src/work/athos/minlengthpaths.h
author beckerjc
Sat, 17 Apr 2004 21:50:48 +0000
changeset 352 4b89077ab715
parent 329 0dade87d013b
child 430 60e4627e8c74
permissions -rw-r--r--
A successful work-around for using const map reference as an output
parameter to Kruskal().
     1 // -*- c++ -*-
     2 #ifndef HUGO_MINLENGTHPATHS_H
     3 #define HUGO_MINLENGTHPATHS_H
     4 
     5 ///\file
     6 ///\brief An algorithm for finding k paths of minimal total length.
     7 
     8 #include <iostream>
     9 #include <dijkstra.h>
    10 #include <graph_wrapper.h>
    11 #include <maps.h>
    12 #include <vector>
    13 
    14 
    15 namespace hugo {
    16 
    17 
    18 
    19   ///\brief Implementation of an algorithm for finding k paths between 2 nodes 
    20   /// of minimal total length 
    21   ///
    22   /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements
    23   /// an algorithm which finds k edge-disjoint paths
    24   /// from a given source node to a given target node in an
    25   /// edge-weighted directed graph having minimal total weigth (length).
    26 
    27   template <typename Graph, typename LengthMap>
    28   class MinLengthPaths {
    29 
    30     typedef typename LengthMap::ValueType Length;
    31 
    32     typedef typename Graph::Node Node;
    33     typedef typename Graph::NodeIt NodeIt;
    34     typedef typename Graph::Edge Edge;
    35     typedef typename Graph::OutEdgeIt OutEdgeIt;
    36     typedef typename Graph::EdgeMap<int> EdgeIntMap;
    37 
    38     typedef ConstMap<Edge,int> ConstMap;
    39 
    40     typedef ResGraphWrapper<const Graph,int,ConstMap,EdgeIntMap> ResGraphType;
    41 
    42 
    43     class ModLengthMap {   
    44       typedef typename ResGraphType::NodeMap<Length> NodeMap;
    45       const ResGraphType& G;
    46       const EdgeIntMap& rev;
    47       const LengthMap &ol;
    48       const NodeMap &pot;
    49     public :
    50       typedef typename LengthMap::KeyType KeyType;
    51       typedef typename LengthMap::ValueType ValueType;
    52 
    53       ValueType operator[](typename ResGraphType::Edge e) const {     
    54 	//if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){
    55 	//  std::cout<<"Negative length!!"<<std::endl;
    56 	//}
    57 	return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    58       }     
    59 
    60       ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev, 
    61 		   const LengthMap &o,  const NodeMap &p) : 
    62 	G(_G), rev(_rev), ol(o), pot(p){}; 
    63     };
    64     
    65 
    66     const Graph& G;
    67     const LengthMap& length;
    68 
    69     //auxiliary variables
    70 
    71     //The value is 1 iff the edge is reversed. 
    72     //If the algorithm has finished, the edges of the seeked paths are 
    73     //exactly those that are reversed 
    74     EdgeIntMap reversed; 
    75     
    76     //Container to store found paths
    77     std::vector< std::vector<Edge> > paths;
    78 
    79   public :
    80 
    81 
    82     MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), 
    83       length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ }
    84 
    85     
    86     ///Runs the algorithm.
    87 
    88     ///Runs the algorithm.
    89     ///Returns k if there are at least k edge-disjoint paths from s to t.
    90     ///Otherwise it returns the number of found edge-disjoint paths from s to t.
    91     int run(Node s, Node t, int k) {
    92       ConstMap const1map(1);
    93 
    94       //We need a residual graph, in which some of the edges are reversed
    95       ResGraphType res_graph(G, const1map, reversed);
    96 
    97       //Initialize the copy of the Dijkstra potential to zero
    98       typename ResGraphType::NodeMap<Length> dijkstra_dist(res_graph);
    99       ModLengthMap mod_length(res_graph, reversed, length, dijkstra_dist);
   100 
   101       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
   102 
   103       int i;
   104       for (i=0; i<k; ++i){
   105 	dijkstra.run(s);
   106 	if (!dijkstra.reached(t)){
   107 	  //There are no k paths from s to t
   108 	  break;
   109 	};
   110 	
   111 	{
   112 	  //We have to copy the potential
   113 	  typename ResGraphType::NodeIt n;
   114 	  for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
   115 	      dijkstra_dist[n] += dijkstra.distMap()[n];
   116 	  }
   117 	}
   118 
   119 
   120 	//Reversing the sortest path
   121 	Node n=t;
   122 	Edge e;
   123 	while (n!=s){
   124 	  e = dijkstra.pred(n);
   125 	  n = dijkstra.predNode(n);
   126 	  reversed[e] = 1-reversed[e];
   127 	}
   128 
   129 	  
   130       }
   131       
   132       //Let's find the paths
   133       //We put the paths into vectors (just for now). In the meantime we lose 
   134       //the information stored in 'reversed'
   135       //We suppose the lengths to be positive now.
   136       paths.clear();
   137       paths.resize(k);
   138       for (int j=0; j<i; ++j){
   139 	Node n=s;
   140 	OutEdgeIt e;
   141 
   142 	while (n!=t){
   143 
   144 
   145 	  G.first(e,n);
   146 	  
   147 	  while (!reversed[e]){
   148 	    G.next(e);
   149 	  }
   150 	  n = G.head(e);
   151 	  paths[j].push_back(e);
   152 	  reversed[e] = 1-reversed[e];
   153 	}
   154 	
   155       }
   156 
   157       return i;
   158     }
   159 
   160 
   161   }; //class MinLengthPaths
   162 
   163 
   164 } //namespace hugo
   165 
   166 #endif //HUGO_MINLENGTHPATHS_H