3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_LIST_GRAPH_H
20 #define LEMON_LIST_GRAPH_H
24 ///\brief ListGraph, ListUGraph classes.
26 #include <lemon/bits/base_extender.h>
27 #include <lemon/bits/graph_extender.h>
29 #include <lemon/error.h>
40 int first_in, first_out;
46 int prev_in, prev_out;
47 int next_in, next_out;
50 std::vector<NodeT> nodes;
56 std::vector<EdgeT> edges;
62 typedef ListGraphBase Graph;
65 friend class ListGraphBase;
69 explicit Node(int pid) { id = pid;}
73 Node (Invalid) { id = -1; }
74 bool operator==(const Node& node) const {return id == node.id;}
75 bool operator!=(const Node& node) const {return id != node.id;}
76 bool operator<(const Node& node) const {return id < node.id;}
80 friend class ListGraphBase;
84 explicit Edge(int pid) { id = pid;}
88 Edge (Invalid) { id = -1; }
89 bool operator==(const Edge& edge) const {return id == edge.id;}
90 bool operator!=(const Edge& edge) const {return id != edge.id;}
91 bool operator<(const Edge& edge) const {return id < edge.id;}
97 : nodes(), first_node(-1),
98 first_free_node(-1), edges(), first_free_edge(-1) {}
105 int maxNodeId() const { return nodes.size()-1; }
111 int maxEdgeId() const { return edges.size()-1; }
113 Node source(Edge e) const { return Node(edges[e.id].source); }
114 Node target(Edge e) const { return Node(edges[e.id].target); }
117 void first(Node& node) const {
118 node.id = first_node;
121 void next(Node& node) const {
122 node.id = nodes[node.id].next;
126 void first(Edge& e) const {
129 n!=-1 && nodes[n].first_in == -1;
131 e.id = (n == -1) ? -1 : nodes[n].first_in;
134 void next(Edge& edge) const {
135 if (edges[edge.id].next_in != -1) {
136 edge.id = edges[edge.id].next_in;
139 for(n = nodes[edges[edge.id].target].next;
140 n!=-1 && nodes[n].first_in == -1;
142 edge.id = (n == -1) ? -1 : nodes[n].first_in;
146 void firstOut(Edge &e, const Node& v) const {
147 e.id = nodes[v.id].first_out;
149 void nextOut(Edge &e) const {
150 e.id=edges[e.id].next_out;
153 void firstIn(Edge &e, const Node& v) const {
154 e.id = nodes[v.id].first_in;
156 void nextIn(Edge &e) const {
157 e.id=edges[e.id].next_in;
161 static int id(Node v) { return v.id; }
162 static int id(Edge e) { return e.id; }
164 static Node nodeFromId(int id) { return Node(id);}
165 static Edge edgeFromId(int id) { return Edge(id);}
167 /// Adds a new node to the graph.
169 /// \warning It adds the new node to the front of the list.
170 /// (i.e. the lastly added node becomes the first.)
174 if(first_free_node==-1) {
176 nodes.push_back(NodeT());
179 first_free_node = nodes[n].next;
182 nodes[n].next = first_node;
183 if(first_node != -1) nodes[first_node].prev = n;
187 nodes[n].first_in = nodes[n].first_out = -1;
192 Edge addEdge(Node u, Node v) {
195 if (first_free_edge == -1) {
197 edges.push_back(EdgeT());
200 first_free_edge = edges[n].next_in;
203 edges[n].source = u.id;
204 edges[n].target = v.id;
206 edges[n].next_out = nodes[u.id].first_out;
207 if(nodes[u.id].first_out != -1) {
208 edges[nodes[u.id].first_out].prev_out = n;
211 edges[n].next_in = nodes[v.id].first_in;
212 if(nodes[v.id].first_in != -1) {
213 edges[nodes[v.id].first_in].prev_in = n;
216 edges[n].prev_in = edges[n].prev_out = -1;
218 nodes[u.id].first_out = nodes[v.id].first_in = n;
223 void erase(const Node& node) {
226 if(nodes[n].next != -1) {
227 nodes[nodes[n].next].prev = nodes[n].prev;
230 if(nodes[n].prev != -1) {
231 nodes[nodes[n].prev].next = nodes[n].next;
233 first_node = nodes[n].next;
236 nodes[n].next = first_free_node;
241 void erase(const Edge& edge) {
244 if(edges[n].next_in!=-1) {
245 edges[edges[n].next_in].prev_in = edges[n].prev_in;
248 if(edges[n].prev_in!=-1) {
249 edges[edges[n].prev_in].next_in = edges[n].next_in;
251 nodes[edges[n].target].first_in = edges[n].next_in;
255 if(edges[n].next_out!=-1) {
256 edges[edges[n].next_out].prev_out = edges[n].prev_out;
259 if(edges[n].prev_out!=-1) {
260 edges[edges[n].prev_out].next_out = edges[n].next_out;
262 nodes[edges[n].source].first_out = edges[n].next_out;
265 edges[n].next_in = first_free_edge;
273 first_node = first_free_node = first_free_edge = -1;
277 void _changeTarget(Edge e, Node n)
279 if(edges[e.id].next_in != -1)
280 edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
281 if(edges[e.id].prev_in != -1)
282 edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
283 else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
284 if (nodes[n.id].first_in != -1) {
285 edges[nodes[n.id].first_in].prev_in = e.id;
287 edges[e.id].target = n.id;
288 edges[e.id].prev_in = -1;
289 edges[e.id].next_in = nodes[n.id].first_in;
290 nodes[n.id].first_in = e.id;
292 void _changeSource(Edge e, Node n)
294 if(edges[e.id].next_out != -1)
295 edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
296 if(edges[e.id].prev_out != -1)
297 edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
298 else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
299 if (nodes[n.id].first_out != -1) {
300 edges[nodes[n.id].first_out].prev_out = e.id;
302 edges[e.id].source = n.id;
303 edges[e.id].prev_out = -1;
304 edges[e.id].next_out = nodes[n.id].first_out;
305 nodes[n.id].first_out = e.id;
310 typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
312 /// \addtogroup graphs
315 ///A list graph class.
317 ///This is a simple and fast erasable graph implementation.
319 ///It conforms to the
320 ///\ref concept::ErasableGraph "ErasableGraph" concept and
321 ///it also provides several additional useful extra functionalities.
322 ///\sa concept::ErasableGraph.
324 class ListGraph : public ExtendedListGraphBase {
327 typedef ExtendedListGraphBase Parent;
329 /// Changes the target of \c e to \c n
331 /// Changes the target of \c e to \c n
333 ///\note The <tt>Edge</tt>s and <tt>OutEdge</tt>s
334 ///referencing the changed edge remain
335 ///valid. However <tt>InEdge</tt>s are invalidated.
336 void changeTarget(Edge e, Node n) {
339 /// Changes the source of \c e to \c n
341 /// Changes the source of \c e to \c n
343 ///\note The <tt>Edge</tt>s and <tt>InEdge</tt>s
344 ///referencing the changed edge remain
345 ///valid. However <tt>OutEdge</tt>s are invalidated.
346 void changeSource(Edge e, Node n) {
350 /// Invert the direction of an edge.
352 ///\note The <tt>Edge</tt>s
353 ///referencing the changed edge remain
354 ///valid. However <tt>OutEdge</tt>s and <tt>InEdge</tt>s are invalidated.
355 void reverseEdge(Edge e) {
357 _changeTarget(e,source(e));
361 ///Using this it is possible to avoid the superfluous memory
364 ///Using this it is possible to avoid the superfluous memory
365 ///allocation: if you know that the graph you want to build will
366 ///contain at least 10 million nodes then it is worth to reserve
367 ///space for this amount before starting to build the graph.
368 void reserveNode(int n) { nodes.reserve(n); };
370 ///Using this it is possible to avoid the superfluous memory
373 ///Using this it is possible to avoid the superfluous memory
374 ///allocation: see the \ref reserveNode function.
375 void reserveEdge(int n) { edges.reserve(n); };
378 ///Contract two nodes.
380 ///This function contracts two nodes.
382 ///Node \p b will be removed but instead of deleting
383 ///incident edges, they will be joined to \p a.
384 ///The last parameter \p r controls whether to remove loops. \c true
385 ///means that loops will be removed.
387 ///\note The <tt>Edge</tt>s
388 ///referencing a moved edge remain
389 ///valid. However <tt>InEdge</tt>s and <tt>OutEdge</tt>s
390 ///may be invalidated.
391 void contract(Node a, Node b, bool r = true)
393 for(OutEdgeIt e(*this,b);e!=INVALID;) {
396 if(r && target(e)==a) erase(e);
397 else changeSource(e,a);
400 for(InEdgeIt e(*this,b);e!=INVALID;) {
403 if(r && source(e)==a) erase(e);
404 else changeTarget(e,a);
412 ///This function splits a node. First a new node is added to the graph,
413 ///then the source of each outgoing edge of \c n is moved to this new node.
414 ///If \c connect is \c true (this is the default value), then a new edge
415 ///from \c n to the newly created node is also added.
416 ///\return The newly created node.
418 ///\note The <tt>Edge</tt>s
419 ///referencing a moved edge remain
420 ///valid. However <tt>InEdge</tt>s and <tt>OutEdge</tt>s
421 ///may be invalidated.
422 ///\warning This functionality cannot be used together with the Snapshot
424 ///\todo It could be implemented in a bit faster way.
425 Node split(Node n, bool connect = true)
428 for(OutEdgeIt e(*this,n);e!=INVALID;) {
434 if(connect) addEdge(n,b);
440 ///This function splits an edge. First a new node \c b is added to
441 ///the graph, then the original edge is re-targeted to \c
442 ///b. Finally an edge from \c b to the original target is added.
443 ///\return The newly created node.
444 ///\warning This functionality
445 ///cannot be used together with the Snapshot feature.
449 addEdge(b,target(e));
454 ///Class to make a snapshot of the graph and to restore it later.
456 ///Class to make a snapshot of the graph and to restore it later.
458 ///The newly added nodes and edges can be removed using the
459 ///restore() function.
461 ///\warning Edge and node deletions cannot be restored.
462 ///\warning Snapshots cannot be nested.
463 class Snapshot : protected Parent::NodeNotifier::ObserverBase,
464 protected Parent::EdgeNotifier::ObserverBase
468 class UnsupportedOperation : public LogicError {
470 virtual const char* exceptionName() const {
471 return "lemon::ListGraph::Snapshot::UnsupportedOperation";
479 std::list<Node> added_nodes;
480 std::list<Edge> added_edges;
483 virtual void add(const Node& n) {
484 added_nodes.push_back(n);
486 virtual void erase(const Node&)
488 throw UnsupportedOperation();
490 virtual void add(const Edge& n) {
491 added_edges.push_back(n);
493 virtual void erase(const Edge&)
495 throw UnsupportedOperation();
498 ///\bug What is this used for?
500 virtual void build() {}
501 ///\bug What is this used for?
503 virtual void clear() {}
505 void regist(ListGraph &_g) {
507 Parent::NodeNotifier::ObserverBase::attach(g->getNotifier(Node()));
508 Parent::EdgeNotifier::ObserverBase::attach(g->getNotifier(Edge()));
512 Parent::NodeNotifier::ObserverBase::detach();
513 Parent::EdgeNotifier::ObserverBase::detach();
518 ///Default constructur.
520 ///Default constructur.
521 ///To actually make a snapshot you must call save().
524 ///Constructor that immediately makes a snapshot.
526 ///This constructor immediately makes a snapshot of the graph.
527 ///\param _g The graph we make a snapshot of.
528 Snapshot(ListGraph &_g) {
531 ///\bug Is it necessary?
540 ///Make a snapshot of the graph.
542 ///This function can be called more than once. In case of a repeated
543 ///call, the previous snapshot gets lost.
544 ///\param _g The graph we make the snapshot of.
545 void save(ListGraph &_g)
555 ///Undo the changes until the last snapshot.
557 ///Undo the changes until last snapshot created by save().
559 ///\todo This function might be called undo().
563 while(!added_edges.empty()) {
564 old_g.erase(added_edges.front());
565 added_edges.pop_front();
567 while(!added_nodes.empty()) {
568 old_g.erase(added_nodes.front());
569 added_nodes.pop_front();
578 /**************** Undirected List Graph ****************/
580 typedef UGraphExtender<UndirGraphExtender<ListGraphBase> >
581 ExtendedListUGraphBase;
583 /// \addtogroup graphs
586 ///An undirected list graph class.
588 ///This is a simple and fast erasable undirected graph implementation.
590 ///It conforms to the
591 ///\ref concept::UGraph "UGraph" concept.
593 ///\sa concept::UGraph.
595 ///\todo Snapshot, reverseEdge(), changeTarget(), changeSource(), contract()
596 ///haven't been implemented yet.
598 class ListUGraph : public ExtendedListUGraphBase {
600 typedef ExtendedListUGraphBase Parent;
601 /// \brief Changes the target of \c e to \c n
603 /// Changes the target of \c e to \c n
605 /// \note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
606 /// referencing the changed edge remain
607 /// valid. However <tt>InEdge</tt>'s are invalidated.
608 void changeTarget(UEdge e, Node n) {
611 /// Changes the source of \c e to \c n
613 /// Changes the source of \c e to \c n
615 ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
616 ///referencing the changed edge remain
617 ///valid. However <tt>OutEdge</tt>'s are invalidated.
618 void changeSource(UEdge e, Node n) {
621 /// \brief Contract two nodes.
623 /// This function contracts two nodes.
625 /// Node \p b will be removed but instead of deleting
626 /// its neighboring edges, they will be joined to \p a.
627 /// The last parameter \p r controls whether to remove loops. \c true
628 /// means that loops will be removed.
630 /// \note The <tt>Edge</tt>s
631 /// referencing a moved edge remain
633 void contract(Node a, Node b, bool r = true) {
634 for(IncEdgeIt e(*this, b); e!=INVALID;) {
635 IncEdgeIt f = e; ++f;
636 if (r && runningNode(e) == a) {
638 } else if (source(e) == b) {
650 class ListBpUGraphBase {
653 class NodeSetError : public LogicError {
654 virtual const char* exceptionName() const {
655 return "lemon::ListBpUGraph::NodeSetError";
662 int first_edge, prev, next;
666 int aNode, prev_out, next_out;
667 int bNode, prev_in, next_in;
670 std::vector<NodeT> aNodes;
671 std::vector<NodeT> bNodes;
673 std::vector<UEdgeT> edges;
676 int first_free_anode;
679 int first_free_bnode;
686 friend class ListBpUGraphBase;
690 explicit Node(int _id) : id(_id) {}
693 Node(Invalid) { id = -1; }
694 bool operator==(const Node i) const {return id==i.id;}
695 bool operator!=(const Node i) const {return id!=i.id;}
696 bool operator<(const Node i) const {return id<i.id;}
700 friend class ListBpUGraphBase;
704 explicit UEdge(int _id) { id = _id;}
707 UEdge (Invalid) { id = -1; }
708 bool operator==(const UEdge i) const {return id==i.id;}
709 bool operator!=(const UEdge i) const {return id!=i.id;}
710 bool operator<(const UEdge i) const {return id<i.id;}
714 : first_anode(-1), first_free_anode(-1),
715 first_bnode(-1), first_free_bnode(-1),
716 first_free_edge(-1) {}
718 void firstANode(Node& node) const {
719 node.id = first_anode != -1 ? (first_anode << 1) : -1;
721 void nextANode(Node& node) const {
722 node.id = aNodes[node.id >> 1].next;
725 void firstBNode(Node& node) const {
726 node.id = first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
728 void nextBNode(Node& node) const {
729 node.id = bNodes[node.id >> 1].next;
732 void first(Node& node) const {
733 if (first_anode != -1) {
734 node.id = (first_anode << 1);
735 } else if (first_bnode != -1) {
736 node.id = (first_bnode << 1) + 1;
741 void next(Node& node) const {
743 node.id = aNodes[node.id >> 1].next;
745 if (first_bnode != -1) {
746 node.id = (first_bnode << 1) + 1;
750 node.id = bNodes[node.id >> 1].next;
754 void first(UEdge& edge) const {
755 int aNodeId = first_anode;
756 while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
757 aNodeId = aNodes[aNodeId].next != -1 ?
758 aNodes[aNodeId].next >> 1 : -1;
761 edge.id = aNodes[aNodeId].first_edge;
766 void next(UEdge& edge) const {
767 int aNodeId = edges[edge.id].aNode >> 1;
768 edge.id = edges[edge.id].next_out;
770 aNodeId = aNodes[aNodeId].next != -1 ?
771 aNodes[aNodeId].next >> 1 : -1;
772 while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
773 aNodeId = aNodes[aNodeId].next != -1 ?
774 aNodes[aNodeId].next >> 1 : -1;
777 edge.id = aNodes[aNodeId].first_edge;
784 void firstFromANode(UEdge& edge, const Node& node) const {
785 LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
786 edge.id = aNodes[node.id >> 1].first_edge;
788 void nextFromANode(UEdge& edge) const {
789 edge.id = edges[edge.id].next_out;
792 void firstFromBNode(UEdge& edge, const Node& node) const {
793 LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
794 edge.id = bNodes[node.id >> 1].first_edge;
796 void nextFromBNode(UEdge& edge) const {
797 edge.id = edges[edge.id].next_in;
800 static int id(const Node& node) {
803 static Node nodeFromId(int id) {
806 int maxNodeId() const {
807 return aNodes.size() > bNodes.size() ?
808 aNodes.size() * 2 - 2 : bNodes.size() * 2 - 1;
811 static int id(const UEdge& edge) {
814 static UEdge uEdgeFromId(int id) {
817 int maxUEdgeId() const {
821 static int aNodeId(const Node& node) {
824 static Node fromANodeId(int id) {
825 return Node(id << 1);
827 int maxANodeId() const {
828 return aNodes.size();
831 static int bNodeId(const Node& node) {
834 static Node fromBNodeId(int id) {
835 return Node((id << 1) + 1);
837 int maxBNodeId() const {
838 return bNodes.size();
841 Node aNode(const UEdge& edge) const {
842 return Node(edges[edge.id].aNode);
844 Node bNode(const UEdge& edge) const {
845 return Node(edges[edge.id].bNode);
848 static bool aNode(const Node& node) {
849 return (node.id & 1) == 0;
852 static bool bNode(const Node& node) {
853 return (node.id & 1) == 1;
858 if (first_free_anode == -1) {
859 aNodeId = aNodes.size();
860 aNodes.push_back(NodeT());
862 aNodeId = first_free_anode;
863 first_free_anode = aNodes[first_free_anode].next;
865 if (first_anode != -1) {
866 aNodes[aNodeId].next = first_anode << 1;
867 aNodes[first_anode].prev = aNodeId << 1;
869 aNodes[aNodeId].next = -1;
871 aNodes[aNodeId].prev = -1;
872 first_anode = aNodeId;
873 aNodes[aNodeId].first_edge = -1;
874 return Node(aNodeId << 1);
879 if (first_free_bnode == -1) {
880 bNodeId = bNodes.size();
881 bNodes.push_back(NodeT());
883 bNodeId = first_free_bnode;
884 first_free_bnode = bNodes[first_free_bnode].next;
886 if (first_bnode != -1) {
887 bNodes[bNodeId].next = (first_bnode << 1) + 1;
888 bNodes[first_bnode].prev = (bNodeId << 1) + 1;
890 bNodes[bNodeId].next = -1;
892 first_bnode = bNodeId;
893 bNodes[bNodeId].first_edge = -1;
894 return Node((bNodeId << 1) + 1);
897 UEdge addEdge(const Node& source, const Node& target) {
898 LEMON_ASSERT(((source.id ^ target.id) & 1) == 1, NodeSetError());
900 if (first_free_edge != -1) {
901 edgeId = first_free_edge;
902 first_free_edge = edges[edgeId].next_out;
904 edgeId = edges.size();
905 edges.push_back(UEdgeT());
907 if ((source.id & 1) == 0) {
908 edges[edgeId].aNode = source.id;
909 edges[edgeId].bNode = target.id;
911 edges[edgeId].aNode = target.id;
912 edges[edgeId].bNode = source.id;
914 edges[edgeId].next_out = aNodes[edges[edgeId].aNode >> 1].first_edge;
915 edges[edgeId].prev_out = -1;
916 if (aNodes[edges[edgeId].aNode >> 1].first_edge != -1) {
917 edges[aNodes[edges[edgeId].aNode >> 1].first_edge].prev_out = edgeId;
919 aNodes[edges[edgeId].aNode >> 1].first_edge = edgeId;
920 edges[edgeId].next_in = bNodes[edges[edgeId].bNode >> 1].first_edge;
921 edges[edgeId].prev_in = -1;
922 if (bNodes[edges[edgeId].bNode >> 1].first_edge != -1) {
923 edges[bNodes[edges[edgeId].bNode >> 1].first_edge].prev_in = edgeId;
925 bNodes[edges[edgeId].bNode >> 1].first_edge = edgeId;
926 return UEdge(edgeId);
929 void erase(const Node& node) {
931 int aNodeId = node.id >> 1;
932 if (aNodes[aNodeId].prev != -1) {
933 aNodes[aNodes[aNodeId].prev >> 1].next = aNodes[aNodeId].next;
935 first_anode = aNodes[aNodeId].next >> 1;
937 if (aNodes[aNodeId].next != -1) {
938 aNodes[aNodes[aNodeId].next >> 1].prev = aNodes[aNodeId].prev;
940 aNodes[aNodeId].next = first_free_anode;
941 first_free_anode = aNodeId;
943 int bNodeId = node.id >> 1;
944 if (bNodes[bNodeId].prev != -1) {
945 bNodes[bNodes[bNodeId].prev >> 1].next = bNodes[bNodeId].next;
947 first_bnode = bNodes[bNodeId].next >> 1;
949 if (bNodes[bNodeId].next != -1) {
950 bNodes[bNodes[bNodeId].next >> 1].prev = bNodes[bNodeId].prev;
952 bNodes[bNodeId].next = first_free_bnode;
953 first_free_bnode = bNodeId;
957 void erase(const UEdge& edge) {
959 if (edges[edge.id].prev_out != -1) {
960 edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out;
962 aNodes[edges[edge.id].aNode >> 1].first_edge = edges[edge.id].next_out;
964 if (edges[edge.id].next_out != -1) {
965 edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out;
968 if (edges[edge.id].prev_in != -1) {
969 edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in;
971 bNodes[edges[edge.id].bNode >> 1].first_edge = edges[edge.id].next_in;
973 if (edges[edge.id].next_in != -1) {
974 edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in;
977 edges[edge.id].next_out = first_free_edge;
978 first_free_edge = edge.id;
986 first_free_anode = -1;
988 first_free_bnode = -1;
989 first_free_edge = -1;
995 typedef BpUGraphExtender< ListBpUGraphBase > ExtendedListBpUGraphBase;
999 /// \brief A smart bipartite undirected graph class.
1001 /// This is a bipartite undirected graph implementation.
1002 /// It is conforms to the \ref concept::ErasableBpUGraph "ErasableBpUGraph"
1004 /// \sa concept::BpUGraph.
1006 class ListBpUGraph : public ExtendedListBpUGraphBase {};