lemon/list_graph.h
author deba
Mon, 26 Jun 2006 15:40:35 +0000
changeset 2110 4b8153513f34
parent 2102 eb73ab0e4c74
child 2111 ea1fa1bc3f6d
permissions -rw-r--r--
Smaller Simple Bucket Heap
- the list node does not store the value
- trade off: linear time operator[]
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_LIST_GRAPH_H
    20 #define LEMON_LIST_GRAPH_H
    21 
    22 ///\ingroup graphs
    23 ///\file
    24 ///\brief ListGraph, ListUGraph classes.
    25 
    26 #include <lemon/bits/base_extender.h>
    27 #include <lemon/bits/graph_extender.h>
    28 
    29 #include <lemon/error.h>
    30 
    31 #include <vector>
    32 #include <list>
    33 
    34 namespace lemon {
    35 
    36   class ListGraphBase {
    37 
    38   protected:
    39     struct NodeT {
    40       int first_in, first_out;
    41       int prev, next;
    42     };
    43  
    44     struct EdgeT {
    45       int target, source;
    46       int prev_in, prev_out;
    47       int next_in, next_out;
    48     };
    49 
    50     std::vector<NodeT> nodes;
    51 
    52     int first_node;
    53 
    54     int first_free_node;
    55 
    56     std::vector<EdgeT> edges;
    57 
    58     int first_free_edge;
    59     
    60   public:
    61     
    62     typedef ListGraphBase Graph;
    63     
    64     class Node {
    65       friend class ListGraphBase;
    66     protected:
    67 
    68       int id;
    69       explicit Node(int pid) { id = pid;}
    70 
    71     public:
    72       Node() {}
    73       Node (Invalid) { id = -1; }
    74       bool operator==(const Node& node) const {return id == node.id;}
    75       bool operator!=(const Node& node) const {return id != node.id;}
    76       bool operator<(const Node& node) const {return id < node.id;}
    77     };
    78 
    79     class Edge {
    80       friend class ListGraphBase;
    81     protected:
    82 
    83       int id;
    84       explicit Edge(int pid) { id = pid;}
    85 
    86     public:
    87       Edge() {}
    88       Edge (Invalid) { id = -1; }
    89       bool operator==(const Edge& edge) const {return id == edge.id;}
    90       bool operator!=(const Edge& edge) const {return id != edge.id;}
    91       bool operator<(const Edge& edge) const {return id < edge.id;}
    92     };
    93 
    94 
    95 
    96     ListGraphBase()
    97       : nodes(), first_node(-1),
    98 	first_free_node(-1), edges(), first_free_edge(-1) {}
    99 
   100     
   101     /// Maximum node ID.
   102     
   103     /// Maximum node ID.
   104     ///\sa id(Node)
   105     int maxNodeId() const { return nodes.size()-1; } 
   106 
   107     /// Maximum edge ID.
   108     
   109     /// Maximum edge ID.
   110     ///\sa id(Edge)
   111     int maxEdgeId() const { return edges.size()-1; }
   112 
   113     Node source(Edge e) const { return Node(edges[e.id].source); }
   114     Node target(Edge e) const { return Node(edges[e.id].target); }
   115 
   116 
   117     void first(Node& node) const { 
   118       node.id = first_node;
   119     }
   120 
   121     void next(Node& node) const {
   122       node.id = nodes[node.id].next;
   123     }
   124 
   125 
   126     void first(Edge& e) const { 
   127       int n;
   128       for(n = first_node; 
   129 	  n!=-1 && nodes[n].first_in == -1; 
   130 	  n = nodes[n].next);
   131       e.id = (n == -1) ? -1 : nodes[n].first_in;
   132     }
   133 
   134     void next(Edge& edge) const {
   135       if (edges[edge.id].next_in != -1) {
   136 	edge.id = edges[edge.id].next_in;
   137       } else {
   138 	int n;
   139 	for(n = nodes[edges[edge.id].target].next;
   140 	  n!=-1 && nodes[n].first_in == -1; 
   141 	  n = nodes[n].next);
   142 	edge.id = (n == -1) ? -1 : nodes[n].first_in;
   143       }      
   144     }
   145 
   146     void firstOut(Edge &e, const Node& v) const {
   147       e.id = nodes[v.id].first_out;
   148     }
   149     void nextOut(Edge &e) const {
   150       e.id=edges[e.id].next_out;
   151     }
   152 
   153     void firstIn(Edge &e, const Node& v) const {
   154       e.id = nodes[v.id].first_in;
   155     }
   156     void nextIn(Edge &e) const {
   157       e.id=edges[e.id].next_in;
   158     }
   159 
   160     
   161     static int id(Node v) { return v.id; }
   162     static int id(Edge e) { return e.id; }
   163 
   164     static Node nodeFromId(int id) { return Node(id);}
   165     static Edge edgeFromId(int id) { return Edge(id);}
   166 
   167     /// Adds a new node to the graph.
   168 
   169     /// \warning It adds the new node to the front of the list.
   170     /// (i.e. the lastly added node becomes the first.)
   171     Node addNode() {     
   172       int n;
   173       
   174       if(first_free_node==-1) {
   175 	n = nodes.size();
   176 	nodes.push_back(NodeT());
   177       } else {
   178 	n = first_free_node;
   179 	first_free_node = nodes[n].next;
   180       }
   181       
   182       nodes[n].next = first_node;
   183       if(first_node != -1) nodes[first_node].prev = n;
   184       first_node = n;
   185       nodes[n].prev = -1;
   186       
   187       nodes[n].first_in = nodes[n].first_out = -1;
   188       
   189       return Node(n);
   190     }
   191     
   192     Edge addEdge(Node u, Node v) {
   193       int n;      
   194 
   195       if (first_free_edge == -1) {
   196 	n = edges.size();
   197 	edges.push_back(EdgeT());
   198       } else {
   199 	n = first_free_edge;
   200 	first_free_edge = edges[n].next_in;
   201       }
   202       
   203       edges[n].source = u.id; 
   204       edges[n].target = v.id;
   205 
   206       edges[n].next_out = nodes[u.id].first_out;
   207       if(nodes[u.id].first_out != -1) {
   208 	edges[nodes[u.id].first_out].prev_out = n;
   209       }
   210       
   211       edges[n].next_in = nodes[v.id].first_in;
   212       if(nodes[v.id].first_in != -1) {
   213 	edges[nodes[v.id].first_in].prev_in = n;
   214       }
   215       
   216       edges[n].prev_in = edges[n].prev_out = -1;
   217 	
   218       nodes[u.id].first_out = nodes[v.id].first_in = n;
   219 
   220       return Edge(n);
   221     }
   222     
   223     void erase(const Node& node) {
   224       int n = node.id;
   225       
   226       if(nodes[n].next != -1) {
   227 	nodes[nodes[n].next].prev = nodes[n].prev;
   228       }
   229       
   230       if(nodes[n].prev != -1) {
   231 	nodes[nodes[n].prev].next = nodes[n].next;
   232       } else {
   233 	first_node = nodes[n].next;
   234       }
   235       
   236       nodes[n].next = first_free_node;
   237       first_free_node = n;
   238 
   239     }
   240     
   241     void erase(const Edge& edge) {
   242       int n = edge.id;
   243       
   244       if(edges[n].next_in!=-1) {
   245 	edges[edges[n].next_in].prev_in = edges[n].prev_in;
   246       }
   247 
   248       if(edges[n].prev_in!=-1) {
   249 	edges[edges[n].prev_in].next_in = edges[n].next_in;
   250       } else {
   251 	nodes[edges[n].target].first_in = edges[n].next_in;
   252       }
   253 
   254       
   255       if(edges[n].next_out!=-1) {
   256 	edges[edges[n].next_out].prev_out = edges[n].prev_out;
   257       } 
   258 
   259       if(edges[n].prev_out!=-1) {
   260 	edges[edges[n].prev_out].next_out = edges[n].next_out;
   261       } else {
   262 	nodes[edges[n].source].first_out = edges[n].next_out;
   263       }
   264       
   265       edges[n].next_in = first_free_edge;
   266       first_free_edge = n;      
   267 
   268     }
   269 
   270     void clear() {
   271       edges.clear();
   272       nodes.clear();
   273       first_node = first_free_node = first_free_edge = -1;
   274     }
   275 
   276   protected:
   277     void _changeTarget(Edge e, Node n) 
   278     {
   279       if(edges[e.id].next_in != -1)
   280 	edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
   281       if(edges[e.id].prev_in != -1)
   282 	edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
   283       else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
   284       if (nodes[n.id].first_in != -1) {
   285 	edges[nodes[n.id].first_in].prev_in = e.id;
   286       }
   287       edges[e.id].target = n.id;
   288       edges[e.id].prev_in = -1;
   289       edges[e.id].next_in = nodes[n.id].first_in;
   290       nodes[n.id].first_in = e.id;
   291     }
   292     void _changeSource(Edge e, Node n) 
   293     {
   294       if(edges[e.id].next_out != -1)
   295 	edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
   296       if(edges[e.id].prev_out != -1)
   297 	edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
   298       else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
   299       if (nodes[n.id].first_out != -1) {
   300 	edges[nodes[n.id].first_out].prev_out = e.id;
   301       }
   302       edges[e.id].source = n.id;
   303       edges[e.id].prev_out = -1;
   304       edges[e.id].next_out = nodes[n.id].first_out;
   305       nodes[n.id].first_out = e.id;
   306     }
   307 
   308   };
   309 
   310   typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
   311 
   312   /// \addtogroup graphs
   313   /// @{
   314 
   315   ///A list graph class.
   316 
   317   ///This is a simple and fast erasable graph implementation.
   318   ///
   319   ///It conforms to the
   320   ///\ref concept::ErasableGraph "ErasableGraph" concept and
   321   ///it also provides several additional useful extra functionalities.
   322   ///\sa concept::ErasableGraph.
   323 
   324   class ListGraph : public ExtendedListGraphBase {
   325   public:
   326 
   327     typedef ExtendedListGraphBase Parent;
   328 
   329     /// Changes the target of \c e to \c n
   330 
   331     /// Changes the target of \c e to \c n
   332     ///
   333     ///\note The <tt>Edge</tt>s and <tt>OutEdge</tt>s
   334     ///referencing the changed edge remain
   335     ///valid. However <tt>InEdge</tt>s are invalidated.
   336     void changeTarget(Edge e, Node n) { 
   337       _changeTarget(e,n); 
   338     }
   339     /// Changes the source of \c e to \c n
   340 
   341     /// Changes the source of \c e to \c n
   342     ///
   343     ///\note The <tt>Edge</tt>s and <tt>InEdge</tt>s
   344     ///referencing the changed edge remain
   345     ///valid. However <tt>OutEdge</tt>s are invalidated.
   346     void changeSource(Edge e, Node n) { 
   347       _changeSource(e,n);
   348     }
   349 
   350     /// Invert the direction of an edge.
   351 
   352     ///\note The <tt>Edge</tt>s
   353     ///referencing the changed edge remain
   354     ///valid. However <tt>OutEdge</tt>s  and <tt>InEdge</tt>s are invalidated.
   355     void reverseEdge(Edge e) {
   356       Node t=target(e);
   357       _changeTarget(e,source(e));
   358       _changeSource(e,t);
   359     }
   360 
   361     ///Using this it is possible to avoid the superfluous memory
   362     ///allocation.
   363 
   364     ///Using this it is possible to avoid the superfluous memory
   365     ///allocation: if you know that the graph you want to build will
   366     ///contain at least 10 million nodes then it is worth to reserve
   367     ///space for this amount before starting to build the graph.
   368     void reserveNode(int n) { nodes.reserve(n); };
   369 
   370     ///Using this it is possible to avoid the superfluous memory
   371     ///allocation.
   372 
   373     ///Using this it is possible to avoid the superfluous memory
   374     ///allocation: see the \ref reserveNode function.
   375     void reserveEdge(int n) { edges.reserve(n); };
   376 
   377 
   378     ///Contract two nodes.
   379 
   380     ///This function contracts two nodes.
   381     ///
   382     ///Node \p b will be removed but instead of deleting
   383     ///incident edges, they will be joined to \p a.
   384     ///The last parameter \p r controls whether to remove loops. \c true
   385     ///means that loops will be removed.
   386     ///
   387     ///\note The <tt>Edge</tt>s
   388     ///referencing a moved edge remain
   389     ///valid. However <tt>InEdge</tt>s and <tt>OutEdge</tt>s
   390     ///may be invalidated.
   391     void contract(Node a, Node b, bool r = true) 
   392     {
   393       for(OutEdgeIt e(*this,b);e!=INVALID;) {
   394 	OutEdgeIt f=e;
   395 	++f;
   396 	if(r && target(e)==a) erase(e);
   397 	else changeSource(e,a);
   398 	e=f;
   399       }
   400       for(InEdgeIt e(*this,b);e!=INVALID;) {
   401 	InEdgeIt f=e;
   402 	++f;
   403 	if(r && source(e)==a) erase(e);
   404 	else changeTarget(e,a);
   405 	e=f;
   406       }
   407       erase(b);
   408     }
   409 
   410     ///Split a node.
   411 
   412     ///This function splits a node. First a new node is added to the graph,
   413     ///then the source of each outgoing edge of \c n is moved to this new node.
   414     ///If \c connect is \c true (this is the default value), then a new edge
   415     ///from \c n to the newly created node is also added.
   416     ///\return The newly created node.
   417     ///
   418     ///\note The <tt>Edge</tt>s
   419     ///referencing a moved edge remain
   420     ///valid. However <tt>InEdge</tt>s and <tt>OutEdge</tt>s
   421     ///may be invalidated.
   422     ///\warning This functionality cannot be used together with the Snapshot
   423     ///feature.
   424     ///\todo It could be implemented in a bit faster way.
   425     Node split(Node n, bool connect = true) 
   426     {
   427       Node b = addNode();
   428       for(OutEdgeIt e(*this,n);e!=INVALID;) {
   429  	OutEdgeIt f=e;
   430 	++f;
   431 	changeSource(e,b);
   432 	e=f;
   433       }
   434       if(connect) addEdge(n,b);
   435       return b;
   436     }
   437       
   438     ///Split an edge.
   439 
   440     ///This function splits an edge. First a new node \c b is added to
   441     ///the graph, then the original edge is re-targeted to \c
   442     ///b. Finally an edge from \c b to the original target is added.
   443     ///\return The newly created node.  
   444     ///\warning This functionality
   445     ///cannot be used together with the Snapshot feature.
   446     Node split(Edge e) 
   447     {
   448       Node b = addNode();
   449       addEdge(b,target(e));
   450       changeTarget(e,b);
   451       return b;
   452     }
   453       
   454     ///Class to make a snapshot of the graph and to restore  it later.
   455 
   456     ///Class to make a snapshot of the graph and to restore  it later.
   457     ///
   458     ///The newly added nodes and edges can be removed using the
   459     ///restore() function.
   460     ///
   461     ///\warning Edge and node deletions cannot be restored.
   462     ///\warning Snapshots cannot be nested.
   463     class Snapshot : protected Parent::NodeNotifier::ObserverBase,
   464 		     protected Parent::EdgeNotifier::ObserverBase
   465     {
   466     public:
   467       
   468       class UnsupportedOperation : public LogicError {
   469       public:
   470 	virtual const char* exceptionName() const {
   471 	  return "lemon::ListGraph::Snapshot::UnsupportedOperation";
   472 	}
   473       };
   474             
   475 
   476     protected:
   477       
   478       ListGraph *g;
   479       std::list<Node> added_nodes;
   480       std::list<Edge> added_edges;
   481       
   482       bool active;
   483       virtual void add(const Node& n) {
   484 	added_nodes.push_back(n);
   485       };
   486       virtual void erase(const Node&) 
   487       {
   488 	throw UnsupportedOperation();
   489       }
   490       virtual void add(const Edge& n) {
   491 	added_edges.push_back(n);
   492       };
   493       virtual void erase(const Edge&) 
   494       {
   495 	throw UnsupportedOperation();
   496       }
   497 
   498       ///\bug What is this used for?
   499       ///
   500       virtual void build() {}
   501       ///\bug What is this used for?
   502       ///
   503       virtual void clear() {}
   504 
   505       void regist(ListGraph &_g) {
   506 	g=&_g;
   507 	Parent::NodeNotifier::ObserverBase::attach(g->getNotifier(Node()));
   508 	Parent::EdgeNotifier::ObserverBase::attach(g->getNotifier(Edge()));
   509       }
   510             
   511       void deregist() {
   512 	Parent::NodeNotifier::ObserverBase::detach();
   513 	Parent::EdgeNotifier::ObserverBase::detach();
   514 	g=0;
   515       }
   516 
   517     public:
   518       ///Default constructur.
   519       
   520       ///Default constructur.
   521       ///To actually make a snapshot you must call save().
   522       ///
   523       Snapshot() : g(0) {}
   524       ///Constructor that immediately makes a snapshot.
   525       
   526       ///This constructor immediately makes a snapshot of the graph.
   527       ///\param _g The graph we make a snapshot of.
   528       Snapshot(ListGraph &_g) {
   529 	regist(_g);
   530       }
   531       ///\bug Is it necessary?
   532       ///
   533       ~Snapshot() 
   534       {
   535 	if(g) deregist();
   536       }
   537       
   538       ///Make a snapshot.
   539 
   540       ///Make a snapshot of the graph.
   541       ///
   542       ///This function can be called more than once. In case of a repeated
   543       ///call, the previous snapshot gets lost.
   544       ///\param _g The graph we make the snapshot of.
   545       void save(ListGraph &_g) 
   546       {
   547 	if(g!=&_g) {
   548 	  if(g) deregist();
   549 	  regist(_g);
   550 	}
   551 	added_nodes.clear();
   552 	added_edges.clear();
   553       }
   554       
   555     ///Undo the changes until the last snapshot.
   556 
   557     ///Undo the changes until last snapshot created by save().
   558     ///
   559     ///\todo This function might be called undo().
   560       void restore() {
   561 	ListGraph &old_g=*g;
   562 	deregist();
   563 	while(!added_edges.empty()) {
   564 	  old_g.erase(added_edges.front());
   565 	  added_edges.pop_front();
   566 	}
   567  	while(!added_nodes.empty()) {
   568 	  old_g.erase(added_nodes.front());
   569 	  added_nodes.pop_front();
   570 	}
   571       }
   572     };
   573     
   574   };
   575 
   576   ///@}
   577 
   578   /**************** Undirected List Graph ****************/
   579 
   580   typedef UGraphExtender<UndirGraphExtender<ListGraphBase> > 
   581   ExtendedListUGraphBase;
   582 
   583   /// \addtogroup graphs
   584   /// @{
   585 
   586   ///An undirected list graph class.
   587 
   588   ///This is a simple and fast erasable undirected graph implementation.
   589   ///
   590   ///It conforms to the
   591   ///\ref concept::UGraph "UGraph" concept.
   592   ///
   593   ///\sa concept::UGraph.
   594   ///
   595   ///\todo Snapshot, reverseEdge(), changeTarget(), changeSource(), contract()
   596   ///haven't been implemented yet.
   597   ///
   598   class ListUGraph : public ExtendedListUGraphBase {
   599   public:
   600     typedef ExtendedListUGraphBase Parent;
   601     /// \brief Changes the target of \c e to \c n
   602     ///
   603     /// Changes the target of \c e to \c n
   604     ///
   605     /// \note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
   606     /// referencing the changed edge remain
   607     /// valid. However <tt>InEdge</tt>'s are invalidated.
   608     void changeTarget(UEdge e, Node n) { 
   609       _changeTarget(e,n); 
   610     }
   611     /// Changes the source of \c e to \c n
   612     ///
   613     /// Changes the source of \c e to \c n
   614     ///
   615     ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
   616     ///referencing the changed edge remain
   617     ///valid. However <tt>OutEdge</tt>'s are invalidated.
   618     void changeSource(UEdge e, Node n) { 
   619       _changeSource(e,n); 
   620     }
   621     /// \brief Contract two nodes.
   622     ///
   623     /// This function contracts two nodes.
   624     ///
   625     /// Node \p b will be removed but instead of deleting
   626     /// its neighboring edges, they will be joined to \p a.
   627     /// The last parameter \p r controls whether to remove loops. \c true
   628     /// means that loops will be removed.
   629     ///
   630     /// \note The <tt>Edge</tt>s
   631     /// referencing a moved edge remain
   632     /// valid.
   633     void contract(Node a, Node b, bool r = true) {
   634       for(IncEdgeIt e(*this, b); e!=INVALID;) {
   635 	IncEdgeIt f = e; ++f;
   636 	if (r && runningNode(e) == a) {
   637 	  erase(e);
   638 	} else if (source(e) == b) {
   639 	  changeSource(e, a);
   640 	} else {
   641 	  changeTarget(e, a);
   642 	}
   643 	e = f;
   644       }
   645       erase(b);
   646     }
   647   };
   648 
   649 
   650   class ListBpUGraphBase {
   651   public:
   652 
   653     class NodeSetError : public LogicError {
   654       virtual const char* exceptionName() const { 
   655 	return "lemon::ListBpUGraph::NodeSetError";
   656       }
   657     };
   658 
   659   protected:
   660 
   661     struct NodeT {
   662       int first_edge, prev, next;
   663     };
   664 
   665     struct UEdgeT {
   666       int aNode, prev_out, next_out;
   667       int bNode, prev_in, next_in;
   668     };
   669 
   670     std::vector<NodeT> aNodes;
   671     std::vector<NodeT> bNodes;
   672 
   673     std::vector<UEdgeT> edges;
   674 
   675     int first_anode;
   676     int first_free_anode;
   677 
   678     int first_bnode;
   679     int first_free_bnode;
   680 
   681     int first_free_edge;
   682 
   683   public:
   684   
   685     class Node {
   686       friend class ListBpUGraphBase;
   687     protected:
   688       int id;
   689 
   690       explicit Node(int _id) : id(_id) {}
   691     public:
   692       Node() {}
   693       Node(Invalid) { id = -1; }
   694       bool operator==(const Node i) const {return id==i.id;}
   695       bool operator!=(const Node i) const {return id!=i.id;}
   696       bool operator<(const Node i) const {return id<i.id;}
   697     };
   698 
   699     class UEdge {
   700       friend class ListBpUGraphBase;
   701     protected:
   702       int id;
   703 
   704       explicit UEdge(int _id) { id = _id;}
   705     public:
   706       UEdge() {}
   707       UEdge (Invalid) { id = -1; }
   708       bool operator==(const UEdge i) const {return id==i.id;}
   709       bool operator!=(const UEdge i) const {return id!=i.id;}
   710       bool operator<(const UEdge i) const {return id<i.id;}
   711     };
   712 
   713     ListBpUGraphBase()
   714       : first_anode(-1), first_free_anode(-1),
   715         first_bnode(-1), first_free_bnode(-1),
   716         first_free_edge(-1) {}
   717 
   718     void firstANode(Node& node) const {
   719       node.id = first_anode != -1 ? (first_anode << 1) : -1;
   720     }
   721     void nextANode(Node& node) const {
   722       node.id = aNodes[node.id >> 1].next;
   723     }
   724 
   725     void firstBNode(Node& node) const {
   726       node.id = first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
   727     }
   728     void nextBNode(Node& node) const {
   729       node.id = bNodes[node.id >> 1].next;
   730     }
   731 
   732     void first(Node& node) const {
   733       if (first_anode != -1) {
   734         node.id = (first_anode << 1);
   735       } else if (first_bnode != -1) {
   736         node.id = (first_bnode << 1) + 1;
   737       } else {
   738         node.id = -1;
   739       }
   740     }
   741     void next(Node& node) const {
   742       if (aNode(node)) {
   743         node.id = aNodes[node.id >> 1].next;
   744         if (node.id == -1) {
   745           if (first_bnode != -1) {
   746             node.id = (first_bnode << 1) + 1;
   747           }
   748         }
   749       } else {
   750         node.id = bNodes[node.id >> 1].next;
   751       }
   752     }
   753   
   754     void first(UEdge& edge) const {
   755       int aNodeId = first_anode;
   756       while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
   757         aNodeId = aNodes[aNodeId].next != -1 ? 
   758           aNodes[aNodeId].next >> 1 : -1;
   759       }
   760       if (aNodeId != -1) {
   761         edge.id = aNodes[aNodeId].first_edge;
   762       } else {
   763         edge.id = -1;
   764       }
   765     }
   766     void next(UEdge& edge) const {
   767       int aNodeId = edges[edge.id].aNode >> 1;
   768       edge.id = edges[edge.id].next_out;
   769       if (edge.id == -1) {
   770         aNodeId = aNodes[aNodeId].next != -1 ? 
   771           aNodes[aNodeId].next >> 1 : -1;
   772         while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
   773           aNodeId = aNodes[aNodeId].next != -1 ? 
   774           aNodes[aNodeId].next >> 1 : -1;
   775         }
   776         if (aNodeId != -1) {
   777           edge.id = aNodes[aNodeId].first_edge;
   778         } else {
   779           edge.id = -1;
   780         }
   781       }
   782     }
   783 
   784     void firstFromANode(UEdge& edge, const Node& node) const {
   785       LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
   786       edge.id = aNodes[node.id >> 1].first_edge;
   787     }
   788     void nextFromANode(UEdge& edge) const {
   789       edge.id = edges[edge.id].next_out;
   790     }
   791 
   792     void firstFromBNode(UEdge& edge, const Node& node) const {
   793       LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
   794       edge.id = bNodes[node.id >> 1].first_edge;
   795     }
   796     void nextFromBNode(UEdge& edge) const {
   797       edge.id = edges[edge.id].next_in;
   798     }
   799 
   800     static int id(const Node& node) {
   801       return node.id;
   802     }
   803     static Node nodeFromId(int id) {
   804       return Node(id);
   805     }
   806     int maxNodeId() const {
   807       return aNodes.size() > bNodes.size() ?
   808 	aNodes.size() * 2 - 2 : bNodes.size() * 2 - 1;
   809     }
   810   
   811     static int id(const UEdge& edge) {
   812       return edge.id;
   813     }
   814     static UEdge uEdgeFromId(int id) {
   815       return UEdge(id);
   816     }
   817     int maxUEdgeId() const {
   818       return edges.size();
   819     }
   820   
   821     static int aNodeId(const Node& node) {
   822       return node.id >> 1;
   823     }
   824     static Node fromANodeId(int id) {
   825       return Node(id << 1);
   826     }
   827     int maxANodeId() const {
   828       return aNodes.size();
   829     }
   830 
   831     static int bNodeId(const Node& node) {
   832       return node.id >> 1;
   833     }
   834     static Node fromBNodeId(int id) {
   835       return Node((id << 1) + 1);
   836     }
   837     int maxBNodeId() const {
   838       return bNodes.size();
   839     }
   840 
   841     Node aNode(const UEdge& edge) const {
   842       return Node(edges[edge.id].aNode);
   843     }
   844     Node bNode(const UEdge& edge) const {
   845       return Node(edges[edge.id].bNode);
   846     }
   847 
   848     static bool aNode(const Node& node) {
   849       return (node.id & 1) == 0;
   850     }
   851 
   852     static bool bNode(const Node& node) {
   853       return (node.id & 1) == 1;
   854     }
   855 
   856     Node addANode() {
   857       int aNodeId;
   858       if (first_free_anode == -1) {
   859         aNodeId = aNodes.size();
   860         aNodes.push_back(NodeT());
   861       } else {
   862         aNodeId = first_free_anode;
   863         first_free_anode = aNodes[first_free_anode].next;
   864       }
   865       if (first_anode != -1) {
   866         aNodes[aNodeId].next = first_anode << 1;
   867         aNodes[first_anode].prev = aNodeId << 1;
   868       } else {
   869         aNodes[aNodeId].next = -1;
   870       }
   871       aNodes[aNodeId].prev = -1;
   872       first_anode = aNodeId;
   873       aNodes[aNodeId].first_edge = -1;
   874       return Node(aNodeId << 1);
   875     }
   876 
   877     Node addBNode() {
   878       int bNodeId;
   879       if (first_free_bnode == -1) {
   880         bNodeId = bNodes.size();
   881         bNodes.push_back(NodeT());
   882       } else {
   883         bNodeId = first_free_bnode;
   884         first_free_bnode = bNodes[first_free_bnode].next;
   885       }
   886       if (first_bnode != -1) {
   887         bNodes[bNodeId].next = (first_bnode << 1) + 1;
   888         bNodes[first_bnode].prev = (bNodeId << 1) + 1;
   889       } else {
   890         bNodes[bNodeId].next = -1;
   891       }
   892       first_bnode = bNodeId;
   893       bNodes[bNodeId].first_edge = -1;
   894       return Node((bNodeId << 1) + 1);
   895     }
   896 
   897     UEdge addEdge(const Node& source, const Node& target) {
   898       LEMON_ASSERT(((source.id ^ target.id) & 1) == 1, NodeSetError());
   899       int edgeId;
   900       if (first_free_edge != -1) {
   901         edgeId = first_free_edge;
   902         first_free_edge = edges[edgeId].next_out;
   903       } else {
   904         edgeId = edges.size();
   905         edges.push_back(UEdgeT());
   906       }
   907       if ((source.id & 1) == 0) {
   908 	edges[edgeId].aNode = source.id;
   909 	edges[edgeId].bNode = target.id;
   910       } else {
   911 	edges[edgeId].aNode = target.id;
   912 	edges[edgeId].bNode = source.id;
   913       }
   914       edges[edgeId].next_out = aNodes[edges[edgeId].aNode >> 1].first_edge;
   915       edges[edgeId].prev_out = -1;
   916       if (aNodes[edges[edgeId].aNode >> 1].first_edge != -1) {
   917         edges[aNodes[edges[edgeId].aNode >> 1].first_edge].prev_out = edgeId;
   918       }
   919       aNodes[edges[edgeId].aNode >> 1].first_edge = edgeId;
   920       edges[edgeId].next_in = bNodes[edges[edgeId].bNode >> 1].first_edge;
   921       edges[edgeId].prev_in = -1;
   922       if (bNodes[edges[edgeId].bNode >> 1].first_edge != -1) {
   923         edges[bNodes[edges[edgeId].bNode >> 1].first_edge].prev_in = edgeId;
   924       }
   925       bNodes[edges[edgeId].bNode >> 1].first_edge = edgeId;
   926       return UEdge(edgeId);
   927     }
   928 
   929     void erase(const Node& node) {
   930       if (aNode(node)) {
   931         int aNodeId = node.id >> 1;
   932         if (aNodes[aNodeId].prev != -1) {
   933           aNodes[aNodes[aNodeId].prev >> 1].next = aNodes[aNodeId].next;
   934         } else {
   935           first_anode = aNodes[aNodeId].next >> 1;
   936         }
   937         if (aNodes[aNodeId].next != -1) {
   938           aNodes[aNodes[aNodeId].next >> 1].prev = aNodes[aNodeId].prev;
   939         }
   940         aNodes[aNodeId].next = first_free_anode;
   941         first_free_anode = aNodeId;
   942       } else {
   943         int bNodeId = node.id >> 1;
   944         if (bNodes[bNodeId].prev != -1) {
   945           bNodes[bNodes[bNodeId].prev >> 1].next = bNodes[bNodeId].next;
   946         } else {
   947           first_bnode = bNodes[bNodeId].next >> 1;
   948         }
   949         if (bNodes[bNodeId].next != -1) {
   950           bNodes[bNodes[bNodeId].next >> 1].prev = bNodes[bNodeId].prev;
   951         }
   952         bNodes[bNodeId].next = first_free_bnode;
   953         first_free_bnode = bNodeId;
   954       }
   955     }
   956 
   957     void erase(const UEdge& edge) {
   958 
   959       if (edges[edge.id].prev_out != -1) {
   960         edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out;
   961       } else {
   962         aNodes[edges[edge.id].aNode >> 1].first_edge = edges[edge.id].next_out;
   963       }
   964       if (edges[edge.id].next_out != -1) {
   965         edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out;
   966       }
   967 
   968       if (edges[edge.id].prev_in != -1) {
   969         edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in;
   970       } else {
   971         bNodes[edges[edge.id].bNode >> 1].first_edge = edges[edge.id].next_in;
   972       }
   973       if (edges[edge.id].next_in != -1) {
   974         edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in;
   975       }
   976 
   977       edges[edge.id].next_out = first_free_edge;
   978       first_free_edge = edge.id;
   979     }
   980 
   981     void clear() {
   982       aNodes.clear();
   983       bNodes.clear();
   984       edges.clear();
   985       first_anode = -1;
   986       first_free_anode = -1;
   987       first_bnode = -1;
   988       first_free_bnode = -1;
   989       first_free_edge = -1;
   990     }
   991 
   992   };
   993 
   994 
   995   typedef BpUGraphExtender< ListBpUGraphBase > ExtendedListBpUGraphBase;
   996 
   997   /// \ingroup graphs
   998   ///
   999   /// \brief A smart bipartite undirected graph class.
  1000   ///
  1001   /// This is a bipartite undirected graph implementation.
  1002   /// It is conforms to the \ref concept::ErasableBpUGraph "ErasableBpUGraph" 
  1003   /// concept.
  1004   /// \sa concept::BpUGraph.
  1005   ///
  1006   class ListBpUGraph : public ExtendedListBpUGraphBase {};
  1007 
  1008   
  1009   /// @}  
  1010 } //namespace lemon
  1011   
  1012 
  1013 #endif