ->  n3 [ label="2, length:1" ];
   513   n0 ->  n2 [ label="1, length:2" ];
   514   n0 ->  n1 [ label="0, length:3" ];
   515   }
   516   \enddot
   517 
   518   \code
   519   Graph g;
   520   Node s, t;
   521   LengthMap length(g);
   522 
   523   readDimacs(std::cin, g, length, s, t);
   524 
   525   cout << "edges with lengths (of form id, source--length->target): " << endl;
   526   for(EdgeIt e(g); e!=INVALID; ++e) 
   527     cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   528          << length[e] << "->" << g.id(g.target(e)) << endl;
   529 
   530   cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   531   \endcode
   532   Next, the potential function is computed with Dijkstra.
   533   \code
   534   typedef Dijkstra<Graph, LengthMap> Dijkstra;
   535   Dijkstra dijkstra(g, length);
   536   dijkstra.run(s);
   537   \endcode
   538   Next, we consrtruct a map which filters the edge-set to the tight edges.
   539   \code
   540   typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
   541     TightEdgeFilter;
   542   TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
   543   
   544   typedef EdgeSubGraphWrapper<Graph, TightEdgeFilter> SubGW;
   545   SubGW gw(g, tight_edge_filter);
   546   \endcode
   547   Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
   548   with a max flow algorithm Preflow.
   549   \code
   550   ConstMap<Edge, int> const_1_map(1);
   551   Graph::EdgeMap<int> flow(g, 0);
   552 
   553   Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
   554     preflow(gw, s, t, const_1_map, flow);
   555   preflow.run();
   556   \endcode
   557   Last, the output is:
   558   \code  
   559   cout << "maximum number of edge-disjoint shortest path: " 
   560        << preflow.flowValue() << endl;
   561   cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
   562        << endl;
   563   for(EdgeIt e(g); e!=INVALID; ++e) 
   564     if (flow[e])
   565       cout << " " << g.id(g.source(e)) << "--" 
   566 	   << length[e] << "->" << g.id(g.target(e)) << endl;
   567   \endcode
   568   The program has the following (expected :-)) output:
   569   \code
   570   edges with lengths (of form id, source--length->target):
   571    9, 5--4->6
   572    8, 4--2->6
   573    7, 3--1->5
   574    6, 2--3->5
   575    5, 2--5->6
   576    4, 2--2->4
   577    3, 1--3->4
   578    2, 0--1->3
   579    1, 0--2->2
   580    0, 0--3->1
   581   s: 0 t: 6
   582   maximum number of edge-disjoint shortest path: 2
   583   edges of the maximum number of edge-disjoint shortest s-t paths:
   584    9, 5--4->6
   585    8, 4--2->6
   586    7, 3--1->5
   587    4, 2--2->4
   588    2, 0--1->3
   589    1, 0--2->2
   590   \endcode
   591 
   592   \author Marton Makai
   593   */
   594   template<typename Graph, typename EdgeFilterMap>
   595   class EdgeSubGraphWrapper : 
   596     public SubGraphWrapper<Graph, ConstMap<typename Graph::Node,bool>, 
   597 			   EdgeFilterMap> {
   598   public:
   599     typedef SubGraphWrapper<Graph, ConstMap<typename Graph::Node,bool>, 
   600 			    EdgeFilterMap> Parent;
   601   protected:
   602     ConstMap<typename Graph::Node, bool> const_true_map;
   603   public:
   604     EdgeSubGraphWrapper(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
   605       Parent(), const_true_map(true) { 
   606       Parent::setGraph(_graph);
   607       Parent::setNodeFilterMap(const_true_map);
   608       Parent::setEdgeFilterMap(_edge_filter_map);
   609     }
   610   };
   611 
   612 
   613   template<typename Graph>
   614   class UndirGraphWrapper : public GraphWrapper<Graph> {
   615   public:
   616     typedef GraphWrapper<Graph> Parent; 
   617   protected:
   618     UndirGraphWrapper() : GraphWrapper<Graph>() { }
   619     
   620   public:
   621     typedef typename GraphWrapper<Graph>::Node Node;
   622     typedef typename GraphWrapper<Graph>::NodeIt NodeIt;
   623     typedef typename GraphWrapper<Graph>::Edge Edge;
   624     typedef typename GraphWrapper<Graph>::EdgeIt EdgeIt;
   625 
   626     UndirGraphWrapper(Graph& _graph) : GraphWrapper<Graph>(_graph) { }  
   627 
   628     class OutEdgeIt {
   629       friend class UndirGraphWrapper<Graph>;
   630       bool out_or_in; //true iff out
   631       typename Graph::OutEdgeIt out;
   632       typename Graph::InEdgeIt in;
   633     public:
   634       OutEdgeIt() { }
   635       OutEdgeIt(const Invalid& i) : Edge(i) { }
   636       OutEdgeIt(const UndirGraphWrapper<Graph>& _G, const Node& _n) {
   637 	out_or_in=true; _G.graph->first(out, _n);
   638 	if (!(_G.graph->valid(out))) { out_or_in=false; _G.graph->first(in, _n);	}
   639       } 
   640       operator Edge() const { 
   641 	if (out_or_in) return Edge(out); else return Edge(in); 
   642       }
   643     };
   644 
   645     typedef OutEdgeIt InEdgeIt; 
   646 
   647     using GraphWrapper<Graph>::first;
   648     OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { 
   649       i=OutEdgeIt(*this, p); return i;
   650     }
   651 
   652     using GraphWrapper<Graph>::next;
   653 
   654     OutEdgeIt& next(OutEdgeIt& e) const {
   655       if (e.out_or_in) {
   656 	typename Graph::Node n=this->graph->source(e.out);
   657 	this->graph->next(e.out);
   658 	if (!this->graph->valid(e.out)) { 
   659 	  e.out_or_in=false; this->graph->first(e.in, n); }
   660       } else {
   661 	this->graph->next(e.in);
   662       }
   663       return e;
   664     }
   665 
   666     Node aNode(const OutEdgeIt& e) const { 
   667       if (e.out_or_in) return this->graph->source(e); else 
   668 	return this->graph->target(e); }
   669     Node bNode(const OutEdgeIt& e) const { 
   670       if (e.out_or_in) return this->graph->target(e); else 
   671 	return this->graph->source(e); }
   672 
   673     //    KEEP_MAPS(Parent, UndirGraphWrapper);
   674 
   675   };
   676   
   677 //   /// \brief An undirected graph template.
   678 //   ///
   679 //   ///\warning Graph wrappers are in even more experimental state than the other
   680 //   ///parts of the lib. Use them at your own risk.
   681 //   ///
   682 //   /// An undirected graph template.
   683 //   /// This class works as an undirected graph and a directed graph of 
   684 //   /// class \c Graph is used for the physical storage.
   685 //   /// \ingroup graphs
   686   template<typename Graph>
   687   class UndirGraph : public UndirGraphWrapper<Graph> {
   688     typedef UndirGraphWrapper<Graph> Parent;
   689   protected:
   690     Graph gr;
   691   public:
   692     UndirGraph() : UndirGraphWrapper<Graph>() { 
   693       Parent::setGraph(gr); 
   694     }
   695 
   696     //    KEEP_MAPS(Parent, UndirGraph);
   697   };
   698 
   699   
   700   template <typename _Graph, 
   701 	    typename ForwardFilterMap, typename BackwardFilterMap>
   702   class SubBidirGraphWrapperBase : public GraphWrapperBase<_Graph> {
   703   public:
   704     typedef _Graph Graph;
   705     typedef GraphWrapperBase<_Graph> Parent;
   706   protected:
   707     ForwardFilterMap* forward_filter;
   708     BackwardFilterMap* backward_filter;
   709     SubBidirGraphWrapperBase() : Parent(), 
   710 				 forward_filter(0), backward_filter(0) { }
   711 
   712     void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
   713       forward_filter=&_forward_filter;
   714     }
   715     void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
   716       backward_filter=&_backward_filter;
   717     }
   718 
   719   public:
   720 //     SubGraphWrapperBase(Graph& _graph, 
   721 // 			NodeFilterMap& _node_filter_map, 
   722 // 			EdgeFilterMap& _edge_filter_map) : 
   723 //       Parent(&_graph), 
   724 //       node_filter_map(&node_filter_map), 
   725 //       edge_filter_map(&edge_filter_map) { }
   726 
   727     typedef typename Parent::Node Node;
   728     typedef typename _Graph::Edge GraphEdge;
   729     template <typename T> class EdgeMap;
   730     /// SubBidirGraphWrapperBase<..., ..., ...>::Edge is inherited from 
   731     /// _Graph::Edge. It contains an extra bool flag which is true 
   732     /// if and only if the 
   733     /// edge is the backward version of the original edge.
   734     class Edge : public _Graph::Edge {
   735       friend class SubBidirGraphWrapperBase<
   736 	Graph, ForwardFilterMap, BackwardFilterMap>;
   737       template<typename T> friend class EdgeMap;
   738     protected:
   739       bool backward; //true, iff backward
   740     public:
   741       Edge() { }
   742       /// \todo =false is needed, or causes problems?
   743       /// If \c _backward is false, then we get an edge corresponding to the 
   744       /// original one, otherwise its oppositely directed pair is obtained.
   745       Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : 
   746 	_Graph::Edge(e), backward(_backward) { }
   747       Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
   748       bool operator==(const Edge& v) const { 
   749 	return (this->backward==v.backward && 
   750 		static_cast<typename _Graph::Edge>(*this)==
   751 		static_cast<typename _Graph::Edge>(v));
   752       } 
   753       bool operator!=(const Edge& v) const { 
   754 	return (this->backward!=v.backward || 
   755 		static_cast<typename _Graph::Edge>(*this)!=
   756 		static_cast<typename _Graph::Edge>(v));
   757       }
   758     };
   759 
   760     void first(Node& i) const { 
   761       Parent::first(i); 
   762     }
   763 
   764     void first(Edge& i) const { 
   765       Parent::first(i); 
   766       i.backward=false;
   767       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   768 	     !(*forward_filter)[i]) Parent::next(i);
   769       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   770 	Parent::first(i); 
   771 	i.backward=true;
   772 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   773 	       !(*backward_filter)[i]) Parent::next(i);
   774       }
   775     }
   776 
   777     void firstIn(Edge& i, const Node& n) const { 
   778       Parent::firstIn(i, n); 
   779       i.backward=false;
   780       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   781 	     !(*forward_filter)[i]) Parent::nextOut(i);
   782       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   783 	Parent::firstOut(i, n); 
   784 	i.backward=true;
   785 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   786 	       !(*backward_filter)[i]) Parent::nextOut(i);
   787       }
   788     }
   789 
   790     void firstOut(Edge& i, const Node& n) const { 
   791       Parent::firstOut(i, n); 
   792       i.backward=false;
   793       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   794 	     !(*forward_filter)[i]) Parent::nextOut(i);
   795       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   796 	Parent::firstIn(i, n); 
   797 	i.backward=true;
   798 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   799 	       !(*backward_filter)[i]) Parent::nextIn(i);
   800       }
   801     }
   802 
   803     void next(Node& i) const { 
   804       Parent::next(i); 
   805     }
   806 
   807     void next(Edge& i) const { 
   808       if (!(i.backward)) {
   809 	Parent::next(i);
   810 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   811 	       !(*forward_filter)[i]) Parent::next(i);
   812 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   813 	  Parent::first(i); 
   814 	  i.backward=true;
   815 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   816 		 !(*backward_filter)[i]) Parent::next(i);
   817 	}
   818       } else {
   819 	Parent::next(i);
   820 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   821 	       !(*backward_filter)[i]) Parent::next(i);
   822       }
   823     }
   824 
   825     void nextIn(Edge& i) const { 
   826       if (!(i.backward)) {
   827 	Node n=Parent::target(i);
   828 	Parent::nextIn(i);
   829 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   830 	       !(*forward_filter)[i]) Parent::nextIn(i);
   831 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   832 	  Parent::firstOut(i, n); 
   833 	  i.backward=true;
   834 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   835 		 !(*backward_filter)[i]) Parent::nextOut(i);
   836 	}
   837       } else {
   838 	Parent::nextOut(i);
   839 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   840 	       !(*backward_filter)[i]) Parent::nextOut(i);
   841       }
   842     }
   843 
   844     void nextOut(Edge& i) const { 
   845       if (!(i.backward)) {
   846 	Node n=Parent::source(i);
   847 	Parent::nextOut(i);
   848 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   849 	       !(*forward_filter)[i]) Parent::nextOut(i);
   850 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   851 	  Parent::firstIn(i, n); 
   852 	  i.backward=true;
   853 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   854 		 !(*backward_filter)[i]) Parent::nextIn(i);
   855 	}
   856       } else {
   857 	Parent::nextIn(i);
   858 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   859 	       !(*backward_filter)[i]) Parent::nextIn(i);
   860       }
   861     }
   862 
   863     Node source(Edge e) const { 
   864       return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
   865     Node target(Edge e) const { 
   866       return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
   867 
   868     /// Gives back the opposite edge.
   869     Edge opposite(const Edge& e) const { 
   870       Edge f=e;
   871       f.backward=!f.backward;
   872       return f;
   873     }
   874 
   875     /// \warning This is a linear time operation and works only if 
   876     /// \c Graph::EdgeIt is defined.
   877     /// \todo hmm
   878     int edgeNum() const { 
   879       int i=0;
   880       Edge e;
   881       for (first(e); e!=INVALID; next(e)) ++i;
   882       return i; 
   883     }
   884 
   885     bool forward(const Edge& e) const { return !e.backward; }
   886     bool backward(const Edge& e) const { return e.backward; }
   887 
   888     template <typename T>
   889     /// \c SubBidirGraphWrapperBase<..., ..., ...>::EdgeMap contains two 
   890     /// _Graph::EdgeMap one for the forward edges and 
   891     /// one for the backward edges.
   892     class EdgeMap {
   893       template <typename TT> friend class EdgeMap;
   894       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   895     public:
   896       typedef T Value;
   897       typedef Edge Key;
   898 
   899       EdgeMap(const SubBidirGraphWrapperBase<_Graph, 
   900 	      ForwardFilterMap, BackwardFilterMap>& g) : 
   901 	forward_map(*(g.graph)), backward_map(*(g.graph)) { }
   902 
   903       EdgeMap(const SubBidirGraphWrapperBase<_Graph, 
   904 	      ForwardFilterMap, BackwardFilterMap>& g, T a) : 
   905 	forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
   906       
   907       void set(Edge e, T a) { 
   908 	if (!e.backward) 
   909 	  forward_map.set(e, a); 
   910 	else 
   911 	  backward_map.set(e, a); 
   912       }
   913 
   914 //       typename _Graph::template EdgeMap<T>::ConstReference 
   915 //       operator[](Edge e) const { 
   916 // 	if (!e.backward) 
   917 // 	  return forward_map[e]; 
   918 // 	else 
   919 // 	  return backward_map[e]; 
   920 //       }
   921 
   922 //      typename _Graph::template EdgeMap<T>::Reference 
   923       T operator[](Edge e) const { 
   924 	if (!e.backward) 
   925 	  return forward_map[e]; 
   926 	else 
   927 	  return backward_map[e]; 
   928       }
   929 
   930       void update() { 
   931 	forward_map.update(); 
   932 	backward_map.update();
   933       }
   934     };
   935 
   936   };
   937 
   938 
   939   ///\brief A wrapper for composing a subgraph of a 
   940   /// bidirected graph made from a directed one. 
   941   ///
   942   /// A wrapper for composing a subgraph of a 
   943   /// bidirected graph made from a directed one. 
   944   ///
   945   ///\warning Graph wrappers are in even more experimental state than the other
   946   ///parts of the lib. Use them at you own risk.
   947   ///
   948   /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge 
   949   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
   950   /// reversing its orientation. We are given moreover two bool valued 
   951   /// maps on the edge-set, 
   952   /// \f$forward\_filter\f$, and \f$backward\_filter\f$. 
   953   /// SubBidirGraphWrapper implements the graph structure with node-set 
   954   /// \f$V\f$ and edge-set 
   955   /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. 
   956   /// The purpose of writing + instead of union is because parallel 
   957   /// edges can arise. (Similarly, antiparallel edges also can arise).
   958   /// In other words, a subgraph of the bidirected graph obtained, which 
   959   /// is given by orienting the edges of the original graph in both directions.
   960   /// As the oppositely directed edges are logically different, 
   961   /// the maps are able to attach different values for them. 
   962   ///
   963   /// An example for such a construction is \c RevGraphWrapper where the 
   964   /// forward_filter is everywhere false and the backward_filter is 
   965   /// everywhere true. We note that for sake of efficiency, 
   966   /// \c RevGraphWrapper is implemented in a different way. 
   967   /// But BidirGraphWrapper is obtained from 
   968   /// SubBidirGraphWrapper by considering everywhere true 
   969   /// valued maps both for forward_filter and backward_filter. 
   970   /// Finally, one of the most important applications of SubBidirGraphWrapper 
   971   /// is ResGraphWrapper, which stands for the residual graph in directed 
   972   /// flow and circulation problems. 
   973   /// As wrappers usually, the SubBidirGraphWrapper implements the 
   974   /// above mentioned graph structure without its physical storage, 
   975   /// that is the whole stuff is stored in constant memory. 
   976   template<typename _Graph, 
   977 	   typename ForwardFilterMap, typename BackwardFilterMap>
   978   class SubBidirGraphWrapper : 
   979     public IterableGraphExtender<
   980     SubBidirGraphWrapperBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
   981   public:
   982     typedef _Graph Graph;
   983     typedef IterableGraphExtender<
   984       SubBidirGraphWrapperBase<
   985       _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
   986   protected:
   987     SubBidirGraphWrapper() { }
   988   public:
   989     SubBidirGraphWrapper(_Graph& _graph, ForwardFilterMap& _forward_filter, 
   990 			 BackwardFilterMap& _backward_filter) { 
   991       setGraph(_graph);
   992       setForwardFilterMap(_forward_filter);
   993       setBackwardFilterMap(_backward_filter);
   994     }
   995   };
   996 
   997 
   998 
   999   ///\brief A wrapper for composing bidirected graph from a directed one. 
  1000   ///
  1001   ///\warning Graph wrappers are in even more experimental state than the other
  1002   ///parts of the lib. Use them at you own risk.
  1003   ///
  1004   /// A wrapper for composing bidirected graph from a directed one. 
  1005   /// A bidirected graph is composed over the directed one without physical 
  1006   /// storage. As the oppositely directed edges are logically different ones 
  1007   /// the maps are able to attach different values for them.
  1008   template<typename Graph>
  1009   class BidirGraphWrapper : 
  1010     public SubBidirGraphWrapper<
  1011     Graph, 
  1012     ConstMap<typename Graph::Edge, bool>, 
  1013     ConstMap<typename Graph::Edge, bool> > {
  1014   public:
  1015     typedef  SubBidirGraphWrapper<
  1016       Graph, 
  1017       ConstMap<typename Graph::Edge, bool>, 
  1018       ConstMap<typename Graph::Edge, bool> > Parent; 
  1019   protected:
  1020     ConstMap<typename Graph::Edge, bool> cm;
  1021 
  1022     BidirGraphWrapper() : Parent(), cm(true) { 
  1023       Parent::setForwardFilterMap(cm);
  1024       Parent::setBackwardFilterMap(cm);
  1025     }
  1026   public:
  1027     BidirGraphWrapper(Graph& _graph) : Parent() { 
  1028       Parent::setGraph(_graph);
  1029       Parent::setForwardFilterMap(cm);
  1030       Parent::setBackwardFilterMap(cm);
  1031     }
  1032 
  1033     int edgeNum() const { 
  1034       return 2*this->graph->edgeNum();
  1035     }
  1036     //    KEEP_MAPS(Parent, BidirGraphWrapper);
  1037   };
  1038 
  1039 
  1040   /// \brief A bidirected graph template.
  1041   ///
  1042   ///\warning Graph wrappers are in even more experimental state than the other
  1043   ///parts of the lib. Use them at you own risk.
  1044   ///
  1045   /// A bidirected graph template.
  1046   /// Such a bidirected graph stores each pair of oppositely directed edges 
  1047   /// ones in the memory, i.e. a directed graph of type 
  1048   /// \c Graph is used for that.
  1049   /// As the oppositely directed edges are logically different ones 
  1050   /// the maps are able to attach different values for them.
  1051   /// \ingroup graphs
  1052   template<typename Graph>
  1053   class BidirGraph : public BidirGraphWrapper<Graph> {
  1054   public:
  1055     typedef UndirGraphWrapper<Graph> Parent;
  1056   protected:
  1057     Graph gr;
  1058   public:
  1059     BidirGraph() : BidirGraphWrapper<Graph>() { 
  1060       Parent::setGraph(gr); 
  1061     }
  1062     //    KEEP_MAPS(Parent, BidirGraph);
  1063   };
  1064 
  1065 
  1066 
  1067   template<typename Graph, typename Number,
  1068 	   typename CapacityMap, typename FlowMap>
  1069   class ResForwardFilter {
  1070     //    const Graph* graph;
  1071     const CapacityMap* capacity;
  1072     const FlowMap* flow;
  1073   public:
  1074     ResForwardFilter(/*const Graph& _graph, */
  1075 		     const CapacityMap& _capacity, const FlowMap& _flow) :
  1076       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1077     ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1078     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1079     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1080     bool operator[](const typename Graph::Edge& e) const {
  1081       return (Number((*flow)[e]) < Number((*capacity)[e]));
  1082     }
  1083   };
  1084 
  1085   template<typename Graph, typename Number,
  1086 	   typename CapacityMap, typename FlowMap>
  1087   class ResBackwardFilter {
  1088     const CapacityMap* capacity;
  1089     const FlowMap* flow;
  1090   public:
  1091     ResBackwardFilter(/*const Graph& _graph,*/ 
  1092 		      const CapacityMap& _capacity, const FlowMap& _flow) :
  1093       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1094     ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1095     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1096     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1097     bool operator[](const typename Graph::Edge& e) const {
  1098       return (Number(0) < Number((*flow)[e]));
  1099     }
  1100   };
  1101 
  1102   
  1103   /// A wrapper for composing the residual graph for directed flow and circulation problems.
  1104 
  1105   ///\warning Graph wrappers are in even more experimental state than the other
  1106   ///parts of the lib. Use them at you own risk.
  1107   ///
  1108   /// A wrapper for composing the residual graph for directed flow and circulation problems.
  1109   template<typename Graph, typename Number, 
  1110 	   typename CapacityMap, typename FlowMap>
  1111   class ResGraphWrapper : 
  1112     public SubBidirGraphWrapper< 
  1113     Graph, 
  1114     ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1115     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
  1116   public:
  1117     typedef SubBidirGraphWrapper< 
  1118       Graph, 
  1119       ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1120       ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
  1121   protected:
  1122     const CapacityMap* capacity;
  1123     FlowMap* flow;
  1124     ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
  1125     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
  1126     ResGraphWrapper() : Parent(), 
  1127  			capacity(0), flow(0) { }
  1128     void setCapacityMap(const CapacityMap& _capacity) {
  1129       capacity=&_capacity;
  1130       forward_filter.setCapacity(_capacity);
  1131       backward_filter.setCapacity(_capacity);
  1132     }
  1133     void setFlowMap(FlowMap& _flow) {
  1134       flow=&_flow;
  1135       forward_filter.setFlow(_flow);
  1136       backward_filter.setFlow(_flow);
  1137     }
  1138   public:
  1139     ResGraphWrapper(Graph& _graph, const CapacityMap& _capacity, 
  1140 		       FlowMap& _flow) : 
  1141       Parent(), capacity(&_capacity), flow(&_flow), 
  1142       forward_filter(/*_graph,*/ _capacity, _flow), 
  1143       backward_filter(/*_graph,*/ _capacity, _flow) {
  1144       Parent::setGraph(_graph);
  1145       Parent::setForwardFilterMap(forward_filter);
  1146       Parent::setBackwardFilterMap(backward_filter);
  1147     }
  1148 
  1149     typedef typename Parent::Edge Edge;
  1150 
  1151     void augment(const Edge& e, Number a) const {
  1152       if (Parent::forward(e))  
  1153 	flow->set(e, (*flow)[e]+a);
  1154       else  
  1155 	flow->set(e, (*flow)[e]-a);
  1156     }
  1157 
  1158     /// \brief Residual capacity map.
  1159     ///
  1160     /// In generic residual graphs the residual capacity can be obtained 
  1161     /// as a map. 
  1162     class ResCap {
  1163     protected:
  1164       const ResGraphWrapper<Graph, Number, CapacityMap, FlowMap>* res_graph;
  1165     public:
  1166       typedef Number Value;
  1167       typedef Edge Key;
  1168       ResCap(const ResGraphWrapper<Graph, Number, CapacityMap, FlowMap>& 
  1169 	     _res_graph) : res_graph(&_res_graph) { }
  1170       Number operator[](const Edge& e) const { 
  1171 	if (res_graph->forward(e)) 
  1172 	  return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; 
  1173 	else 
  1174 	  return (*(res_graph->flow))[e]; 
  1175       }
  1176     };
  1177 
  1178     //    KEEP_MAPS(Parent, ResGraphWrapper);
  1179   };
  1180 
  1181 
  1182 
  1183   template <typename _Graph, typename FirstOutEdgesMap>
  1184   class ErasingFirstGraphWrapperBase : public GraphWrapperBase<_Graph> {
  1185   public:
  1186     typedef _Graph Graph;
  1187     typedef GraphWrapperBase<_Graph> Parent;
  1188   protected:
  1189     FirstOutEdgesMap* first_out_edges;
  1190     ErasingFirstGraphWrapperBase() : Parent(), 
  1191 				     first_out_edges(0) { }
  1192 
  1193     void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
  1194       first_out_edges=&_first_out_edges;
  1195     }
  1196 
  1197   public:
  1198 
  1199     typedef typename Parent::Node Node;
  1200     typedef typename Parent::Edge Edge;
  1201 
  1202     void firstOut(Edge& i, const Node& n) const { 
  1203       i=(*first_out_edges)[n];
  1204     }
  1205 
  1206     void erase(const Edge& e) const {
  1207       Node n=source(e);
  1208       Edge f=e;
  1209       Parent::nextOut(f);
  1210       first_out_edges->set(n, f);
  1211     }    
  1212   };
  1213 
  1214 
  1215   /// For blocking flows.
  1216 
  1217   ///\warning Graph wrappers are in even more experimental state than the other
  1218   ///parts of the lib. Use them at you own risk.
  1219   ///
  1220   /// This graph wrapper is used for on-the-fly 
  1221   /// Dinits blocking flow computations.
  1222   /// For each node, an out-edge is stored which is used when the 
  1223   /// \code 
  1224   /// OutEdgeIt& first(OutEdgeIt&, const Node&)
  1225   /// \endcode
  1226   /// is called. 
  1227   ///
  1228   /// \author Marton Makai
  1229   template <typename _Graph, typename FirstOutEdgesMap>
  1230   class ErasingFirstGraphWrapper : 
  1231     public IterableGraphExtender<
  1232     ErasingFirstGraphWrapperBase<_Graph, FirstOutEdgesMap> > {
  1233   public:
  1234     typedef _Graph Graph;
  1235     typedef IterableGraphExtender<
  1236       ErasingFirstGraphWrapperBase<_Graph, FirstOutEdgesMap> > Parent;
  1237     ErasingFirstGraphWrapper(Graph& _graph, 
  1238 			     FirstOutEdgesMap& _first_out_edges) { 
  1239       setGraph(_graph);
  1240       setFirstOutEdgesMap(_first_out_edges);
  1241     } 
  1242 
  1243   };
  1244 
  1245   ///@}
  1246 
  1247 } //namespace lemon
  1248 
  1249 #endif //LEMON_GRAPH_WRAPPER_H
  1250