src/work/athos/xy/xy.h
author beckerjc
Sat, 17 Apr 2004 21:50:48 +0000
changeset 352 4b89077ab715
parent 244 0e02be2ca43c
child 431 79a5641f2dbc
permissions -rw-r--r--
A successful work-around for using const map reference as an output
parameter to Kruskal().
     1 // -*- c++ -*-
     2 #ifndef HUGO_XY_H
     3 #define HUGO_XY_H
     4 
     5 #include <iostream>
     6 
     7 namespace hugo {
     8 
     9 ///\file
    10 ///\brief A simple two dimensional vector and a bounding box implementation 
    11 ///
    12 /// The class \ref hugo::xy "xy" implements
    13 ///a two dimensional vector with the usual
    14 /// operations.
    15 ///
    16 /// The class \ref hugo::BoundingBox "BoundingBox" can be used to determine
    17 /// the rectangular bounding box a set of \ref hugo::xy "xy"'s.
    18 
    19 
    20 /** \brief
    21 2 dimensional vector (plainvector) implementation
    22 
    23 */
    24   template<typename T>
    25     class xy {
    26 
    27     public:
    28 
    29       T x,y;     
    30       
    31       ///Default constructor: both coordinates become 0
    32       xy() : x(0), y(0) {}
    33 
    34       ///Constructing the instance from coordinates
    35       xy(T a, T b) : x(a), y(a) { }
    36 
    37 
    38       ///Gives back the square of the norm of the vector
    39       T normSquare(){
    40 	return x*x+y*y;
    41       };
    42   
    43       ///Increments the left hand side by u
    44       xy<T>& operator +=(const xy<T>& u){
    45 	x += u.x;
    46 	y += u.y;
    47 	return *this;
    48       };
    49   
    50       ///Decrements the left hand side by u
    51       xy<T>& operator -=(const xy<T>& u){
    52 	x -= u.x;
    53 	y -= u.y;
    54 	return *this;
    55       };
    56 
    57       ///Multiplying the left hand side with a scalar
    58       xy<T>& operator *=(const T &u){
    59 	x *= u;
    60 	y *= u;
    61 	return *this;
    62       };
    63 
    64       ///Dividing the left hand side by a scalar
    65       xy<T>& operator /=(const T &u){
    66 	x /= u;
    67 	y /= u;
    68 	return *this;
    69       };
    70   
    71       ///Returns the scalar product of two vectors
    72       T operator *(const xy<T>& u){
    73 	return x*u.x+y*u.y;
    74       };
    75   
    76       ///Returns the sum of two vectors
    77       xy<T> operator+(const xy<T> &u) const {
    78 	xy<T> b=*this;
    79 	return b+=u;
    80       };
    81 
    82       ///Returns the difference of two vectors
    83       xy<T> operator-(const xy<T> &u) const {
    84 	xy<T> b=*this;
    85 	return b-=u;
    86       };
    87 
    88       ///Returns a vector multiplied by a scalar
    89       xy<T> operator*(const T &u) const {
    90 	xy<T> b=*this;
    91 	return b*=u;
    92       };
    93 
    94       ///Returns a vector divided by a scalar
    95       xy<T> operator/(const T &u) const {
    96 	xy<T> b=*this;
    97 	return b/=u;
    98       };
    99 
   100       ///Testing equality
   101       bool operator==(const xy<T> &u){
   102 	return (x==u.x) && (y==u.y);
   103       };
   104 
   105       ///Testing inequality
   106       bool operator!=(xy u){
   107 	return  (x!=u.x) || (y!=u.y);
   108       };
   109 
   110     };
   111 
   112   ///Reading a plainvector from a stream
   113   template<typename T>
   114   inline
   115   std::istream& operator>>(std::istream &is, xy<T> &z)
   116   {
   117 
   118     is >> z.x >> z.y;
   119     return is;
   120   }
   121 
   122   ///Outputting a plainvector to a stream
   123   template<typename T>
   124   inline
   125   std::ostream& operator<<(std::ostream &os, xy<T> z)
   126   {
   127     os << "(" << z.x << ", " << z.y << ")";
   128     return os;
   129   }
   130 
   131 
   132   /** \brief
   133      Implementation of a bounding box of plainvectors.
   134      
   135   */
   136   template<typename T>
   137     class BoundingBox {
   138       xy<T> bottom_left, top_right;
   139       bool _empty;
   140     public:
   141       
   142       ///Default constructor: an empty bounding box
   143       BoundingBox() { _empty = true; }
   144 
   145       ///Constructing the instance from one point
   146       BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; }
   147 
   148       ///Is there any point added
   149       bool empty() const {
   150 	return _empty;
   151       }
   152 
   153       ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined) 
   154       xy<T> bottomLeft() const {
   155 	return bottom_left;
   156       };
   157 
   158       ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined) 
   159       xy<T> topRight() const {
   160 	return top_right;
   161       };
   162 
   163       ///Checks whether a point is inside a bounding box
   164       bool inside(const xy<T>& u){
   165 	if (_empty)
   166 	  return false;
   167 	else{
   168 	  return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
   169 		  (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
   170 	}
   171       }
   172   
   173       ///Increments a bounding box with a point
   174       BoundingBox& operator +=(const xy<T>& u){
   175 	if (_empty){
   176 	  bottom_left=top_right=u;
   177 	  _empty = false;
   178 	}
   179 	else{
   180 	  if (bottom_left.x > u.x) bottom_left.x = u.x;
   181 	  if (bottom_left.y > u.y) bottom_left.y = u.y;
   182 	  if (top_right.x < u.x) top_right.x = u.x;
   183 	  if (top_right.y < u.y) top_right.y = u.y;
   184 	}
   185 	return *this;
   186       };
   187   
   188       ///Sums a bounding box and a point
   189       BoundingBox operator +(const xy<T>& u){
   190 	BoundingBox b = *this;
   191 	return b += u;
   192       };
   193 
   194       ///Increments a bounding box with an other bounding box
   195       BoundingBox& operator +=(const BoundingBox &u){
   196 	if ( !u.empty() ){
   197 	  *this += u.bottomLeft();
   198 	  *this += u.topRight();
   199 	}
   200 	return *this;
   201       };
   202   
   203       ///Sums two bounding boxes
   204       BoundingBox operator +(const BoundingBox& u){
   205 	BoundingBox b = *this;
   206 	return b += u;
   207       };
   208 
   209     };//class Boundingbox
   210 
   211 
   212 
   213 
   214 } //namespace hugo
   215 
   216 #endif //HUGO_XY_H